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Abstract The exact boundary controllability and the exact boundary observability for
the 1-D first order linear hyperbolic system were studied by the constructive method in
the framework of weak solutions in the work [Lu, X. and Li, T. T., Exact boundary con-
trollability of weak solutions for a kind of first order hyperbolic system — the constructive
method, Chin. Ann. Math. Ser. B, 42(5), 2021, 643–676]. In this paper, in order to
study these problems from the viewpoint of duality, the authors establish a complete the-
ory on the HUM method and give its applications to first order hyperbolic systems. Thus,
a deeper relationship between the controllability and the observability can be revealed.
Moreover, at the end of the paper, a comparison will be made between these two methods.
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1 Introduction

First order linear hyperbolic systems are widely used to model various systems in real life,

such as traffic flow, fluids in open channels and light propagation in optical fibers, etc. The exact

boundary controllability and the exact boundary observability for 1-D first order hyperbolic

systems (even in the quasi-linear case) have been established by the constructive method in

the framework of classical solutions (see [4–6]). In [12], we established the exact boundary

controllability and the exact boundary observability for 1-D first order linear hyperbolic systems

in the framework of weak solutions by the constructive method. In this paper, we are going

to study these problems from the viewpoint of duality, namely, by the corresponding HUM

method.

The HUM method was proposed by J.-L. Lions for a single wave equation with Dirichlet

boundary control or Neumann boundary control (see [10–11]). He used an observability in-

equality to establish the controllability by the HUM method. Later, for a coupled system of
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wave equations, the exact boundary controllability was set up under Dirichlet boundary con-

trols (see [8]) and Neumann boundary controls (see [9]) in suitable Hilbert spaces by the HUM

method, respectively. The HUM method applying to a system of transport equation can be

found in [2].

In the linear case, by studying the controllability through the HUMmethod in the framework

of weak solutions, a deeper relationship between the controllability for the original system and

the observability for the corresponding adjoint system can be revealed.

For the 1-D first order hyperbolic system, although in the framework of C1 solutions, the

controllability and the observability have been completely established, however, the C1 space

is not a Hilbert space, in which the HUM method can not be adopted to get the controllability

by duality even in the linear case. Since the first order hyperbolic system is time irreversible in

general, differently from the time reversible system like the wave equation, the corresponding

HUM method will have its own difficulty, which was called as the RHUM method by J.–L. Lions

in [10]. However, for simplicity, we will still call it as the HUM method in this paper. Here we

mention that the authors of [1] considered the boundary controllability from the perspective

of duality, but the observability inequality based on energy estimates applied in that paper

are valid only for certain class of symmetric hyperbolic systems, which can not be extended

to general cases, moreover, the HUM method for the first order hyperbolic system was not

explained there.

Thus, to our knowledge, there is still no paper that explains thoroughly the HUM method

and its applications for first order hyperbolic systems, then we intend to establish a complete

theory on the HUM method for first order linear hyperbolic systems to obtain the controllability,

and further apply it to study the problem of synchronization in a forthcoming paper.

The system under consideration is given by

Ut + ΛUx +AU = 0, t ∈ (0,+∞), x ∈ (0, L) (1.1)

with the boundary conditions

U+(t, 0) = G0U
−(t, 0) +D0H

+(t), t ∈ (0,+∞), (1.2)

U−(t, L) = G1U
+(t, L) +D1H

−(t), t ∈ (0,+∞) (1.3)

and the initial data

U(0, x) = U0(x), x ∈ (0, L), (1.4)

where U = (u1, · · · , un)
T : (0,+∞)×(0, L) → R

n denotes the state variable, Λ = diag{Λ−,Λ+}
is a diagonal matrix of order n,

Λ− := diag{λ1, · · · , λm}, Λ+ := diag{λm+1, · · · , λn}

with λr < 0 (r = 1, · · · ,m) and λs > 0 (s = m + 1, · · · , n), the coupling matrix A = (aij) is

of order n. Let m = n −m. The boundary coupling matrices G0 and G1 are of order m ×m

and m ×m, respectively, the boundary control matrices D0 and D1 are of order m ×M0 and

m × M1 (M0 ≤ m,M1 ≤ m), respectively, both of them are full column-rank matrices. All
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the matrices mentioned above are with constant elements. Moreover, U = (U−, U+)T with

U− = (u1, · · · , um)T and U+ = (um+1, · · · , un)
T , H = (H−, H+)T with H− = (h1, · · · , hM1

)T

and H+ = (hM1+1, · · · , hM )T (M = M0 +M1 ≤ n).

