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Abstract The author gives a definition of orbifold Stiefel-Whitney classes of real orbifold
vector bundles over special q-CW complexes (i.e., right-angled Coxeter complexes). Simi-
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the associated axiomatic properties.
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1 Introduction

The definition of characteristic classes of an orbifold vector bundle depends on the cohomol-

ogy ring of its base space (an orbifold). The de Rham cohomology groups of an orbifold are

introduced by Satake [15], so one can define orbifold chern classes of a good complex orbifold

vector bundle by Chern-Weil construction, which take values in de Rham cohomology groups

of base orbifold. Moreover, this definition can be extended to bad orbifold vector bundles (see

[17]).

In addition, one can take the equivalent cohomology ring as the cohomology ring of a quotient

orbifold. Now the equivalent characteristic classes can be viewed as orbifold characteristic

classes. In the book of Adem-Leida-Ruan [1], the orbifold characteristic classes defined lie in

the cohomology rings of classifying spaces of the orbifold groupoids. According to [1, Example

2.11], their orbifold characteristic classes actually correspond to the equivalent characteristic

classes.

However, the integral and Mod-two integral cohomology rings of general orbifolds are un-

clear. So it is difficult to define orbifold characteristic classes in the usual way (see [14]).

Recently, Lü-Wu-Yu [12] introduced integral orbifold cellular homology groups of Coxeter

complexes by applying the idea of blow-up. In this paper, we define and study orbifold Stiefel-
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Whitney classes on right-angled Coxeter complexes based on the cohomology groups of Lü-Wu-

Yu.

An n-dimensional right-angled Coxeter orbifold is a special n-orbifold locally modelled on the

quotient Rn/(Z2)
k of the standard (Z2)

k-action on R
n. Here, a (Z2)

k-action on R
n is standard

if it can be generated by reflections across some coordinate hyperplanes in R
n. A right-angled

Coxeter complex is a special q-CW complex defined by Poddar-Sarkar [14] satisfying that its

q-cells (i.e., the quotient of a cell by a finite group) are the orbit of en by a standard (Z2)
k-

action, and its all attaching maps φ preserve local groups. Here, preserving local groups means

preserving codimension. So we can define the nerve of a right-angled Coxeter complex. See

Section 2.1 for more details.

Firstly, we define the Stiefel-Whitney classes of real orbifold vector bundles over Dn/(Z2)
k,

whereDn/(Z2)
k is a quotient orbifold of a standard (Z2)

k-action on Dn. Let π : E → Dn/(Z2)
k

be an m-dimensional orbifold vector bundle over Dn/(Z2)
k. Then by the definition of orbifold

vector bundles, π : E → Dn/(Z2)
k is determined by a real linear representation of (Z2)

k,

ρ : (Z2)
k → GLm(R).

Furthermore, by the equivalence of orbifold vector bundles (see Lemma 3.2), π : E → Dn/(Z2)
k

is determined by an m× k matrix,

C =




x11 x21 · · · xk1
x12 x22 · · · xk2
...

...
. . .

...
x1m x2m · · · xkm




m×k

where xij = ±1. We call C the characteristic matrix of π : E → Dn/(Z2)
k. Then the total

Stiefel-Whitney class of π : E → Dn/(Z2)
k is defined as:

w(E) =

m∏

i=1

(
1 +

k∑

j=1

1− xji
2

sj

)
∈ H∗

orb(D
n/(Z2)

k;Z2), (1.1)

where H∗

orb(D
n/(Z2)

k;Z2) = Z2[s1, · · · , sk]/(s2i , i = 1, · · · , k).

LetX be an arbitrary right-angled Coxeter complex, and π : E → X be a realm-dimensional

orbifold vector bundle over X . Next, we define the Stiefel-Whitney classes of π : E → X . Let

Xreg be the subcomplex of X consisting of all regular cells (i.e., associated local group is trivial).

Then X/Xreg is a wedge sum of some right-angled Coxeter complex,

X/Xreg =
∨
H.

Each component H contains no regular cell except the unique 0-cell. Let H = {F1, · · · , Fη}

be the local codimension-one faces of H . Then the vector bundle π : E → X induces a vector
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bundle over H , denoted by πH : EH → H . Then there is also an m× η characteristic matrix,

denoted by CH . Notice that there is a simplicial map from the nerveN (H) to ∆η = [v1, · · · , vη],

j : N (H) → ∆η.

Assume that {s1, · · · , sη} is the vertices set of N (H), then j(si) = vi and j(δ) is a simplex

in ∆η spanned by {j ◦ δ(s1), · · · , j ◦ δ(sk)} for simplex δ : [si1 , · · · , sik ] → N (H). Clearly, j

induces a homomorphism

j∗ : Z2[v1, · · · , vη] −→ RH .

Then the Stiefel-Whitney class of πH : EH → H is defined as:

w(EH) = j∗(w(ECH
)) ∈ RH < H∗(X ;Z2),

whereRH is a sub-ring ofH∗(X ;Z2), which is generated by the duals of locally codimension-one

faces in H . Finally, the total Stiefel-Whitney class of π : E → X is defined as:

w(E) = w(Ereg) ·
∏

H

w(EH ), (1.2)

where π |Xreg
: Ereg → Xreg is a restriction of π : E → X on Xreg.

Similarly to the usual cases, the Stiefel-Whitney classes of right-angled Coxeter complexes

satisfy the following axioms.

Proposition 1.1 There is a unique sequence of functions w1, w2, · · · assigning to each real

orbifold vector bundle E → B a class wi(E) ∈ Hi(B;Z2), namely, depending only on the

isomorphism type of E, such that

(a) wi(f
∗(E)) = f∗(wi(E)) for a pullback f∗(E), where f is an orbifold map which preserves

local groups.

(b) w(E1 ⊕ E2) = w(E1)w(E2), where w = 1 + w1 + w2 + · · · ∈ H∗(B;Z2).

