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Abstract The unique continuation on quadratic curves for harmonic functions is dis-

cussed in this paper. By using complex extension method, the conditional stability of

unique continuation along quadratic curves for harmonic functions is illustrated. The nu-

merical algorithm is provided based on collocation method and Tikhonov regularization.

The stability estimates on parabolic and hyperbolic curves for harmonic functions are

demonstrated by numerical examples respectively.
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1 Introduction

In this paper, we consider a problem that how to get global information by using local given

information of the solution, namely, a unique continuation problem. The unique continuation

for an elliptic equation states that if there is a connected open set Ω ∈ R
n in which the solution

u lies and Ξ ⊂ Ω is an open subset of Ω, then u|Ω ≡ 0 provided u|Ξ = 0. In two dimensions,

the unique continuation means that an analytic function must be zero if its zero points have

accumulated points. We will first consider a parabolic curve, which is an analytic submanifold

of two dimensional space. The aim is to study unique continuation on a parabola for harmonic

functions, that is, if the value of function u is known on a small part of the parabolic curve,

then how to get the value of u on a larger piece of the parabola. This problem is non-trivial

since no measurement on the boundary ∂Ω is given. Moreover, it is an ill-posed problem due to

its instability, which causes difficulties in numerical computations. For other types of quadratic

functions, similar results can be obtained by the methods in this paper.

In the understanding of the unique continuation, unique continuation properties of various

PDE’s have been proved with development of PDEs theory (see [1]). Recently, the unique con-

tinuation on analytic sub-manifold has also been studied. For instance, Cheng and Yamamoto

[2] fixed the measure points on a line and proved the conditional stability on a line for two-

dimensional harmonic functions by adopting the method of complex continuation. Based on
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their results, Lu et al. [3] derived the unique continuation on a line for Helmholtz equation and

the numerical treatment was firstly considered in their paper. The conditional stability of line

unique continuation can also be applied to the estimation of unknown boundary for harmonic

functions (see [4]). Besides, the unique continuation has also been applied to the studies of other

inverse problems, like control theory and optimal design problems. For example, the stability

of soft obstacles reconstruction in inverse scattering was obtained by Isakov [5] based on unique

continuation. Cheng et al. [6] studied the unique continuation for elasticity systems, which can

be applied in phase transformation and anomalous diffusion in heterogeneous medium.

The focus of this paper is to generalize the conclusions of Cheng and Yamamoto [2] on a

line to quadratic curves. A conditional stability for the continuation problem will be obtained

based on the complex extension method, the unique continuation property is then implied. The

main idea is to construct a holomorphic function based on the integral of single-layer potential

with Green’s function. The determination of the analytic domain of the complex extention is a

key to this process, which differs from the case of unique continuation on a line. After obtaining

conditional stability estimates, a deterministic regularization, Tikhonov regularization, can be

used to deal with the ill-posedness and construct stable numerical method (see [7]). Considering

the discontinuity of real measurements, refer to [8], the collocation method can be used to make

specific numerical applications.

Our problem can be formulated as follows. Assume that Ω is a domain in R2, Γ is an

analytic curve and a continuous parabola in Ω. Suppose that there exist open curves τ and T

satisfying: τ ⊂ T ⊂⊂ Γ. Consider a harmonic function u(x) in Ω, such that:

∆u(x) = 0, x ∈ Ω. (1.1)

Then this paper principally discusses the unique continuation on curve T for u which is known

on τ (as illustrated in Figure 1), including the conditional stability estimate and the numerical

computation. It should be pointed out that Cauchy values are not needed by our results, that

is, no derivatives of harmonic functions on quadratic curves are required.

The rest of this paper is organized as follows: Section 2 gives the proof of the conditional

stability on quadratic curves for harmonic functions, requiring that the taken curve segments

have no intersections with boundaries. In Section 3, numerical applications implemented by

the collocation method and Tikhonov’s regularization are given. The numerical calculations on

parabolic and logarithmic equations for harmonic functions, respectively, illustrate the validity

of the conditional stability estimates. Conclusions are drawn in Section 4.