The idea of the HUM method is to provide a boundary control by the solution to the

following adjoint system















Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L),

Φ−(t, 0) = −(Λ−)−1GT
0 Λ

+Φ+(t, 0), t ∈ (0, T ),

Φ+(t, L) = −(Λ+)−1GT
1 Λ

−Φ−(t, L), t ∈ (0, T )

(1.5)

with the final data

t = T : Φ(T, x) = ΦT (x), x ∈ (0, L). (1.6)

Then, based on a strong observability inequality, we can construct an isomorphism between the

final data UT of system (1.1)–(1.3) and the final data ΦT of the adjoint system (1.5). Thus, for

any given UT (x) ∈ (L2(0, L))n, there exists ΦT (x) ∈ (L2(0, L))n such that the corresponding

adjoint problem (1.5)–(1.6) admits a weak solution Φ = Φ(t, x). This procedure can uniquely

determine the boundary control function so that the solution to problem (1.1)–(1.4) satisfies

exactly the final state (2.6) below at the time t = T . Hence, if the strong observability inequality

holds for adjoint system (1.5), then system (1.1)–(1.3) is exactly controllable.

By duality, we can see more clearly the close relationship between the exact boundary

controllability for system (1.1)–(1.3) and the strong exact boundary observability for adjoint

system (1.5). Moreover, the boundary control provided by the HUM method should possess

the least L2 norm among all the boundary controls realizing the exact boundary controllability,

which will be proved in Subsection 2.3 in the case of two-sided controls.

By Theorem 3.3 and Remark 3.3 in [12], we have

Lemma 1.1 For any given T > 0, and any given final data ΦT ∈ (L2(0, L))n, the back-

ward problem (1.5)–(1.6) admits a unique weak solution Φ = Φ(t, x) ∈ (L2(0, T ;L2(0, L)))n,

satisfying

‖Φ(t, ·)‖(L2(0,L))n ≤ C‖ΦT ‖(L2(0,L))n , ∀t ∈ [0, T ], (1.7)

‖Φ(·, 0)‖(L2(0,T ))n ≤ C‖ΦT ‖(L2(0,L))n (1.8)

and

‖Φ(·, L)‖(L2(0,T ))n ≤ C‖ΦT ‖(L2(0,L))n , (1.9)

here and hereafter, C > 0 denotes a different positive constant, depending only on T .

We will establish the exact boundary controllability for system (1.1)–(1.3) by the HUM

method based on the duality in this paper. The case of two-sided controls and the case of

one-sided controls will be successively discussed in Section 2 and Section 3, respectively. Then

the constructive method and the HUM method will be compared in Section 4.
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2 Two-Sided Exact Boundary Controllability of Weak Solutions by the

HUM Method

2.1 Two-sided exact boundary controllability

We first prove the two-sided exact boundary controllability for system (1.1)–(1.3) based on

the following lemma of strong observability.

Lemma 2.1 (see [12, Lemma 5.1]) Let T ≥ T0, where

T0 = L max
1≤r≤m

m+1≤s≤n

{ 1

|λr|
,
1

λs

}

> 0. (2.1)

Assume that Φ = Φ(t, x) is the weak solution to adjoint problem (1.5)–(1.6), in which

M = n, namely, M0 = rank(D0) = m, and M1 = rank(D1) = m. (2.2)

Then for any given final data ΦT (x) ∈ (L2(0, L))n, we have the following strong observability

inequality

‖ΦT‖(L2(0,L))n ≤ C(‖DT
0 Λ

+Φ+(·, 0)‖(L2(0,T ))m + ‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m). (2.3)

Theorem 2.1 Assume T ≥ T0, where T0 is given by (2.1). Under assumption (2.2), for

any given initial data U0(x) ∈ (L2(0, L))n and any given final data UT (x) ∈ (L2(0, L))n, system

(1.1)–(1.3) is exactly controllable at the time t = T , and the boundary control H ∈ (L2(0, T ))n

satisfies

‖H‖(L2(0,T ))n ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n). (2.4)

Proof By linearity, we claim that the exact boundary controllability for system (1.1)–(1.3)

is equivalent to the fact that system (1.1)–(1.3) with the null initial data

t = 0 : U(0, x) ≡ 0, x ∈ (0, L) (2.5)

is exactly controllable, namely, for any given final data UT (x) ∈ (L2(0, L))n, there exists a

boundary control H ∈ (L2(0, T ))n, such that the weak solution U = U(t, x) to the mixed

problem (1.1)–(1.3) with (2.5) satisfies exactly the final state

t = T : U(T, x) = UT (x), 0 < x < L. (2.6)

We will explain this fact at the end of the proof.

Let Φ = Φ(t, x) be the solution to adjoint problem (1.5)–(1.6) with smooth final data

ΦT ∈ (C∞[0, L])n. Setting

H−(t) = −DT
1 Λ

−Φ−(t, L) (2.7)

and

H+(t) = DT
0 Λ

+Φ+(t, 0), (2.8)
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we consider the following forward problem






Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),
U+(t, 0) = G0U

−(t, 0) +D0D
T
0 Λ

+Φ+(t, 0), t ∈ (0, T ),
U−(t, L) = G1U

+(t, L)−D1D
T
1 Λ

−Φ−(t, L), t ∈ (0, T )
(2.9)

with (2.5). For any given ΦT ∈ (C∞[0, L])n, let U = U(t, x) be the weak solution to problem

(2.9) with (2.5), and let

t = T : U(T, x) = UT (x), x ∈ (0, L). (2.10)

Thus, we get the following linear mapping F :

F (ΦT ) = UT . (2.11)

We will prove that F can be extended to a surjective mapping from (L2(0, L))n to (L2(0, L))n,

and this fact is equivalent to the exact boundary controllability of problem (1.1)–(1.3) with

(2.5).