(c) wi(E) = 0 if i > dimE.

(d) For the canonical line bundle E → RP∞, w1(E) is the generator of H1(RP∞;Z2).

Meanwhile, for the nontrivial line bundle Ẽ → D1/Z2, w1(Ẽ) is the generator of H1
orb(D

1/Z2;Z2).

Remark 1.1 Orbifold Stiefel-Whitney classes of right-angled Coxeter complexes are gen-

eralizations of ordinary Stiefel-Whitney classes.

As an application, we have the following conclusion.

Theorem 1.1 Let P be an n-dimensional simple polytope. Then P is the product of two

simple polytopes P1 and P2 with dimensions n1 and n2, respectively, if and only if, wn(TP ) =

wn1
(TP1) · wn2

(TP2).
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This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we

define Stiefel-Whitney classes of real orbifold vector bundles over Dn/(Z2)
k. In Section 4, we

consider the general cases, that is, Stiefel-Whitney classes of real orbifold vector bundles over

a right-angled Coxeter complex. In Section 5, we prove Theorem 1.1 and give some examples.

2 Preliminaries

2.1 Right-Angled Coxeter orbifolds and right-angled Coxeter complexes

An n-dimensional right-angled Coxeter orbifold (see [7]) is a special n-orbifold locally mod-

elled on the quotient R
n/(Z2)

n of the standard (Z2)
n-action on R

n by reflections across the

coordinate hyperplanes. So a right-angled Coxeter n-orbifold is naturally a manifold with cor-

ners (the notion of manifold with corners can be referred to Davis [6, Chapter 10]).

A right-angled Coxeter complex X is a special q-CW complex defined by Poddar-Sarkar

[14] satisfying that its q-cells (i.e. the quotient of a cell by a finite group) are the orbit of en

by a standard reflective action of (Z2)
k, and all attaching maps φ are required to preserve local

groups. For a right-angled Coxeter cell en/(Z2)
k, we call (Z2)

k the local group of en/(Z2)
k,

and let Φ : Dn/(Z2)
k → X be the characteristic map for en/(Z2)

k. If the local group of a

right-angled Coxeter cell is trivial, then this cell is called to be regular, otherwise it is called to

be singular. All the regular cells form a sub-complex of X which is denoted by Xreg, and we

denote the set of singular cells by Xsing (see [12] for more details).

For each right-angled Coxeter cell en/(Z2)
k, the standard (Z2)

k-action on en induces a

natural facial structure on the singular point set of en/(Z2)
k. Attaching maps preserving local

groups are equivalent to preserve local codimension. So each right-angled Coxeter complex has

a facial structure such that each face has a well-defined local codimension. A local codimension-

one face in X is called a facet of X . Under the setting, we can define the nerve of X . In detail,

the nerve of X , denoted by N (X), is a poset on the facet set of X satisfying that:

• Each codimension-k face f ⊂ F1∩· · ·∩Fk of X determines a (k−1)-simplex [F1, · · · , Fk] →

N (X), where F1, · · · , Fk are some facets of X.

Remark 2.1 The nerve of a manifold with corners is defined similarly, one can refer to [6].

Example 2.1 Let P be an n-dimensional simple polytope. Then there is a natural right-

angled Coxeter orbifold structure on P such that each codimension-k face of P has local group

(Z2)
k which is generated by reflections associated with k facets. The cone of once barycentric

subdivision of the nerve of P gives a cubical decomposition of P , denoted by C(P ), which

is called the standard cubical decomposition of P . Clearly, each k-cube ck in C(P ) can be

represented as the orbit of [−1, 1]k by a standard (Z2)
k-action. Hence, C(P ) is a right-angled

Coxeter complex.

2.2 Cohomology rings of right-angled Coxeter complexes

For a right-angled Coxeter complex, one can define a cellular chain complex, by the result

in [12].
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Theorem 2.1 (see [12]) Let X be an right-angled Coxeter complex. Then

Hi
orb(X) =

⊕

f∈T

Hi−l(f)(f), (2.1)

where T is the set of faces of X (including its underlying space as an n-face), and l(f) is the

local codimension of face f in X.

Actually, the orbifold cohomology groups and cup product of a right-angled Coxeter complex

are defined as the usual cohomology groups and cup product of its blow-up discussed in [12].

Example 2.2 (Cohomology of Closed Right-Angled Coxeter Cells) Let Dn/(Z2)
k be a

closed right-angled Coxeter cell, where k ≤ n. Then Dn/(Z2)
k = Dk/(Z2)

k × Dn−k ≃

Dk/(Z2)
k =

(
D1/Z2

)k
. So

H∗

orb(D
n/(Z2)

k;Z2) ∼= Z2[s1, s2, · · · , sk]/(s
2
i , i = 1, · · · , k).

Example 2.3 Let X be a right-angled Coxeter complex and let H be a connected compo-

nent of the singular set of X with nerve N . Then each facet in H corresponds to a vertex of

N , and so, corresponds to a generator of H1(X ;Z2). All facets in H , denoted by {F1, · · · , Fη},

generate a sub-ring of H∗(X ;Z2), which is isomorphic to

RH = Z2[s1, · · · , sη]/(IH + JH),

where IH is the Stanley-Reisner ideal of H and JH = (s2i , i = 1, · · · , η).

2.3 Orbifold vector bundle

The definition of orbifold vector bundle can be refered to [5, 16].

Definition 2.1 (Orbifold Vector Bundle, see [16]) Let E and B be two orbifolds with

orbifold structures U∗ = {U∗, G∗, ψ∗} and U = {U,G, ψ}, respectively. An n-dimensional

orbifold vector bundle is a C∞-orbifold map π : E → B satisfying the following conditions:

(1) (Local trivialization) There exists an one-to-one correspondence between {U∗, G∗, ψ∗}

and {U,G, ψ} such that U∗ = U × R
m. Denoting by π∗ the projection U∗ → U , we have

π ◦ ψ∗ = ψ ◦ π∗.