2 The Unique Continuation for Harmonic Functions

Theorem 2.1 Assume that τ and T satisfy the previous definitions. Set u(x) ∈ C2(Ω) as

a harmonic function. If there exits a constant M > 0, such that

‖u‖C(Ω) ≤ M, (2.1)
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Figure 1 Illustration of unique continuation on a quatratic curve T with the measurement segment τ

for a harmonic function u in Ω.

then

‖u‖C(T ) ≤ C‖u‖κC(τ), (2.2)

where C = C(M, τ, T ) is a positive constant, which is independent of u, κ ∈ (0, 1) depends on

τ and T .

We extend u on a parabola from real plane to the complex plane first, which is a basis

for the proof. Comparing with the extension of u on a line, the determination of the analytic

domain of the complex extention is a difficulty.

Lemma 2.1 Let T1 ⊂ C be the straight segment satisfing T1 = {(x, 0) | (x, x2) ∈ T },

B = {z ∈ C | dist(z, T1) < ε}, where ε = min{ ε1
4diam(Ω) ,

ε1
4 }, ε1 = dist(T, ∂Ω). Then |(z −

ζ1)
2 + (z2 − ζ2)

2| 6= 0, ∀(ζ1, ζ2) ∈ ∂Ω ⊂ R2, ∀z ∈ B ⊂ C.

Proof It can be proved by reduction to absurdity. It is obvious that T1 ⊂ B. For any

z ∈ B, there exists a z0 = x0 ∈ T1, such that |z − z0| < ε. If ∃(ζ1, ζ2) ∈ ∂Ω, z ∈ B such that

|(z − ζ1)
2 + (z2 − ζ2)

2| = 0, then

(z − ζ1)
2 + (z2 − ζ2)

2 = 0

⇒ z − ζ1 = ±i(z2 − ζ2)

⇒ (z − x0) + (x0 − ζ1) = ±i((z − x0 + x0)
2 − ζ2) = ±i((z − x0)

2 + (x2
0 − ζ2) + 2(z − x0)x0)

⇒ |(x0 − ζ1)∓ i(x2
0 − ζ2)| = | ± i((z − x0)

2 + 2(z − x0)x0)− (z − x0)|. (2.3)

In (2.3),we can see that

LHS = |(x0 − ζ1)∓ i(x2
0 − ζ2)| ≥ ε1

according to the definition of ε1. On the other hand,

RHS = | ± i((z − x0)
2 + 2(z − x0)x0)− (z − x0)|
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≤ |z − x0|
2 + 2|z − x0||x0|+ |z − x0|

≤ ε2 + 2ε · diam(Ω) + ε

≤
ε1

4
·

ε1

4diam(Ω)
+

3ε1
4

< ε1,

where the last inequality is due to ε1 ≤ diam(Ω). Then we arrives a contradiction and the proof

is complete.

Lemma 2.2 Let Ω ⊂ R
2, then for any harmonic function u = u(x, y) in Ω, which

satisfies ‖u‖C(Ω) ≤ M , M > 0 is a constant, there exists a simply connected domain B ⊂ C

which contains T1 defined in Lemma 2.1, and a holomorphic function v = v(z) (z = λ+iµ ∈ C)

in B, such that

v(λ, ν) = u(x, y), y = x2, λ = x, ν = 0, (x, y) ∈ T. (2.4)

Proof For any Ω′ satisfying Γ ⊂ Ω′ ⊂ Ω, since u is harmonic in C(Ω′), by Green’s formula,

there exists a density µ in ∂Ω′, such that

u(x, y) =

∫

∂Ω′

log((x − ζ1)
2 + (y − ζ2)

2)µ(ζ)dsζ , x = (x, y) ∈ Ω′. (2.5)

For the parabola y = x2, we define the complex function,

v(λ+ iν) =

∫

∂Ω′

log((λ+ iν − ζ1)
2 + ((λ+ iν)2 − ζ2)

2)µ(ζ)dsζ , λ+ iν ∈ C. (2.6)

It can be seen that when λ = x, ν = 0,

v(λ) =

∫

∂Ω′

log((λ − ζ1)
2 + (λ2 − ζ2)

2)µ(ζ)dsζ = u(λ, λ2), λ ∈ R.