Assume that Ψ = Ψ(t, x) is the solution to adjoint problem (1.5)–(1.6) with the final data

ΨT = ΨT (x) ∈ (C∞[0, L])n.

Multiplying Ψ = Ψ(t, x) on both sides of (2.9) and integrating by parts, we get

〈F (ΦT ),ΨT 〉 =〈Λ+U+(t, 0),Ψ+(t, 0)〉+ 〈Λ−U−(t, 0),Ψ−(t, 0)〉
− 〈Λ+U+(t, L),Ψ+(t, L)〉 − 〈Λ−U−(t, L),Ψ−(t, L)〉. (2.12)

Then, by the boundary conditions in (2.9), we have

〈F (ΦT ),ΨT 〉 = 〈DT
0 Λ

+Φ+(t, 0), DT
0 Λ

+Ψ+(t, 0)〉+ 〈DT
1 Λ

−Φ−(t, L), DT
1 Λ

−Ψ−(t, L)〉. (2.13)

In particular, taking Ψ(t, x) = Φ(t, x), we get

〈F (ΦT ),ΦT 〉 = ‖DT
0 Λ

+Φ+(·, 0)‖2(L2(0,T ))m

+ ‖DT
1 Λ

−Φ−(·, L)‖2(L2(0,T ))m , ∀ΦT ∈ (C∞[0, L])n. (2.14)

Thus, we can define a semi-norm in (C∞[0, L])n :

‖ΦT ‖F := (‖DT
0 Λ

+Φ+(·, 0)‖2(L2(0,T ))m

+ ‖DT
1 Λ

−Φ−(·, L)‖2(L2(0,T ))m)
1

2 , ∀ΦT ∈ (C∞[0, L])n. (2.15)

However, by Lemma 2.1, we have the observability inequality

‖ΦT‖(L2(0,L))n ≤ C(‖DT
0 Λ

+Φ+(·, 0)‖(L2(0,T ))m

+ ‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m), ∀ΦT ∈ (C∞[0, L])n. (2.16)

On the other hand, noting that D0 and D1 are reversible, by (1.8)–(1.9) we have

‖DT
0 Λ

+Φ+(·, 0)‖(L2(0,T ))m + ‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m

≤ C‖ΦT ‖(L2(0,L))n , ∀ΦT ∈ (C∞[0, L])n. (2.17)
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By (2.16)–(2.17), the norm (2.15) is equivalent to the L2(0, L) norm. Thus, the Hilbert space

F as the completion of (C∞[0, L])n with respect to the norm ‖ · ‖F is just (L2(0, L))n :

F = (L2(0, L))n = F ′.

Therefore

〈F (ΦT ),ΨT 〉 = 〈ΦT ,ΨT 〉F , ∀ΦT ,ΨT ∈ F (2.18)

defines an inner product on F , and it is easy to see that

|〈F (ΦT ),ΨT 〉| ≤ ‖ΦT ‖F‖ΨT ‖F , ∀ΦT ,ΨT ∈ F . (2.19)

Thus F can be extended to a continuous linear operator

F : F −→ F ′.

Noting (1.8)–(1.9), (2.14) and (2.19), by Lax-Milgram Theorem (see [3, Theorem 6, p.57]),

F is an isomorphism from F to F ′. Thus, for any given UT ∈ (L2(0, L))n, there exists

ΦT ∈ (L2(0, L))n, such that F (ΦT ) = UT , namely, problem (1.1)–(1.3) with (2.5) is exact-

ly controllable. Moreover, since the inverse of F is also continuous, by (2.7)–(2.8) and noting

(1.8)–(1.9), we have

‖H‖(L2(0,T ))n ≤ C(‖Φ−(·, L)‖(L2(0,T ))m + ‖Φ+(·, 0)‖(L2(0,T ))m) ≤ C‖ΦT ‖(L2(0,L))n

= C‖F−1(UT )‖(L2(0,L))n ≤ C‖UT ‖(L2(0,L))n . (2.20)

Finally, we prove that system (1.1)–(1.3) is exactly controllable for any given initial data

U0(x) ∈ (L2(0, L))n. By linearity, problem (1.1)–(1.4) can be divided into the following two

problems:






















Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),

U+(t, 0) = G0U
−(t, 0), t ∈ (0, T ),

U−(t, L) = G1U
+(t, L), t ∈ (0, T ),

t = 0 : U(0, x) = U0(x), x ∈ (0, L)

(2.21)

and






















Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),

U+(t, 0) = G0U
−(t, 0) +D0H

+(t), t ∈ (0, T ),

U−(t, L) = G1U
+(t, L) +D1H

−(t), t ∈ (0, T ),

t = 0 : U(0, x) = 0, x ∈ (0, L).