(2) Let {U∗, G∗, ψ∗}, {U,G, ψ}; {U∗ ′, G∗ ′, ψ∗ ′}, {U ′, G′, ψ′} be two pairs of corresponding

local uniformizing system satisfying ψ(U) ⊂ ψ′(U ′). Then ψ∗(U∗) ⊂ ψ∗ ′(U∗ ′) and there

exists a one-to-one correspondence λ↔ λ∗ between injections λ : {U,G, ψ} → {U ′, G′, ψ′} and

λ∗ : {U∗, G∗, ψ∗} → {U∗ ′, G∗ ′, ψ∗ ′} such that for (p, q) ∈ U∗ = U × R
m we, have

λ∗(p, q) = (λ(p), gλ(p)q)

with gλ(p) ∈ GLm(R). The mapping gλ : U → GLm(R) is a C∞-map satisfying the relation

gµλ(p) = gµ(λ(p)) · gλ(p) (2.2)
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for any injections {U,G, ψ}
λ
→ {U ′, G′, ψ′}

µ
→ {U ′′, G′′, ψ′′}.

An orbifold vector bundle is a composite concept of map π : E → B and the equivalent class

of orbifold structure pair (U ,U∗), where two pairs of orbifold vector bundles (U ,U∗

1 ) and (U ,U∗

2 )

are directly equivalent if there exists a C∞-map δU : U → GLm(R) satisfying that:

(1) For any (U,G, ψ) ∈ U , there exist (U × R
m, G∗

1, ψ
∗

1) ∈ U∗

1 and (U × R
m, G∗

2, ψ
∗

2) ∈ U∗

2

such that

ψ∗

1(p, q) = ψ∗

2(p, δU (p)q).

(2) For any injection λ : {U,G, ψ} → {U ′, G′, ψ′},

g2λ(p) = δU ′(λ(p))g1λ(p)δ
−1
U (p), (2.3)

Remark 2.2 For each b ∈ B, there is a chart (U,G, ψ) such that b ∈ U/G. For each b in

ψ−1(b), the π−1(b) is a real vector space R
n. Then

π−1(b) ∼= π−1(b)/G∗,

where G∗ is a subgroup of G. Thus an orbifold vector bundle is not always a vector bundle in

the usual sense because its fiber may not be a vector space. The above definition of orbifold

vector bundles can be extended to orbispace. The notion of orbispace can be refered to [3, 4].

Example 2.4 Let D1/Z2 = [−1, 1]/Z2 be a closed right-angled Coxeter 1-cell. Then there

exist two orbifold line bundles over D1/Z2.

E = D1/Z2 × R = D1 × R/(x, y) ∼ (−x, y),

Ẽ = D1 × R/(x, y) ∼ (−x,−y).

Figure 1 Orbifold line bundles over D1/Z2.

Let λ : D1 → D1 be an injection which maps x ∈ D1 to −x. Let gλ be a constant map

which corresponds to the line bundle E. For any x ∈ D1, gλ(x) = (1) ∈ GL1(R). Let g̃λ be the

map which corresponds to the line bundle Ẽ. Then for any x ∈ D1, g̃λ(x) = (−1) ∈ GL1(R).

The line bundle Ẽ is not a usual vector bundle, which is called the canonical line bundle of

D1/Z2. Meanwhile, Ẽ is also the orbifold tangent bundle of D1/Z2. Moreover, let q : E → Ẽ

be a quotient map induced by (0, y) ∼ (0,−y), then the bundle E can be viewed as a pull back

of bundle Ẽ.
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Definition 2.2 (Bundle Map, see [16]) Let π1 : E1 → B1 and π2 : E2 → B2 be two orbifold

vector bundles with orbifold structure (U1,U∗

1 ) and (U2,U∗

2 ), respectively. A system of mappings

h∗ = {hU1
} is called a (C∞-)orbifold bundle map if the following conditions are satisfied:

(i) There exists a correspondence {U1, G1, ψ1} → {U2, G2, ψ2} from U1 to U2, such that for

any {U1, G1, ψ1}, we have a C∞-map h∗U1
from U1 ×R

m to U2 ×R
m and a C∞-map hU2

from

U1 to U2 such that

h∗U1
(p, q) = (hU1

(p), rU1
(p)q) (2.4)

with rU1
(p) ∈ GL(m), where rU1

is a C∞-map from U1 to GL(m).

(ii) Let {U1, G1, ψ1}, {U ′

1, G
′

1, ψ
′

1} be local uniformizing systems in U1 such that ψ1(U1) ⊂

ψ′

1(U
′

1) and {U2, G2, ψ2}, {U ′

2, G
′

2, ψ
′

2} are the corresponding local uniformizing systems in

U2. Then for any injection λ1 : {U1, G1, ψ1} → {U ′

1, G
′

1, ψ
′

1} there exists an injection λ2 :

{U2, G2, ψ2} → {U ′

2, G
′

2, ψ
′

2} such that

λ∗2 ◦ h
∗

U1
= h∗U ′

1
◦ λ∗1

(hence also λ2 ◦ hU1
= hU ′

1
◦ λ1). We assume further that

gλ2
(hU1

(p)) = rU ′ (λ1(p))gλ1
(p)r−1

U1
(p).

Two orbifold vector bundles E1, E2 over B are equivalent if and only if there exists a bundle-

map h : E1 → E2 such that (E1,U1) ∼= (E2,U2) and hU : U → U ′ is homeomorphism for each

U ∈ U1.