According to Lemma 2.1, there exists a so called analytic domain B ⊂ C satisfying T1 ⊂ B,

such that log((λ− ζ1)
2 + (λ2 − ζ2)

2) is analytic in B.

On the other hand, it was shown in [9] that when u ∈ H2(∂Ω′), µ ∈ H1(∂Ω′), where

Hs(∂Ω′) (s = 1, 2) is Sobolev space on ∂Ω′. One has

1

C1
‖u‖H2(∂Ω′) ≤ ‖µ‖H1(∂Ω′) ≤ C1‖u‖H2(∂Ω′), (2.7)

here C1 is a constant. According to Sobolev embedding theorem and interior elliptic estimate

(see [10]), there exists a constant C3 = C3(Ω
′,Ω) > 0, which is independent of u, such that

‖µ‖C(∂Ω′) ≤ C2‖u‖C2(Ω′) ≤ C3‖u‖C(Ω) = C3M. (2.8)

Then v is analytic in B and

v(λ+ iν) = u(x, y) for y = x2, λ = x, ν = 0, (x, y) ∈ T.

For other quadratic curves like a hyperbolic curve, if we take the observation range on one

branch of the hyperbola, a similar method can be used to construct a complex extension of the

harmonic function u. Without lose of generality, set Γ =
{
(x, y) ∈ Ω | y2 − x2 = 1

9 , y > 0
}
.
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Lemma 2.3 Let T1 ∈ C be the straight segment satisfing T1 =
{
(x, 0) |

(
x,

√
x2 + 1

9

)
∈ T

}
,

B =
{
z ∈ C | dist(z, T1) < min

{
ε1
6 ,

ε1
36diam(Ω)

}}
, where ε1 = min{1, dist(T, ∂Ω)}. Then

∣∣(z − ζ1)
2 +

(√
z2 + 1

9 − ζ2
)2∣∣ 6= 0, ∀(ζ1, ζ2) ∈ ∂Ω, ∀z ∈ B ⊂ C.

Proof It can be proved by contradiction. It is obvious that T1 ⊂ B. For any z ∈ B,

there exists a z0 = x0 ∈ T1, such that |z − z0| < ε. If ∃(ζ1, ζ2) ∈ ∂Ω, z ∈ B such that∣∣(z − ζ1)
2 +

(√
z2 + 1

9 − ζ2
)2∣∣ = 0, then

(z − ζ1)
2 +

(√
z2 +

1

9
− ζ2

)2

= 0

⇒ z − ζ1 = ±i
(√

z2 +
1

9
− ζ2

)

⇒ (z − x0) + (x0 − ζ1) = ±i
(√

(z − x0 + x0)2 +
1

9
− ζ2

)

= ±i
(√

(z − x0)2 + 2(z − x0)x0 +
(
x2
0 +

1

9

)
+
(√

x2
0 +

1

9
− ζ2

)
−

√
x2
0 +

1

9

)

⇒
∣∣∣(x0 − ζ1)∓ i

(√
x2
0 +

1

9
− ζ2

)∣∣∣

=
∣∣∣± i

(√
(z − x0)2 + 2(z − x0)x0 +

(
x2
0 +

1

9

)
−

√
x2
0 +

1

9

)
− (z − x0)

∣∣∣. (2.9)

From (2.9),we can see that

LHS =
∣∣∣(x0 − ζ1)∓ i

(√
x2
0 +

1

9
− ζ2

)∣∣∣ ≥ dist(T, ∂Ω) ≥ ε1

and

RHS =
∣∣∣± i

(√
(z − x0)2 + 2(z − x0)x0 +

(
x2
0 +

1

9

)
−

√
x2
0 +

1

9

)
− (z − x0)

∣∣∣

≤
∣∣∣
√
(z − x0)2 + 2(z − x0)x0 +

(
x2
0 +

1

9

)
−

√
x2
0 +

1

9

∣∣∣+ |z − x0|

≤
|(z − x0)

2 + 2(z − x0)x0|
∣∣
√
(z − x0)2 + 2(z − x0)x0 +

(
x2
0 +

1
9

)
+
√
x2
0 +

1
9

∣∣
+ |z − x0|.