(2.22)

By Theorem 3.1 in [12], problem (2.21) admits a unique weak solution U = U1(t, x) such that

‖U1(T, ·)‖(L2(0,L))n ≤ C‖U0‖(L2(0,L))n . (2.23)

On the other hand, for any given final data UT (x) ∈ (L2(0, L))n, according to the proof men-

tioned above, there exists a boundary control H ∈ (L2(0, T ))n, such that the unique weak

solution U = U2(t, x) to problem (2.22) satisfies exactly the final data

t = T : U = UT (x)− U1(T, x), x ∈ (0, L) (2.24)
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at the time t = T , and, by (2.20) and (2.23) we have

‖H‖(L2(0,T ))n ≤ C‖U2(T, x)‖(L2(0,L))n = C‖UT (·)− U1(T, ·)‖(L2(0,L))n

≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n). (2.25)

Then, U(t, x) = U1(t, x)+U2(t, x) is the unique weak solution to the mixed problem (1.1)–(1.4),

satisfying exactly the final state (2.6) at the time t = T under boundary controlH ∈ (L2(0, T ))n,

which satsifies (2.4). The proof is complete.

2.2 Relationship between the controllability for the system and the strong observ-

ability for the adjoint system

Now, we discuss the relationship between the two-sided exact boundary controllability for

system (1.1)–(1.3) and the two-sided strong exact boundary observability for adjoint system

(1.5).

For any given full column-rank matrices D0 of order m × M0 (M0 ≤ m) and D1 of order

m×M1 (M1 ≤ m), we have the following theorem.

Theorem 2.2 If system (1.1)–(1.3) is two-sided exactly controllable under boundary control

H(t) ∈ (L2(0, T ))M (M = M0 +M1 ≤ n) in the framework of weak solutions, then the adjoint

system (1.5) satisfies the following strong D0/D1-observability

If DT
0 Λ

+Φ+(t, 0) = 0 and DT
1 Λ

−Φ−(t, L) = 0, then ΦT ≡ 0. (2.26)

Proof By Definition 3.1 in [12] and noting adjoint system (1.5), if system (1.1)–(1.3) is

two-sided exactly controllable, then for the null initial data (2.5) and any given final data

UT (x) ∈ (L2(0, L))n, there exists a boundary control H(t) ∈ (L2(0, T ))M , such that

∫ L

0

ΦT
T (x)UT (x)dx =

∫ T

0

(Φ+)T (t, 0)Λ+D0H
+(t)dt−

∫ T

0

(Φ−)T (t, L)Λ−D1H
−(t)dt. (2.27)

If DT
0 Λ

+Φ+(t, 0) = 0 and DT
1 Λ

−Φ−(t, L) = 0, then the left-hand side of (2.27) is equal to zero

for any given final data UT (x) in (L2(0, L))n, thus ΦT ≡ 0. The proof is complete.

The strong D0/D1-observability (2.26) is weaker than the strong observability inequality

(2.3), but it indicates the relationship between the controllability and the strong observability

in a more direct way.

Since both the number of boundary controls and that of boundary observations are equal

to M = M0+M1 = rank(D0)+ rank(D1)(≤ n), by Theorem 2.1 and Theorem 2.2, we have the

following corollary.

Corollary 2.1 If the number of boundary controls can not be reduced for the two-sided exact

boundary controllability for system (1.1)–(1.3), then the number of boundary observations can

not be reduced for realizing the two-sided strong exact boundary observability for adjoint system

(1.5).

Conversely, if the number of boundary observations can not be reduced for the two-sided

strong exact boundary observability for adjoint system (1.5), then the number of boundary con-

trols can not be reduced for the two-sided exact boundary controllability for system (1.1)–(1.3).
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2.3 Optimality

In this subsection we will prove that the boundary control provided by the HUM method

possesses the least L2 norm.

Theorem 2.3 Under the assumptions of Theorem 2.1, for any given initial data U0(x) ∈
(L2(0, L))n and final data UT (x) ∈ (L2(0, L))n, the boundary control provided by the HUM

method possesses the least L2 norm among all the boundary controls which realize the exact

boundary controllability.

Proof At the end of the proof of Theorem 2.1, we have shown that in order to find the

boundary control for realizing the exact boundary controllability of system (1.1)–(1.3) for any

given initial data U0(x) ∈ (L2(0, L))n, it suffices to construct the boundary control for the exact

boundary controllability of system (1.1)–(1.3) with null initial data (2.5) by the HUM method,

thus, we only need to prove Theorem 2.3 for system (1.1)–(1.3) with null initial data (2.5).

Let

J(H) =
1

2

∫ T

0

|H |2dt, H ∈ (L2(0, T ))n. (2.28)

For any given UT (x) ∈ (L2(0, L))n, we want to solve the following minimum problem

J(H∗) = inf
H∈Uad

J(H), H∗ ∈ Uad, (2.29)

where Uad = {H ∈ (L2(0, T ))n | U(T, ·) = UT }, in which U = U(t, x) is the weak solution to

mixed problem (1.1)–(1.3) with (2.5).