Theorem 2.2 (see [16]) Let (M,U) be an orbifold. If there is a system of C∞-maps

gλ : U → GLm(R), λ : {U,G, ψ} → {U ′, G′, ψ′} being any injections, which satisfies relation

(2.2), then there exists a orbifold vector bundle over (M,U). Moreover, if two systems of {g1λ}

and {g2λ} satisfy relation (2.3), then the associated orbifold vector bundles are equivalent.

Remark 2.3 Since (2.2) holds for the tensor product and direct sum of vector spaces, one

can construct the tensor product and direct sum of orbifold vector bundles.

Example 2.5 (Orbifold Tangent Bundle, see [16]) Let (M,U) be an orbifold. Assuming

that each U in a chart (U,G, ψ) is contained in R
n, we fix a coordinate system {x1, · · · .xm} in

each U once for all. For any injection λ : (U,G, ψ) → (U∗, G∗, ψ∗), let

gλ(p) =
(∂x∗i ◦ λ

∂xj

)

which is the Jacobian matrix of λ at p, where {xi} and {x∗i} are the fixed coordinate systems

in U and U∗, respectively. Then the system gλ, satisfying the condition of Theorem 2.2, defines

an orbifold vector bundle over M . This orbifold vector bundle is called the orbifold tangent

vector bundle of M .

2.4 The linear representation of (Z2)
k

All group actions in the next are supposed to be locally linear actions. The reflection across

a coordinate hyperplane in R
n is called a standard reflection.
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Lemma 2.1 Let {Ai |Ai ∈ GLn(R), i = 1, · · · , k} be a system of invertible matrices. If for

any i, j, A2
i = E, AiAj = AjAi, then {Ai} are simultaneously diagonalizable.

Moreover, assume that P is an invertible matrix such that P−1AiP = diag(xi1, · · · , x
i
n) for

each i. Then the matrix

C =




x11 x21 · · · xk1
x12 x22 · · · xk2
...

...
. . .

...
x1n x2n · · · xkn




n×k

is unique without considering the order of rows.

Each linear G-action of Rn corresponds to a linear representation ρG : G → GLn(R). The

two actions of G and H are called conjugate if ρG(G) and ρH(H) are conjugate in GLn(R).

Lemma 2.2 Each nontrivial linear (Z2)
k-action on R

n is conjugate with an action whose

generators can be presented as the composites of some standard reflections. Specially, when

k = n, it is conjugate with a standard reflection action if (Z2)
n acts effectively on R

n.

Proof Let A ∈ GLn(R). If A
2 = E, then A is diagonalizable. Assume that the associated

diagonal matrix is diag(x1, · · · , xn), then xi = ±1 for any i = 1, · · · , n.

Let g1, · · · , gk be a set of irreducible generators of (Z2)
k. A linear (Z2)

k-action of R
n

determines a linear representation ρ : Zk
2 → GLn(R). By Lemma 2.1, {ρ(gi) | i = 1, · · · , k} are

simultaneously diagonalizable. Assume that Di ≃ ρ(gi) is the associated diagonal matrix for

each i. Then the action determined by {D1, · · · , Dk} is generated by the composites of some

standard reflections.

For k = n, we assume that D1, · · · , Dn are the associated diagonal matrices. Then we can

rechoose a set of generators of (Z2)
k such that the associated diagonal matrices are standard

reflection matrices. Actually, choose Di = diag(xi1, · · · , x
i
n) with xi1 = −1, then if xj1 = −1

for Dj = diag(xj1, · · · , x
j
n), we set gjgi to be a new generator. So we can obtain a system of

diagonal matrices, denoted by D1, · · · , Dn as well, satisfying that xj1 = 1 except j = i. By

induction, we can get a set of generators which determine n standard reflection matrices.

Lemma 2.3 Let {s1, · · · , sk} be the generators of group (Z2)
k. The linear action of (Z2)

k on

Dn is determined by a linear representation ρ : (Z2)
k → GLn(R), moreover, is determined by the

conjugate class of a series of linear transformations ρ(s1), · · · , ρ(sk). Clearly, ρ(s1), · · · , ρ(sk)

are simultaneously diagonalizable.

3 Orbifold Stiefel-Whitney Classes of Real Orbifold Vector
Bundles over Dn/(Z2)

k

In this section, we classify the real orbifold vector bundles over a closed right-angled Coxeter

cell Dn/(Z2)
k by algebrizing the vector bundle in terms of the representations of local group

Z
k
2 . First, Dn/Zk

2 is Z2-closed, that is, there is a right-angled Coxeter complex structure of

Dn/(Z2)
k with all the boundary maps being zero when we compute Z2-homology groups. The
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cohomology ring of Dn/(Z2)
k is

H∗

orb(D
n/(Z2)

k;Z2) ∼= Z2[s1, s2, · · · , sk]/(s
2
i , i = 1, · · · , k).

Lemma 3.1 The m-dimensional orbifold vector bundles over a closed right-angled Coxeter

cell Dn/(Z2)
k one-to-one correspond to the linear actions of (Z2)

k on Dn × R
m satisfying

condition (1) in Definition 2.1.

Remark 3.1 A real orbifold vector bundle over Dn/(Z2)
k may not be a right-angled Cox-

eter complex. Such as, Ẽ in Example 2.4.

Let s1, · · · , sk be the generators of (Z2)
k. By Lemma 2.3, a linear (Z2)

k-action on Dn×R
m

corresponds to a linear representation

ρ : (Z2)
k −→ GLn+m(R),

moreover, corresponds to matrices ρ(s1), · · · , ρ(sk).

By Lemma 2.2 and the equivalence of orbifold structure pair in Definition 2.1, we can

assume that ρ(s1), · · · , ρ(sk) are diagonal matrices whose diagonal elements are ±1. According

to condition (1) in Definition 2.1, we assume that

ρ(si) = diag(11, · · · ,−1i, · · · , 1n, x
i
1, · · · , x

i
m).

That is the following lemma.