Since |z − x0| ≤ ε, with the definition of ε and denote |Ω| = diam(Ω), we have

|(z − x0)
2 + 2(z − x0)x0| ≤ ε2 + 2|Ω|ε ≤

ε21
36

+ 2|Ω|
ε1

36|Ω|
≤

ε1 · 1

36
+

ε1

18
=

ε1

12
.

Due to ε1
12 ≤ 1

12 ≤ 1
9 + x2

0, in the corresponding one-valued branch, we have the real part

Re
(√

(z − x0)2 + 2(z − x0)x0 +
(
x2
0 +

1

9

))
≥ 0.

Therefore,

RHS ≤
ε1
12√

x2
0 +

1
9

+
ε1

6
<

ε1

2
,

which is a contradiction with LHS ≥ ε1. Thus the proof is complete.
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Lemma 2.4 Assume that u = u(x, y) is harmonic in Ω ⊂ R
2, which satisfies ‖u‖C(Ω) ≤ M

where M > 0 is a constant, then there exists a simply connected domain B ⊂ C containing the

line T1 defined in Lemma 2.3, and a holomorphic function v = v(λ, ν) in B, such that

v(λ, ν) = u(x, y), y2 − x2 =
1

9
, λ = x, ν = 0, (x, y) ∈ T. (2.10)

Proof For any Ω′ which satisfies Γ ⊂ Ω′ ⊂ Ω, by Green’s formula, since u is harmonic in

C(Ω′), there exists a density µ in ∂Ω, such that

u(x, y) =

∫

∂Ω′

log((x − ζ1)
2 + (y − ζ2)

2)µ(ζ)dsζ , x = (x, y) ∈ Ω′. (2.11)

Then according to Lemma 2.3 and similar to the proof of Lemma 2.2, there exists a domain

B ∈ C, such that v defined by

v(λ, ν) =

∫

∂Ω′

log
(
(λ+ iν − ζ1)

2 +
(√

(λ+ iν)2 +
1

9
− ζ2

)2)
µ(ζ)dsζ ,

z = λ+ iµ ∈ B,

(2.12)

is holomorphic in B. On x =
(
x,

√
x2 + 1

9

)
∈ T ⊂ Ω′,

u(x, y) =

∫

∂Ω′

log
(
(x− ζ1)

2 +
(√

x2 +
1

9
− ζ2

)2)
µ(ζ)dsζ , x =

(
x,

√
x2 +

1

9

)
∈ T,

and on λ = x, ν = 0, one has

v(λ, ν) =

∫

∂Ω′

log
(
(λ− ζ1)

2 +
(√

λ2 +
1

9
− ζ2

)2)
µ(ζ)dsζ ,

which indicates

v(λ, ν) = u(x, y), y2 − x2 =
1

9
, λ = x, ν = 0, (x, y) ∈ T.

Denote D the domain satisfying

D = {λ+ iν ∈ C | (λ, ν) ∈ [λ0, λ0 + r]× [−h, h]}. (2.13)

Let l = {(x, 0) | x ∈ [λ0 + r1, λ0 + r2]} ⊂ D be a closed segment, where 0 < r1 < r2 < r. A

harmonic measure with respect to D and l can be defined as follows.

Definition 2.1 (Harmonic measure) A function ϕ(λ, ν) is called a harmonic measure for

D and l, if ϕ(λ, ν) satisfies

∆ϕ(λ, ν) = 0, (λ, ν) ∈ D \ l,

ϕ(λ, ν) = 0, (λ, ν) ∈ ∂D,

ϕ(λ, ν) = 1, (λ, ν) ∈ l.

On the basis of Friedman and Vogelius [11] and Kellogg [12], ϕ(z) exists and is unique.