Define the penalty functional as follows: For any given ε > 0,

Jε(H,U) = J(H) +
1

ε
K(H,U), (H,U) ∈ W , (2.30)

where J(H) is given by (2.28),

K(H,U) =
1

2

∫ T

0

∫ L

0

(Ut + ΛUx +AU)2dxdt, (2.31)

and W is the set of (H,U), such that H ∈ (L2(0, T ))n, and U ∈ (L2(0, T ;L2(0, L)))n satisfies



































Ut + ΛUx +AU ∈ (L2(0, T ;L2(0, L)))n, t ∈ (0, T ), x ∈ (0, L),

U+(t, 0) = G0U
−(t, 0) +D0H

+(t), t ∈ (0, T ),

U−(t, L) = G1U
+(t, L) +D1H

−(t), t ∈ (0, T ),

t = 0 : U(0, x) = 0, x ∈ (0, L),

t = T : U(T, x) = UT , x ∈ (0, L)

(2.32)

in the sense of weak solutions (see [12, Theorem 3.3]). Since system (1.1)–(1.3) is exactly

controllable, we have ∅ 6= Uad ⊆ W .

For any given ε > 0, consider the optimal control problem

inf Jε(H,U), (H,U) ∈ W . (2.33)
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Noticing that, for each ε > 0, W is a closed convex set, by Theorem 2 in [3, p.54], this optimal

control problem admits a unique minimizer (Hε, Uε) ∈ W , such that

Jε(Hε, Uε) = inf Jε(H,U), (H,U) ∈ W . (2.34)

Noting that for all H ∈ Uad, Jε(H,U) = J(H), we have

Jε(Hε, Uε) ≤ J(H), ∀H ∈ Uad, ∀ε > 0,

then

Jε(Hε, Uε) ≤ inf
H∈Uad

J(H), ∀ε > 0. (2.35)

Thus, noting (2.30), Hε is bounded in (L2(0, T ))n, and

‖(Uε)t + Λ(Uε)x +AUε‖(L2(0,T ;L2(0,L)))n ≤ C
√
ε, ∀ε > 0. (2.36)

Then, by Theorem 3.3 in [12], we have

‖Uε‖(L2(0,T ;L2(0,L)))n ≤ C, ∀ε > 0, (2.37)

thus, there exist subsequences, still denoted by {Hε} and {Uε}, such that

Hε ⇀ H∗ in (L2(0, T ))n as ε → 0 (weak convergence) (2.38)

and

Uε ⇀ U∗ in (L2(0, T ;L2(0, L)))n as ε → 0 (weak convergence). (2.39)

By (2.36) and (2.38)–(2.39), taking ε → 0 in (2.32), we have



































U∗
t + ΛU∗

x +AU∗ = 0, t ∈ (0, T ), x ∈ (0, L),

U∗+(t, 0) = G0U
∗−(t, 0) +D0H

∗+(t), t ∈ (0, T ),

U∗−(t, L) = G1U
∗+(t, L) +D1H

∗−(t), t ∈ (0, T ),

t = 0 : U∗(0, x) = 0, x ∈ (0, L),

t = T : U∗(T, x) = UT , x ∈ (0, L)

(2.40)

in the sense of weak solutions, hence, H∗ ∈ Uad.

On the other hand, by

J(Hε) ≤ Jε(Hε, Uε) (2.41)

and noting that J is weakly lower semi-continuous, we have

J(H∗) ≤ lim inf J(Hε) ≤ lim inf Jε(Hε, Uε). (2.42)

Combining (2.35) and (2.42), we get

J(H∗) = inf
H∈Uad

J(H) (2.43)



10 X. Lu and T. T. Li

and

lim
ε→0

J(Hε) = J(H∗). (2.44)

Noting (2.28), (2.38) and (2.44), we have

Hε → H∗ in (L2(0, T ))n as ε → 0 (strong convergence). (2.45)

Finally, we construct the boundary control H∗ with the least norm, and we will see that it

is just the boundary control provided by the HUM method. Let

pε =
1

ε
((Uε)t + Λ(Uε)x +AUε), ∀ε > 0.