Lemma 3.2 Any orbifold vector bundle over Dn/Zk
2 corresponds to a linear representation

ρ : (Z2)
k → GLn+m(R), satisfying that

ρ(si) = diag(11, · · · ,−1i, · · · , 1n, x
i
1, · · · , x

i
m),

where s1, · · · , sk is a system of generators of (Z2)
k.

Then we can obtain an m× k matrix

C =




x11 x21 · · · xk1
x12 x22 · · · xk2
...

...
. . .

...
x1m x2m · · · xkm




m×k

,

which is called the characteristic matrix of E → Dn/(Z2)
k. Then the orbifold Stiefel-Whitney

class of E → Dn/(Z2)
k is defined by

w(E) =

m∏

i=1

(
1 +

k∑

j=1

1− xji
2

sj

)
∈ H∗

orb(D
n/(Z2)

k;Z2). (3.1)

If two orbifold vector bundles E1, E2 over Dn/(Z2)
k (s1, · · · , sk are generators of (Z2)

k) are

equivalent, then by Lemma 2.3, the associated characteristic matrices obtained from {ρ1(si) |

i = 1, · · · , k} and {ρ2(si) | i = 1, · · · , k} are the same if we do not consider the order of rows.

So w(E1) = w(E2), w is well-defined.
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Remark 3.2 Let λ : Dn → Dn be an injection in Definition 2.1. By [16, Lemma 2], all

injections λ : Dn → Dn one-to-one correspond to the elements in (Z2)
k. Choose an injection

λ0 : Dn → Dn (for example, identity map) which corresponds to the unit element of (Z2)
k, with

the associated C∞-map gλ0
. Assume that the generator si of (Z2)

k corresponds to λi : D
n →

Dn. Then by condition (2) in Definition 2.1, ρ(si) here determines a C∞-map gλi
. Hence, each

characteristic matrix C determines a system of gλ : Dn → GLm(R). By Theorem 2.2, each C

determines an orbifold vector bundle over Dn/(Z2)
k.

Lemma 3.3 (Whitney Sum of Orbifold Vector Bundles over Dn/(Z2)
k) Let E1⊕E2 be the

Whitney sum of orbifold vector bundles π1 : E1 → Dn/(Z2)
k and π2 : E2 → Dn/(Z2)

k. Then

w(E1 ⊕ E2) = w(E1)w(E2).

Proof Let the characteristic matrices of π1 : E1 → Dn/(Z2)
k and π2 : E2 → Dn/(Z2)

k are

Mm1×k and Nm2×k, respectively. Then the characteristic matrix of E1 ⊕E2 is
(
M

N

)

(m1+m2)×k
.

So

w(E1 ⊕ E2) =

m1+m2∏

i=1

χi

(
M
N

)
=

m1∏

i=1

χi(M) ·
m2∏

i=1

χi(N) = w(E1)w(E2).

Let h : Dn/(Z2)
k → D1/Z2 be an orbifold map. Then by definition of orbifold map,

there is a homomorphism between their local groups, denoted by h∗ : (Z2)
k → Z2. Notice

that h∗ can be characterized by a k-column (y1, · · · , yk) ∈ (Z2)
k, where yi = ±1. And

(y1, · · · , yk) determines a line bundle π : E1 → Dn/(Z2)
k over Dn/(Z2)

k. So we define

[Dn/(Z2)
k, D1/Z2]

f
→ Vect1(D

n/(Z2)
k) by f(h) =: E1.

Lemma 3.4 The composition

[Dn/(Z2)
k, D1/Z2]

f
−→ Vect1(D

n/(Z2)
k)

w1−→ H1(Dn/(Z2)
k;Z2)

is a bijection.

Proof Dn/(Z2)
k = Dk/(Z2)

k × Dn−k ≃ Dk/(Z2)
k = (D1/Z2)

k, where “≃” stands for

“homotopy equivalent to” in the category of orbispaces (see [3, Definition 3.2.2]). So

[Dn/(Z2)
k, D1/Z2] = [(D1/Z2)

k, D1/Z2] ∼= Hom((Z2)
k,Z2) ∼= (Z2)

k,

Vect1(D
n/(Z2)

k) = Vect1(D
k/(Z2)

k) = (Z2)
k, (actions of (Z2)

k on R
1),

H1(Dn/(Z2)
k;Z2) ∼= (Z2)

k

are finite sets. So it is sufficient to prove that f and w1 are injections. Clearly, f is an injections.

Each line bundle π : E1 → D1/(Z2)
k over D1/(Z2)

k can be characterized by a sequence

(x1, · · · , xk), where xi = ±1. Then w1(E
1) =

k∑
j=1

1−xi

2 si ∈ H1(Dn/(Z2)
k;Z2). Thus w1 is an

injection as well.

Example 3.1 Let π̃ : Ẽ → D1/Z2 be the nontrivial line bundle in Example 2.4. Then

w(Ẽ1) = 1 + s,
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where H∗(D1/Z2;Z2) = Z2[s]/(s
2).

There is a bundle map f : E
1
→ Ẽ1 such that f∗(w(Ẽ1)) = 1. Furthermore, the orbifold

Stiefel-Whitney class of tangent bundle of Dn/(Z2)
k is

w(T (Dn/(Z2)
k)) = w(T (Dn−k)×

(
T (D1/Z2)

)k
) =

k∏

i=1

(1 + si) ∈ H∗(Dn/(Z2)
k;Z2).

Example 3.2 There exist two different real vector bundles with the same orbifold Stiefel-

Whitney classes. Let E → D1/Z2 be a 2-dimensional real orbifold vector bundle whose char-

acteristic matrix is (−1,−1)T . Then

w = (1 + s)2 = 1.

Clearly, E is nontrivial.

4 The Real Orbifold Vector Bundle and Orbifold Stiefel-Whitney Class-
es over Right-Angled Coxeter Complexes

Let X be an n-dimensional right-angled Coxeter complex. Then there is a natural open

cover of X described as follows.