ϕ ∈ Cτ (D) (0 < τ < 1) can be obtained by [11]. For the estimate of the harmonic measure, we

have the following lemma.
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Lemma 2.5 There exists a positive constant C4, such that the harmonic measure defined

in Definition 2.1 satisfies

ϕ(x, 0) ≥ C4(λ0 + r − x), x ∈ [λ0 + r2, λ0 + r]. (2.14)

Proof From Definition 2.1 and the maximum principle for harmonic functions, we have

0 < ϕ(λ, ν) < 1, λ+ iν ∈ D \ l. (2.15)

Assume to the contrary that ∀ε > 0 there exists xε ∈ [λ0 + r2, λ0 + r] such that ϕ(xε, 0) <

ε(λ0 + r− xε). Then, we can take ε = 1
n
, n = 1, 2, · · · and have the corresponding xn satisfying

ϕ(xn, 0) <
1

n
(λ0 + r − xn) ≤

1

n
(r − r2) → 0, n → ∞. (2.16)

Note that if some xn = λ0 + r, then it contradicts to the boundary condition since (λ0 + r, 0) ∈

∂D. It can also be seen that there are infinity many different xn. Thus we can assume

xn 6= λ0 + r and further have

ϕ(xn, 0)

λ0 + r − xn

<
1

n
→ 0, n → ∞. (2.17)

Since [λ0 + r2, λ0 + r] is compact, there must exist an x̂ ∈ [λ0 + r2, λ0 + r], and a subsequence

{xnk
} such that xnk

→ x̂ for k → ∞. If x̂ 6= λ0 + r, then ϕ(x̂, 0) = 0 due to (2.16) and the

continuity of ϕ, which is a contradition to (2.15). If x̂ = λ0 + r, then from (2.17) and the

boundary geometry we have

∂ϕ(λ, ν)

∂λ

∣∣∣
(λ0+r,0)

= 0,

which is a contradiction to the maximum principle. Therefore, the conclusion of the lemma is

true.

Lemma 2.6 Assume that v = v(λ, ν) is a holomorphic function in D. If |v(λ, ν)| ≤

M1, (λ, ν) ∈ D, let ε = max
(λ,ν)∈l

|v(λ, ν)|, then

|v(x)| ≤ M1

( ε

M1

)ϕ(x)

≤ M1

( ε

M1

)C5(λ0+r−x)

, x ∈ [λ0 + r2, λ0 + r], (2.18)

where C5 is a constant.

It can be proved by the same method in [2] with the conclusion of Lemma 2.5.

So far, it is sufficient to start with the derivation of the main theorem.

Proof Consider the parabolic curve first. Without lose of generality, suppose that

Γ = {x = (x, y) | y = x2, 0 < x < R} (2.19)

and

T = {x = (x, y) | y = x2, a < x < b},
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τ = {x = (x, y) | y = x2, c < x < d},

here 0 < a < c < d < b < R. If Γ is a hyperbola, without lose of generality, suppose that

Γ =
{
x = (x, y) | y2 − x2 =

1

9
, 0 < x < R

}
(2.20)

and

T =
{
x = (x, y) | y2 − x2 =

1

9
, a < x < b

}
,

τ =
{
x = (x, y) | y2 − x2 =

1

9
, c < x < d

}
,

here 0 < a < c < d < b < R.

Accordingly, suppose that

Γ1 = {x = (x, 0) | 0 < x < R},

T1 = {x = (x, 0) | a < x < b},

τ1 = {x = (x, 0) | c < x < d}.

Then by Lemmas 2.1 and 2.3, there exists the corresponding domain B and subsequently a

positive constant ρ can be found such that (a− ρ, b+ ρ)× (−ρ, ρ) ⊂ B. v = v(λ, ν) in Lemmas

2.2 and 2.4 is holomorphic in (a− ρ, b+ ρ)× (−ρ, ρ). Due to the maximum principle,

‖v‖C((a−ρ,b+ρ)×(−ρ,ρ)) ≤ ‖v‖C(B). (2.21)

By (2.8),

‖v‖C((a−ρ,b+ρ)×(−ρ,ρ)) ≤ ‖v‖C(B) ≤ C6‖u‖C(Ω) ≤ C6M, (2.22)

where C6 is a constant.