The Euler equation corresponding to the minimum problem (2.33) is

∫ T

0

HT
ε V dt+

∫ T

0

∫ L

0

pTε (Wt + ΛWx +AW )dxdt = 0 (2.46)

for any given V ∈ (L2(0, T ))n and for any given W satisfying



































Wt + ΛWx +AW ∈ (L2(0, T ;L2(0, L)))n, t ∈ (0, T ), x ∈ (0, L),

W+(t, 0) = G0W
−(t, 0) +D0V

+(t), t ∈ (0, T ),

W−(t, L) = G1W
+(t, L) +D1V

−(t), t ∈ (0, T ),

t = 0 : W (0, x) = 0, x ∈ (0, L),

t = T : W (T, x) = 0, x ∈ (0, L)

(2.47)

in the sense of weak solutions (see [3, Theorem 2, p.54]). Integrating by parts, we have

∫ T

0

∫ L

0

pTε (Wt + ΛWx +AW )dxdt

=

∫ T

0

((p+ε )
T (t, L)Λ+ + (p−ε )

T (t, L)Λ−G1)W
+(t, L)dt

−
∫ T

0

((p+ε )
T (t, 0)Λ+G0 + (p−ε )

T (t, 0)Λ−)W−(t, 0)dt

+

∫ T

0

(p−ε )
T (t, L)Λ−D1V

−(t)dt−
∫ T

0

(p+ε )
T (t, 0)Λ+D0V

+(t)dt

−
∫ T

0

∫ L

0

((pε)t + Λ(pε)x −AT pε)
TWdxdt. (2.48)

Comparing with (2.46), we get















(pε)t + Λ(pε)x −AT pε = 0, t ∈ (0, T ), x ∈ (0, L),

p−ε (t, 0) = −(Λ−)−1GT
0 Λ

+p+ε (t, 0), t ∈ (0, T ),

p+ε (t, L) = −(Λ+)−1GT
1 Λ

−p−ε (t, L), t ∈ (0, T )

(2.49)

and

H−
ε (t) = −DT

1 Λ
−p−ε (t, L), H+

ε (t) = DT
0 Λ

+p+ε (t, 0). (2.50)



Exact Controllability First Order Hyperbolic System HUM Method 11

By Lemma 2.1 and noting (2.50), it follows from (2.49) that

‖pε(T, x)‖(L2(0,L))n ≤ C(‖DT
1 Λ

−p−ε (·, L)‖(L2(0,T ))m + ‖DT
0 Λ

+p+ε (·, 0)‖(L2(0,T ))m)

= C(‖H−
ε ‖(L2(0,T ))m + ‖H+

ε ‖(L2(0,T ))m), (2.51)

where C > 0 is a constant independent of ε. Noting that Hε is bounded in (L2(0, T ))n, by

Lemma 1.1, pε(∀ε > 0) is bounded in (L2(0, T ;L2(0, L)))n, thus there exists a subsequence,

still denoted by {pε}, such that

pε ⇀ p in (L2(0, T ;L2(0, L)))n as ε → 0 (weak convergence), (2.52)

pε(T, x) ⇀ pT in (L2(0, L))n as ε → 0 (weak convergence). (2.53)

By (2.49)–(2.50), taking ε → 0, we get



























pt + Λpx −AT p = 0, t ∈ (0, T ), x ∈ (0, L),

p−(t, 0) = −(Λ−)−1GT
0 Λ

+p+(t, 0), t ∈ (0, T ),

p+(t, L) = −(Λ+)−1GT
1 Λ

−p−(t, L), t ∈ (0, T ),

t = T : p(T, x) = pT , x ∈ (0, L)

(2.54)

in the sense of weak solutions, and

H∗−(t) = −DT
1 Λ

−p−(t, L), H∗+(t) = DT
0 Λ

+p+(t, 0). (2.55)

Let Φ = p, ΦT = pT and Ψ = U∗. We have


























Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L),

Φ−(t, 0) = −(Λ−)−1GT
0 Λ

+Φ+(t, 0), t ∈ (0, T ),

Φ+(t, L) = −(Λ+)−1GT
1 Λ

−Φ−(t, L), t ∈ (0, T ),

t = T : Φ(T, x) = ΦT (x), x ∈ (0, L)

(2.56)

and



































Ψt + ΛΨx +AΨ = 0, t ∈ (0, T ), x ∈ (0, L),

Ψ+(t, 0) = G0Ψ
−(t, 0) +D0D

T
0 Λ

+Φ+(t, 0), t ∈ (0, T ),

Ψ−(t, L) = G1Ψ
+(t, L)−D1D

T
1 Λ

−Φ−(t, L), t ∈ (0, T ),

t = 0 : Ψ(0, x) = 0, x ∈ (0, L),

t = T : Ψ(T, x) = UT , x ∈ (0, L).

(2.57)

Thus we get the following mapping F :

F (ΦT ) = UT , (2.58)

which is an isomorphism from (L2(0, L))n to (L2(0, L))n. Therefore, for any given UT ∈
(L2(0, L))n, the boundary control with the least norm, which realizes the exact boundary con-

trollability for system (1.1)–(1.3), is just the boundary control given by (2.7)–(2.8) according

to the HUM method.
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3 One-Sided Exact Boundary Controllability of Weak Solutions by the

HUM Method

Given much control time, the exact boundary controllability can be realized by controls

applying only on one side of the boundary, which will reduce largely the number of boundary

controls. However, in this case, we have to add some assumptions on the coupling matrix on

the boundary so that the one-sided strong exact boundary observability inequality holds, and,

based on which, the HUM method can be applied to establish the one-sided exact boundary

controllability for system (1.1)–(1.3).