Firstly, we take a slightly shrunk open set U(en/W ) for each Coxeter n-cell en/W in X .

Then X −∪U(en/W ) is homotopic to the (n− 1)-skeleton of X . Furthermore, taking an open

set U(en−1/W ) for the neighborhood of each shrunk Coxeter (n−1)-cell en−1/W in X , we have

X −∪U(en/W )−∪U(en−1/W ) is homotopic to the (n− 2)-skeleton of X . Inductively, we can

obtain an open cover of X indexed by right-angled Coxeter complex structure of X (every open

sets associated with ek/W can deformation retract on ek/W ). And we always assume that

there is a well-defined orbispace structure on this open cover (see [3] for the notion of orbispace

structure).

Let π : E → X be a real orbifold vector bundle over X , and π|Xreg
: E|Xreg

→ Xreg be the

restriction of π : E → X on the regular subcomplex Xreg of X . Then π|Xreg
: E|Xreg

→ Xreg is

a usual vector bundle over CW complex Xreg.

Lemma 4.1 Any real orbifold vector bundle over X can be viewed as the extension of a

usual vector bundle over Xreg.

Proof Let π′ = π|Xreg
: E|Xreg

→ Xreg be a usual vector bundle over Xreg. First, let

πD1/Z2
: E(D1/Z2) → D1/Z2 be an orbifold vector bundle over D1/Z2. By Lemma 2.3, we

can assume that the characteristic matrix of p = πD1/Z2
: E(D1/Z2) → D1/Z2 is a diagonal

matrix A(p). Then, gluing the bundles E|Xreg
and E(D1/Z2) together along E(D1/Z2)|∂D1/Z2

and E′|∂Φ(D1/Z2)
to obtain an orbifold vector bundle over Xreg ∪D1/Z2. Moreover, we can get

an orbifold vector bundle over Xreg

⋃
X1

sing, where X
1
sing is the set of singular 1-cells of X .

Let D2/W be a singular 2-cell of X with two singular 1-cells D1
1/Z2 and D1

2/Z2 in its

boundary (D1
1/Z2 and D1

2/Z2 may correspond to the same singular 1-cell, see Example 5.1 and

Example 5.3). Let πD2/W : E(D2/W ) → Dw/W be an orbifold vector bundle over D2/W .
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Then the orbifold vector bundle over Xreg ∪X
1
sing can be extended to an orbifold vector bundle

overXreg∪X1
sing∪D

2/W , if and only if the characteristic matrix of bundle E(D2/W ) is (A1;A2),

where A1, A2 is the characteristic matrices of bundles π|e11/Z2 and π|D1
2
/Z2, respectively. Spe-

cially, when D1
1/Z2 and D1

2/Z2 correspond to the same singular 1-cell, if W = Z2, then the

characteristic matrix of bundle E(D2/W ) is A1 = A2 (see Example 5.3). IfW = (Z2)
2, then the

characteristic matrix of bundle E(D2/W ) is (A1;A2), where A1 = A2 (see Example 5.1). The

orbifold vector bundle E(D2/W ) is compatible with the bundles π|e1/Z2
and π|e2/(Z2)2 , which

implies that the linear transformations determined by A1, A2 are simultaneously diagonalizable.

That is, the characteristic matrix of π|e2/W can be presented as (A1;A2).

By inductions, we obtain an orbifold vector bundle π : E → X over right-angled Coxeter

complex X = Xreg ∪ X1
sing ∪ · · · ∪ Xn

sing by extending π′ = π|Xreg
: E|Xreg

→ Xreg. For any

right-angled Coxeter cell el/(Z2)
k in X , the characteristic matrix of π|el/(Z2)k can be presented

as (A1; · · · ;Ak). Now A1, · · · , Ak are the characteristic matrices of the restrictions of π on

some associated singular 1-cells in X.

Notice that Xreg ≃ |X | and X/Xreg are the wedge sum of some right-angled Coxeter com-

plexes. Each component of X/Xreg contains no regular cell except the unique 0-cell. Let H be

a component of X/Xreg, and N (H) be the nerve of H . The orbifold vector bundle π : E → X

induces an orbifold vector bundle over H , denoted by πH : EH → H . According to the con-

struction of π : E → X , there is a system of diagonal matrices {A1, · · · , Aη} corresponding to

the codimension-one faces ofH , such that for each singular cell el/(Z2)
k in H , the characteristic

matrix of π|el/(Z2)k is combined by some Ai. So we have the following conclusion.

Lemma 4.2 For each H, there is an m× η characteristic matrix

CH =




x11 x21 · · · xη1
x12 x22 · · · xη2
...

...
. . .

...
x1m x2m · · · xηm




m×η

,

where Ai = diag(xi1, · · · , x
i
m) for Fi ∈ N (H) and η is the number of vertices of N (H).

Then CH can determine a real orbifold vector bundle over Dη/(Z2)
η, denoted by πCH

:

ECH
→ Dη/(Z2)

η. If H is a simple polytope, then H can be embedded into Dη/(Z2)
η (see [2,

Page 93]). Now πH : EH → H is a restriction of πCH
: ECH

→ Dη/(Z2)
η.

Lemma 4.3 Let P be a simple polytope with η facets and a right-angled Coxeter orbifold

structure. Then any real orbifold vector bundle over P can be viewed as the restriction of a real

vector bundle over Dη/(Z2)
η, where η is the number of facets of P .

Proof Let π : E → P be an m-dimensional real orbifold vector bundle over P characterized

by an m×η matrix C. Then C determines a real orbifold vector bundle overDη/(Z2)
η, denoted

by πC : EC → Dη/(Z2)
η.

Let i : P →֒ Dη/(Z2)
η be an orbifold embedding. Then π : E → P is the restriction of

πC : EC → Dη/(Z2)
η on P .
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Figure 2 Embedding of right-angled orbifold complexes.