Then by Lemma 2.6, there exist C7 and C8 just depending on T and Ω such that,

|u(x)| = |v(x, 0)| ≤ C6M
( ε

C6M

)C7(b+ρ−x)

≤ C8ε
C7ρ, x ∈ [d, b]. (2.23)

Similarly,

|u(x)| = |v(x, 0)| ≤ C6M
( ε

C6M

)C9(x+ρ−a)

≤ C10ε
C9ρ, x ∈ [a, c]. (2.24)

Corollary 2.1 (2.2) is called a conditional stability estimate of u with condition (2.1),

which implies the unique continuation, i.e., u|τ = 0 yields u|T ≡ 0.

Remark 2.1 Replace the parabola with other quadratic curves, or even other analytical

curves, the conditional stability estimate may be obtained similarly.

Remark 2.2 From the proof, it indicates that the degree of control for u on T is related

to the harmonic measure ϕ, in other words, κ in Theorem 2.1 may be further quantified by the

harmonic measure ϕ which is determined by T , τ and Ω.

Remark 2.3 The unique continuation does not hold outside the quadratic curve, but holds

on the quadratic curve only. However, if the curve is a high-order curve, like y = xn, n > 2, the

unique continuation would hold outside the quadratic curve. For details, refer to [13].
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3 Numerical Methods and Applications

The numerical method to achieve unique continuation on a parabola for harmonic functions

is given in this section.

Assume that u is the solution of the harmonic equation below

∆u = 0, (x, y) ∈ Ω, (3.1)

u(x, y) |τ= f(x, y). (3.2)

Here τ is a piece of parabola which satisfies τ ⊂ T ⊂⊂ Ω. Let P be a disk with radius r, which

satisfies τ ⊂ T ⊂ P ⊂ Ω. By the proof of Lemma 2.4,

u(x, y) =

∫

∂P

log((x − ζ1)
2 + (y − ζ2)

2)µ(ζ)dsζ , x ∈ P. (3.3)

Discretize the integral of u in (3.3). Apply collocation method, collocate points are {(xi, yi)}Ii=1 ∈

T , where {(xi, yi)}nm ∈ τ, 1 ≤ m < n ≤ I, {(ζj1 , ζ
j
2)}

J
j=1 ∈ ∂P . Notice that different choices of

P and (ζj1 , ζ
j
2) will result in different accuracy of the reconstruction. More details, which will

not be repeated here, are discussed in [8]. By (3.2) and (3.3),

f(xi, yi) = u(xi, yi) =

∫

∂P

log((xi − ζ1)
2 + (yi − ζ2)

2)µ(ζ)dsζ

≈

J∑

j=1

µj log((x
i − ζ

j
1)

2 + (yi − ζ
j
2)

2)×
2πr

J
, i = m,m+ 1, · · · , n. (3.4)

Thus we have

f = Kµ, (3.5)

where f = {f(xi, yi)}Ii=1, K = (Kij) is an I × J−order matrix, where Kij = log((xi − ζ
j
1)

2 +

(yi − ζ
j
2)

2) × 2πr
J

, and µ is a J × 1 vector. Then the value of µ = {µj}
J
j=1 can be calculated

from (3.5).

Note that the collocation linear equation (3.4) is an ill-posed problem, which brings insta-

bility due to observation errors. It is generally known that regularization is a method that can

improve the stability of ill-posed problems. A deterministic regularization based on Tikhonov

regularization in [7] can be adopted here to reduce the instability. Since the conditional stability

estimate of u has been obtained in Section 2, reasonable constraints can be obtained by using

the deterministic regularization and also a basis for the selection of regularization parameters

can be provided. Then for

F = ‖Kµ− f‖2 + α‖µ‖2, (3.6)

an optimal µ can minimize F , that is

min
µ

F = ‖Kµ− f‖2 + α‖µ‖2. (3.7)
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Table 1 List of numerical cases.

case domain of x Number of collocation points
a (−0.5,−0.3) 1− 30
b (−0.5,−0.1) 1− 60
c (−0.2, 0) 51− 80
d (−0.5,−0.4)∪ (0.5, 0.6) 1− 15, 166− 180
e (−0.3,−0.2)∪ (0.3, 0.4) 31− 45, 136− 150
f (−0.2,−0.1)∪ (0.0, 0.1) 46− 60, 81− 95

Then

µ = (αI+K∗K)−1K∗f . (3.8)

Here α is a regularization parameter, which can be chosen as a number with the same order

with observation error (see [7]).