We first give the corresponding one-sided strong observability.

Lemma 3.1 (see [12, Lemma 5.2]) Let T ≥ T 0, where

T 0 = L
(

max
1≤r≤m

1

|λr|
+ max

m+1≤s≤n

1

λs

)

> 0. (3.1)

Assume that Φ = Φ(t, x) is the weak solution to adjoint problem (1.5)–(1.6). Assume further-

more that

m ≤ m (i.e., n ≤ 2m) (3.2)

and

rank(G0) = m. (3.3)

If

M = M1 = rank(D1) = m, (3.4)

then for any given final data ΦT (x) ∈ (L2(0, L))n, we have the following strong observation

inequality

‖ΦT ‖(L2(0,L))n ≤ C‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m . (3.5)

Theorem 3.1 Let T ≥ T 0, where T 0 is given by (3.1). Assume that H+(t) ≡ 0. Under the

assumptions of (3.2)–(3.4), for any given initial data U0(x) ∈ (L2(0, L))n and any given final

data UT (x) ∈ (L2(0, L))n, system (1.1)–(1.3) is exactly controllable at the time t = T , and the

boundary control H−(t) ∈ (L2(0, T ))m satisfies

‖H−‖(L2(0,T ))m ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n). (3.6)

Proof Similarly, we need only to prove that for any given final data UT (x) ∈ (L2(0, L))n,

there exists a boundary control H− ∈ (L2(0, T ))m, such that the unique weak solution U =

U(t, x) to the mixed problem (1.1)–(1.3) with null initial data (2.5) satisfies exactly final state

(2.6) at the time t = T.

Setting

H−(t) = −DT
1 Λ

−Φ−(t, L), (3.7)
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where Φ = Φ(t, x) is a solution to adjoint problem (1.5)–(1.6) with any given final data ΦT ∈
(C∞[0, L])n, we consider the following mixed problem















Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),

U+(t, 0) = G0U
−(t, 0), t ∈ (0, T ),

U−(t, L) = G1U
+(t, L)−D1D

T
1 Λ

−Φ−(t, L), t ∈ (0, T )

(3.8)

with (2.5). For any given ΦT ∈ (C∞[0, L])n, let U = U(t, x) be the weak solution to problem

(3.8) with (2.5), and let

t = T : U(T, x) = UT (x), x ∈ (0, L). (3.9)

We get the linear mapping F :

F (ΦT ) = UT . (3.10)

It suffices to prove that F can be extended to be surjective from (L2(0, L))n to (L2(0, L))n.

In fact, let Ψ = Ψ(t, x) be a solution to adjoint problem (1.5)–(1.6) with final data ΨT =

ΨT (x) ∈ (C∞[0, L])n. Multiplying Ψ = Ψ(t, x) on both sides of (3.8), and integrating by parts,

we get

〈F (ΦT ),ΨT 〉 = 〈DT
1 Λ

−Φ−(t, L), DT
1 Λ

−Ψ−(t, L)〉. (3.11)

In particular, taking Ψ(t, x) = Φ(t, x), we get

〈F (ΦT ),ΦT 〉 = ‖DT
1 Λ

−Φ−(·, L)‖2(L2(0,T ))m , ∀ΦT ∈ (C∞[0, L])n. (3.12)

However, by Lemma 3.1, we have

‖ΦT ‖(L2(0,L))n ≤ C‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m , ∀ΦT ∈ (C∞[0, L])n. (3.13)

Then, we can define a semi-norm in (C∞[0, L])n:

‖ΦT ‖F := ‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m , ∀ΦT ∈ (C∞[0, L])n. (3.14)

By (1.9), we have

‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m ≤ ‖ΦT ‖(L2(0,L))n , ∀ΦT ∈ (C∞[0, L])n, (3.15)

which together with (3.13) shows that the norm ‖ · ‖F is in fact an equivalent norm to the

L2(0, L) norm. Therefore, the Hilbert space F as the completion of (C∞[0, L])n with respect

to the norm ‖ · ‖F is just the (L2(0, L))n space

F = (L2(0, L))n = F ′,

and

|〈F (ΦT ),ΨT 〉| ≤ ‖ΦT ‖F‖ΨT ‖F , ∀ΦT ,ΨT ∈ F . (3.16)
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Then F can be extended to a linear continuous operator on F :

F : F −→ F ′.

Noting (1.9), (3.12) and (3.16), by Lax-Milgram Theorem (see [3, Theorem 6, p.57]), F is an

isomorphism from F to F ′. Thus, for any given UT ∈ (L2(0, L))n, there exists ΦT ∈ (L2(0, L))n,

such that F (ΦT ) = UT . The rest of the proof is similar to that of Theorem 2.1.

Remark 3.1 Under assumptions (3.2)–(3.3), to realize the one-sided exact boundary con-

trollability of system (1.1)–(1.3), boundary controls should be given on x = L, where there are

more coming characteristics, and the number of boundary controls is reduced to m (m ≤ m <

n).