In general, let j : N (H) → N (Dk/(Z2)
k) = ∆k−1 be a simplicial map. Then there is an

induced map

j∗ : H∗(Dk/(Z2)
k;Z2) → RH < H∗(X ;Z2).

The orbifold Stiefel-Whitney class of the part of H is defined as

w(E(H)) = j∗(w(ECH
)) ∈ RH < H∗(X ;Z2). (4.1)

Lemma 4.4 w(E(H)) is well-defined.

Proof If there are three facets F1, F2, F3 such that F1∩F2 6= ∅, F2∩F3 6= ∅ and F1∩F3 = ∅

(as shown in Figure 2), then s1s3 = 0 in RH . If there is a sub-matrix (−1 1 1
1 1 −1 )

(
or (−1 −1 1

1 −1 −1 )
)

in (A1;A2;A3), it is possible that there is an another matrix of E(H) with the sub-matrix

(−1 1 −1
1 1 1 )

(
or (−1 −1 −1

1 −1 1 )
)
in (A1;A2;A

′

3). Thus, the characteristic matrix of EH is not unique

even if we do not consider the order of rows.

However, s1s3 = 0 implies that

(1 + f(s) + s1)(1 + f(s) + s3) = (1 + f(s) + s1 + s3)(1 + f(s)),

where f(s) is a degree one polynomial which does not contain s1, s3.

So the choice of matrices does not affect the value of w(E(H)) = j∗(w(EC)). Thus, w(E(H))

is well-defined.

Definition 4.1 The total orbifold Stiefel-Whitney class of real orbifold vector bundle π :

E → X is defined as

w(E) = w(E|Xreg
) ·

∏

H

w(E(H)), (4.2)

where E|Xreg
is the restriction of π : E → X on the regular subcomplex Xreg of X, and

w(E(H)) = j∗(w(ECH
)) is defined in Equation (4.1).

Remark 4.1 (1) When X is a CW complex, w(E) is the ordinary Stiefel-Whitney class of

π : E → X .

(2) Let f be a face of X . If f is not contractible, then there may exist a vector bundle over

X such that some wi(E) is non-trivial in Hi(f) for i > 0 (see Example 5.3).
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(3) More generally, the definition of orbifold Stiefel-Whitney classes of real orbifold vector

bundles over a Coxeter complex depends on the linear representation of general finite Coxeter

group. There are some recommended literatures [8–10, 18].

Proposition 4.1 Let π1 : E1 → X and π2 : E2 → X be two orbifold vector bundles over a

right-angled Coxeter orbifold X. Then

w(E1 ⊕ E2) = w(E1)w(E2).

Proof Let E = E1 ⊕ E2. Then by the definition of orbifold Stiefel-Whitney classes,

w(E) = w(E|Xreg
) ·

∏

H

w(E(H))

= w(E1|Xreg
)w(E2|Xreg

) ·
∏

H

w(E1(H))w(E2(H))

= w(E1|Xreg
)
∏

H

w(E1(H)) · w(E2|Xreg
)
∏

H

w(E2(H))

= w(E1)w(E2),

where w(E|Xreg
) = w(E1|Xreg

)w(E2|Xreg
) is the case of usual CW complex, and the proof of

w(E(H)) = w(E1(H))w(E2(H)) is similar to that of Lemma 3.3.

The orbifold Stiefel-Whitney classes of right-angled Coxeter complexes satisfy the following

axioms.

Proposition 4.2 There is a unique sequence of functions w1, w2, · · · , each of which assigns

to each real orbifold vector bundle E → B a class wi(E) ∈ Hi(B;Z2), depending only on the

isomorphism type of E, such that

(a) wi(f
∗(E)) = f∗(wi(E)) for a pullback f∗(E), where f is an orbifold map which preserves

local groups.

(b) w(E1 ⊕ E2) = w(E1)w(E2), where w = 1 + w1 + w2 + · · · ∈ H∗(B;Z2).

(c) wi(E) = 0 if i > dimE.

(d) For the canonical line bundle E → RP∞, w1(E) is the generator of H1(RP∞;Z2).Mean-

while, for the nontrivial line bundle Ẽ → D1/Z2, w1(Ẽ) is the generator of H1(D1/Z2;Z2).

Remark 4.2 Orbifold Stiefel-Whitney classes of right-angled Coxeter complexes are gen-

eralizations of ordinary Stiefel-Whitney classes.

5 Application and Examples

Next, we give an application of orbifold Stiefel-Whitney classes.

According to [11], if a simplicial sphere K can be realized as the nerve of a simple polytope,

then K is called a polytopal sphere.

Lemma 5.1 (see [11, Lemma 3.6]) If K = K1 ∗K2 is a polytopal sphere, then K1 and K2

are polytopal spheres as well.
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Theorem 5.1 Let P be an n-dimensional simple polytope. Then P is the product of two

simple polytopes P1 and P2 with dimensions n1 and n2, respectively, if and only if, wn(TP ) =

wn1
(TP1) · wn2

(TP2).

Proof By Example 2.1, there is a right-angled Coxeter complex given by the standard

cubical decomposition of P . Now all boundary maps in the cellular chain complex of P are

zero, so

Hi(P ;Z2) ∼= (Z2)
fn−i

and

H∗(P ;Z2) ∼= Z2[s1, · · · , sm]/(IP + JP ),

where IP is the Stanley-Reisner ideal of P , JP = (s2i , ∀i) and m is the number of facets of P .

Then

w(TP ) =

m∏

i=1

(1 + si)

and

wn(TP ) =
∑

Fi1
∩···∩Fin

∈Vert(P )

si1 · · · sin .