After {µj}
J
j=1 being acquired, u |T can be approximated by

u(x, y) =

J∑

j=1

µj log((x − ζ
j
1)

2 + (y − ζ
j
2)

2)
2πr

J
, (x, y) ∈ T, (3.9)

the value of u on T can be obtained like a cork.

Here are two applications used to illustrate the conditional stability estimation. The settings

of the numerical cases are summarized in Table 1.

3.1 Parabolic curve

Assume that T = {(x, y) | y = −0.5+2x2, x ∈ (−0.5, 0.6)}, and f(x, y) = e−2x cos(2y), then

the collocation points on T are
{
(xi, yi) =

(
−0.5+ 0.35πi

I
,−0.5+2

(
−0.5+ 0.35πi

I

)2)}I

i=1
, I = 180.

x0 is selected as x0 = (0, 0) in calculations. Construct P as a disk with center x0 and radius

r = 1.1. Then the collocation points on ∂P are
{
(ζj1 , ζ

j
2) =

(
r cos 2πj

J
, r sin 2πj

J

)}J

j=1
, J = 40.

Consider the cases of one or two fixed segments, i.e., τ is taken as a segment or the union

of two segments on T . Then consider the τ in different domain of x.

A point-by-point observation error of 1% ∼ 5% is added to f(x, y)|τ in the above cases

respectively. The reconstructed u(x, y)|T is shown in Figure 2. It can be seen that the value

of u(x, y) on T \τ can be obtained from the value of u(x, y) on τ , which illustrates that it is

uniformly continuable.

From Figure 2, comparing Figures 2(a) and 2(b), more fixed points have no significant

refluence on control of the value of u. When the one end is fixed, the reconstruction of u turns

to be dissatisfactory when it extents over the vertex of T . If the points near to vertex of T are

fixed, the reconstruction of u in Figure 2(c) is better than that in Figure 2(a) in total, however,

the value is still inaccurate on the both end of T . Thus, dividing the fixed points in two sections

is considered. It can be seen in the rest figures in Figure 2 that when the two sections are far

enough, the whole line can be better controlled, but the line between two sections may not be

good enough. The reason can be seen from harmonic measure.
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(a) 1− 30 (b) 1− 60

(c) 51− 80 (d) 1− 15, 166 − 180

(e) 31− 45, 136− 150 (f) 46− 60, 81− 95

Figure 2 Unique continuation on parabolic equation for harmonic function: The capital of each

subfigure means the collocation points on τ .
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(a) 1− 30 (b) 1− 60

(c) 51− 80 (d) 1− 15, 166 − 180

(e) 31− 45, 136− 150 (f) 46− 60, 81− 95

Figure 3 Harmonic measure: The capital of each subfigure means the collocation points on τ .
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Remark that the harmonic measure ϕ decides the degree of control for u on T, from Figure

3, if we define that the points with ϕ > 1
2 are good-controlled points, then we can see that

the good-controlled points only appear when nearing to the controlled points. Consider the

situation of two fixed sections, the line of ϕ between two fixed lines can be controlled better.

However, if two sections are far away enough, the line in the middle between them still cannot

be controlled well.

Table 2 Error on the parabolic curve.

(a) observation error of 1%

domain of controlled x number of controlled points ‖f − u‖τ ‖f − u‖T
(−0.5, 0.3) 30 0.0116 4.8247
(−0.2, 0) 30 0.0038 2.0879

(−0.5,−0.4)∪ (0.5, 0.6) 30 0.0089 0.9060
(−0.5,−0.3)∪ (0.4, 0.6) 60 0.0065 0.3274

(b) observation error of 5%

domain of controlled x number of controlled points ‖f − u‖τ ‖f − u‖T
(−0.5,−0.3) 30 0.0549 4.9498
(−0.2, 0) 30 0.0205 2.3915

(−0.5,−0.4)∪ (0.5, 0.6) 30 0.0286 1.4035
(−0.5,−0.3)∪ (0.4, 0.6) 60 0.0359 0.4281

From Table 2, it can be seen that when the controlled points are same, it is obvious that

the smaller observation error, the more accurate the estimation result. When the observation

error is controlled at the same level, the accuracy of the estimated results from Case a to Case

d is significantly improved. In Case d, when the first 30 points and the last 30 points of the

180 points are controlled, as can be seen from the table, even if there is an error of 5% in the

observed value u|τ , the estimated result u|T is still very close to the accurate value f , the error

is only of order 10−1.