Remark 3.2 Corollary 2.1 and Theorem 2.3 are also true for the one-sided exact boundary

controllability.

Moreover, as a direct consequence of Theorem 2.2, for any given full column-rank matrix

D1 of order m×M1 (M1 ≤ m), we have the following theorem.

Theorem 3.2 If system (1.1)–(1.3) with H+(t) ≡ 0 is one-sided exactly controllable under

boundary control H−(t) ∈ (L2(0, T ))M (M = M1 ≤ m < n), then adjoint system (1.5) satisfies

the following strong D1-observability:

If DT
1 Λ

−Φ−(t, L) = 0, then ΦT ≡ 0. (3.17)

Remark 3.3 The two-sided exact boundary controllability with fewer boundary controls

can be similarly treated by the HUM method.

4 The Comparison Between the Constructive Method and the HUM

Method

Both the constructive method and the HUM method can be used to establish the exact

boundary controllability for system (1.1)–(1.3) (see Lemmas 4.1–4.2 in [12] and Theorem 2.1,

Theorem 3.1 in this paper). They obtain almost the same results from two different points of

view: The constructive method is to construct a solution, satisfying exactly the given initial

data and final data, by successively solving some forward problem, backward problem, leftward

(resp. rightward) problem of system (1.1)–(1.3) with suitable artificial boundary conditions.

It is more direct and easier to be understood. While, the HUM method treats the problem

by means of the duality, the problem of controllability is then transformed into a problem of

observability for the homogeneous adjoint system. Then, to prove the observability inequality

is to make estimates of the solution to this homogeneous system. We will make some comments

about these two methods in what follows.

1. The constructive method can be easily used to establish not only the controllability of a

system, but also the observability of the adjoint system. While, for the HUM method, to prove

the controllability of a system is based on the observability inequality of the adjoint system,

and in this paper, the observability inequality is also proved by the constructive method.
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2. For the problem with inhomogeneous boundary conditions, the constructive method can

be also used to establish its controllability and observability. For example, for one-sided exact

boundary controllability, by Lemma 4.2 in [12], system (1.1)–(1.3) is exactly controllable for

any given boundary control matrix D0 and boundary function H+(t) under some hypotheses.

But in order to apply the HUM method, we have to assume that there is no boundary control

on x = 0, namely, H+(t) ≡ 0 in (1.2). Otherwise, (3.11) becomes

〈F (ΦT ),ΨT 〉 = 〈DT
1 Λ

−Φ−(t, L), DT
1 Λ

−Ψ−(t, L)〉+ 〈D0H
+,Λ+Ψ+(t, 0)〉,

and (3.12) becomes

〈F (ΦT ),ΦT 〉 = ‖DT
1 Λ

−Φ−(·, L)‖2(L2(0,T ))m + 〈D0H
+,Λ+Φ+(t, 0)〉, ∀ΦT ∈ (C∞[0, L])n,

then 〈F (ΦT ),ΦT 〉 can not define a semi-norm, hence the HUM method fails.

3. The constructive method can be efficiently applied to deal with problems in one-dimensional

space, but very difficult for higher dimensional spaces. However, to consider the problem by

means of the duality in the framework of weak solutions will be possible and helpful for the

study in higher dimensional spaces.

4. By the HUM method, the close relationship between controllability and observability can

be better revealed. Take a coupled system of wave equations as an example, two important and

difficult issues can be solved by the duality in the study of synchronization and related problems,

one is the non-controllability when there is a lack of boundary controls, while, the other is the

necessity of the compatibility conditions of the coupling matrix for synchronization. As to the

first issue for first order hyperbolic systems, so far there is no further result except for some

special decoupled equations (see [7]). As to the second issue, we will take into consideration

together with related subjects of synchronization for first order hyperbolic systems in our future

work.

5. In the proof of controllability by the constructive method, although the boundary control

can be obtained, however, taking the case of one-sided controls for instance, we have to solve

a forward problem, a backward problem, then a rightward (resp. leftward) problem. While,

by the HUM method, since the boundary control is determined by the solution to the adjoint

problem, we only have to solve a backward problem, and the obtained boundary control has an

explicit expression. Moreover, the boundary control provided by the HUM method possesses

the least L2 norm.

6. The HUM method is not available in dealing with the exact boundary null controllability

for first order hyperbolic systems in general. In fact, when the corresponding weak exact

boundary observability inequality holds, since the first order hyperbolic system may not be

time reversible, we do not have similar inequalities as (1.8)–(1.9) with respect to the initial

data, then we can not obtain an isomorphic mapping as F , so that the HUM method does not

work.

7. In the framework of weak solutions, system (1.1)–(1.3) is still exactly (null) controllable

when the control time T is equal to T0. However, in the framework of classical solutions, in

order to guarantee the continuity of the constructed solution, it sharply requires T > T0, which



16 X. Lu and T. T. Li

is determined by the regularity requirement of the classical solution, but not required in the

framework of weak solutions. This property is still true for related results on the observability.
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