If wn(TP ) = f(s1, · · · , sm)·g(s1, · · · , sm). wn(TP ) is homogeneous, so are f and g. Assume

that deg(f) = n1 and deg(g) = n2, where n1 + n2 = n. Then

wn(TP ) =
∑

Fi1
∩···∩Fin

∈Vert(P )

si1 · · · sin =
(∑

sj1 · · · sjn1

)
·
(∑

sk1
· · · skn2

)
.

Notice that sj 6= sk and sjsk 6= 0 for any sj of f(s1, · · · , sm) and sk of g(s1, · · · , sm). Let Ff ,Fg

be the facet sets corresponding to the variables of f and g, respectively. Then F(P ) = Ff

⊔
Fg.

Then the nerve N (P ) of P can be realized as the join of two subcomplexes K1 and K2 of N (P )

which are spanned by Ff and Fg, respectively. By Lemma 5.1, K1 and K2 can be realized as

the nerves of two right-angled Coxeter orbifolds. So P can be realized as the product of two

simple polytopes.

Conversely, if Pn ∼= Pn1

1 ×Pn2

2 , then H∗(P ;Z2) ∼= H∗(P1;Z2)⊗H∗(P2;Z2). Now w(TP ) =

w(TP1) · w(TP2), so wn(TP ) = wn1
(TP1) · wn2

(TP2).

Finally, some examples are listed.

Example 5.1 (Orbifold Stiefel-Whitney Class and Bad Orbifold) Let B = e0 ∪ e1/Z2 ∪

e2/(Z2)
2 be a teardrop, and π : E → B be an m-dimensional vector bundle over B. Assume

that the characteristic matrix of π|e1/Z2
is A = (x1, · · · , xm)T , where xi = ±1. Then the

characteristic matrix of π|e2/(Z2)2 is (A;A). Now,

w(E) =

m∏

i=1

(
1 +

1− xi
2

s
)
= 1 or 1 + s ∈ Z2[s]/(s

2).
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Example 5.2 Let S2/Z2 be a quotient orbifold given by a reflection action. Then the

blow-up of S2/Z2 is a quotient of S2 by identifying a pair of antipodal points. So we have

Hi
orb(S

2/Z2;Z2) ∼=

{
Z2, i = 0, 1, 2

0, otherwise.

Let π : E → S2/Z2 be an arbitrary vector bundle over S2/Z2, then

w(E) = w(E|Xreg
) · w(EH) = w(EH) = 1 or 1 + s,

where s is the generator of H1
orb(S

2/Z2;Z2). So w2 = 0 for any vector bundle over S2/Z2.

Example 5.3 Let Q be the quotient orbifold of Z2 on S1× [−1, 1] by (x, y) → (x,−y). We

can decompose S1 × [−1, 1]/Z2 into {v, e1, e2, f}, one 0-cell, one regular 1-cells, one singular

1-cell and one 2-cell as shown in Figure 3.

Figure 3 S1
× [−1, 1]/Z2.

The blow-up complex of Q is a torus, so

Hi
orb(S

1 × [−1, 1]/Z2;Z2) =





Z2, i = 0

Z2 ⊕ Z2, i = 1

Z2, i = 2

0, otherwise.

Let S1
1 and S1

2 be blue circle and red circle respectively in Figure 3. By Theorem 2.1, we

have

Hi
orb(S

1 × [−1, 1]/Z2;Z2) ∼=





H0(S1
1 ;Z2), i = 0

H1(S1
1 ;Z2)⊕H0(S1

2 ;Z2), i = 1

H1(S1
2 ;Z2), i = 2

0, otherwise.

Moreover,

H∗

orb(S
1 × [−1, 1]/Z2;Z2) = Z2[s1, s2]/(s

2
1, s

2
2),
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where s1 and s2 are generators ofH
1(S1

1 ;Z2) and H
0(S1

2 ;Z2), respectively. So s1s2 in H
2
orb(S

1×

[−1, 1]/Z2;Z2) is non-trivial.

Let {U(v), U(e1), U(e2), U(f)} be an open cover of S1× [−1, 1]/Z2 as shown in Figure 3. Let

T (S1× [−1, 1]/Z2) be the orbifold tangent bundle of S1× [−1, 1]/Z2. First, the tangent bundle

of its underlying space S1 × [0, 1] ≃ U(v) ∪ U(e1) is trivial. The orbifold tangent bundle of

U(e2) ≃ e1/Z2×e1 is TU(e2) ∼= Ẽ×(R×(0, 1)), the product of Ẽ in Example 2.4 and the trivial

line bundle over e1. Then we glue TU(e2) and T (U(v)∪U(e1)) together along the trivial bundle

over U(e2) ∩ U(v). Furthermore, TU(f) ∼= Ẽ × Te1. Then we can obtain the orbifold tangent

bundle of S1 × [−1, 1]/Z2 by gluing TU(f) to the glued bundle T (U(v) ∪ U(e1)) ∪ TU(e2).

w(T (S1 × [−1, 1]/Z2)) = w(TS1)(1 + s) = 1 + s.

In the other way, S1 × [−1, 1]/Z2 = [−1, 1] × ([−1, 1]/Z2)/(−1, x) ∼ (1, x). Let [−1, 1] ×

Ẽ → [−1, 1] × ([−1, 1]/Z2) be a line bundle over [−1, 1] × ([−1, 1]/Z2), where Ẽ = [−1, 1] ×

R/(x, y) ∼ (−x,−y) is the non-trivial bundle over [−1, 1]/Z2 defined in Example 2.4. Then

E = [−1, 1] × {[−1, 1] × R/(x, y) ∼ (−x,−y)}/(−1, x, y) ∼ (1, x,−y) is a line bundle over

S1 × [−1, 1]/Z2. Now

w(E) = w(E|Xreg
) · w(EH ) = (1 + s1)(1 + s2).

So w2(E) = s1s2 is non-trivial in H2
orb(S

1 × [−1, 1]/Z2;Z2).
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