3.2 Hyperbolic curve

After the discussion on parabolic equation, according to the same method, the unique con-

tinuation for harmonic functions on other curves can be easily obtained.

Assume that T =
{
(x, y) | y2

0.25 −
x2

0.36 = 1, x ∈ (−0.5, 0.6)
}
, then the collocation points on T

are
{
(xi, yi) =

(
− 0.5+ 0.35πi

I
, 5
6

√(
− 0.5 + 0.35πi

I

)2
+ 0.36

}I

i=1
, I = 180. The values of f(x, y),

x0, P , r and the collocation points on ∂P :
{
(ζj1 , ζ

j
2) =

(
r cos 2πj

J
, r sin 2πj

J

)}J

j=1
, J = 40 are

the same selections as before.

Consider the cases of one or two fixed curves again with the same fixed points.

Similarly, a point-by-point observation error of 1% ∼ 5% is added to f(x, y)|τ in the above

four cases respectively. The reconstructed u(x, y)|T is shown in Figure 4. It can be seen that

the value of u(x, y) on T \τ can be obtained from the value of u(x, y) on τ , which can be proved

uniformly continuable. And similar results hold on hyperbolic curve with parabola curve from

Figure 4.
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(a) 1− 30 (b) 1− 60

(c) 51− 80 (d) 1− 15, 166 − 180

(e) 31− 45, 136− 150 (f) 46− 60, 81− 95

Figure 4 Unique continuation on hyperbolic equation for harmonic function: The capital of each

subfigure means the collocation points on τ .
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Table 3 Error on the hyperbolic curve.

(a) observation error of 1%

domain of controlled x number of controlled points ‖f − u‖τ ‖f − u‖T
(−0.5, 0.3) 30 0.0031 1.3896
(−0.2, 0) 30 0.0031 0.3103

(−0.5,−0.4)∪ (0.5, 0.6) 30 0.0023 0.0850
(−0.5,−0.3)∪ (0.4, 0.6) 60 0.0021 0.0572

(b) observation error of 5%

domain of controlled x number of controlled points ‖f − u‖τ ‖f − u‖T
(−0.5, 0.3) 30 0.0233 1.6567
(−0.2, 0) 30 0.0159 0.3509

(−0.5,−0.4)∪ (0.5, 0.6) 30 0.0125 0.1668
(−0.5,−0.3)∪ (0.4, 0.6) 60 0.0111 0.0763

Table 3 shows the similar conclusion as the conclusion from Table 2, which illustrates that

the conditional stability estimate in (2.2) is valid.

The specific results of multiple sections will be discussed in subsequent papers.

4 Conclusion

This paper obtains the unique continuation on quadratic curves for harmonic functions.

Similar to the results on a straight line for harmonic functions, the unique continuation and the

conditional stability are proved. A difference is that the complex extension on the quadratic

curves is more complicated. Due to the complexity of the complex extension of the function

on the quadratic curve, it is necessary to consider the selection of the complex extension region

and the harmonic measure.

In this paper, the unique continuation of two types of curves (parabola and hyperbola)

are calculated numerically by means of collocation method and Tikhonov regularization. The

calculation takes into account the length, position and number of segments of the controlled

curves. Through comparison, it is found that the lengths of control range τ have no significant

results on estimation of u |T , but the multi-stage control can achieve more accurate results.

These numerical applications are consistent with the theoretical results in this article and [2].

Thus in applications, when data on a quadratic curve need to be measured, according to the

description of this paper, only a part of data, instead of all the data need to be measured

directly, which reduces the measurement cost significantly.
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