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Abstract This paper is a continuation of the authors recent work [Beirão da Veiga, H.
and Yang, J., On mixed pressure-velocity regularity criteria to the Navier-Stokes equations
in Lorentz spaces, Chin. Ann. Math., 42(1), 2021, 1–16], in which mixed pressure-velocity
criteria in Lorentz spaces for Leray-Hopf weak solutions of the three-dimensional Navier-
Stokes equations, in the whole space R

3 and in the periodic torus T3, are established. The
purpose of the present work is to extend the result of mentioned above to smooth, bounded
domains Ω, under the non-slip boundary condition. Let π denote the fluid pressure and v

the fluid velocity. It is shown that if π

(1+|v|)θ
∈ Lp(0, T ;Lq,∞(Ω)), where 0 ≤ θ ≤ 1, and

2
p
+ 3

q
= 2− θ with p ≥ 2, then v is regular on Ω× (0, T ].
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1 Introduction: The Main Result

We are concerned with the regularity of weak solutions to the Navier-Stokes equations






∂tv + v · ∇v −∆v +∇π = f in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v(x, 0) = v0 in Ω,

v = 0 on Γ× (0, T ),

(1.1)

where v is the flow velocity field, π is the pressure, and the initial data v0 is divergence free. Ω
is a smooth open, bounded, subset of R3 and Γ denotes its boundary. f is an external force.
Throughout the whole paper we assume, without loss of generality, that for almost all t ∈ (0, T ),
the pressure π has vanishing mean-value in Ω.

In our recent paper [6], we established new integral criteria for regularity of weak solutions to
the Navier-Stokes equations. These criteria generalize the classical, well-known, Ladyzhenskaya-
Prodi-Serrin (L-P-S for short) criteria, see the pioneering references [17], [21], [23]. Let’s briefly
recall these criteria. They established, in their stronger, more recent form, that if a weak
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solution v of (1.1) satisfies

v ∈ Lp(0, T ;Lq(Ω)),
2

p
+

n

q
= 1, q > n, (1.2)

then v is a strong solution:

v ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)). (1.3)

It is well-known that strong solutions are smooth, if data and domain are also smooth. The
above strong result also holds for q = n (see [11, 22]).

Assumptions like (1.2) are called strong, since the equality sign “=” holds. When the
equality sign “=” is replaced by the inequality sign “<”, the assumption is called mild. We use
this same distinction in all the cases treated here. Concerning the strong criteria for regularity
(1.2), the first complete proof is due to Giga [13], followed by [1, 12]. See [6] for some comment.

Below, the criteria of type (1.2) relate pressure and velocity. So they are called mixed
pressure-velocity criteria, abbreviate simply to P-V criteria. Let’s introduce this significant
generalization. The well-known “interior” equation

−∆π =

n∑

i,j=1

∂i∂j(vivj) (1.4)

suggests the formal equivalence π ∼= |v|2 or, more appropriately, it merely suggests π / |v|2

(rather than |v|2 / π) since (1.4) gives information on π in terms of v, but not the reverse. This

means that, roughly, |π|
|v| / |v|, but not the reverse. Hence results under the same integrability

assumption on the two different quantities present in the above inequality look stronger (more

general) for the assumption on the left-hand side term. Further, since |π|
1+|v| ≤ |π|

|v| , results

obtained under integrability conditions on the left-hand side of the last inequality are stronger
than results under the same conditions on the right-hand side. This distinction is significant
since in the last case, one rules out regions where π is bounded and |v| is arbitrary small.

The formal relation π ∼= |v|2 suggests the following generalization

|π|

(1 + |v|)θ
∼= |v|2−θ. (1.5)

Hence it is natural to consider the following P-V problem (see [5]). Positive replies reinforce
the significance of the main relation π ∼= |v|2.

Problem 1.1 Assume that a weak solution (v, π) of the Navier-Stokes equations (1.1)
satisfies

|π|

(1 + |v|)θ
∈ Lp(0, T ;Lq(Ω)) (1.6)

for some θ ∈ [0, 2], where

2

p
+

n

q
= 2− θ. (1.7)

Question: Does (1.2) hold?

Assumption (1.7) will be called the P-V criteria. For a quite complete overview on the
P-V problem see [6]. The first result on this problem, where θ = 1, was the Theorem 1.1 of
[2], proved by appealing to the truncation method. Later on, in Theorem 1.1 of [3], still by
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appealing to the truncation method, the result was extended to general values of θ, 0 ≤ θ ≤ 1,
with p = q = γ. These results were mild. It was natural to ask whether the mild regularity
assumptions can be replaced by corresponding strong regularity assumptions (conditions with
the equality sign “=”). A first positive answer was given in [4] for θ = 1. The main ideas
followed in the proof essentially appeal to the argument developed in [1]. In [4, Theorem I], it
was essentially proved that solutions are smooth for θ = 1. Later on, in [5, Theorem 1.1], the
above result was extended to the general θ case. For the particular case θ = 0, Ω = R

n (see
[8]).

The case θ > 1 was treated by Zhou [29]. In this case, there is no evidence of a positive
answer to the relation π ∼= |v|2. On the contrary, see [6], both Zhou’s result, and the constraint
(51) imposed in the Lemma 3.6 in [5], go in the direction of a negative answer to the equivalence
π ∼= |v|2 in the case θ > 1.

In [6] we have considered the R
3 whole space case, and the torus T

3 case, and proved the
following result (for a definition of Lorentz spaces see section 2 below).

Theorem 1.1 (see [6, Theorem 5.2]) Set Ω = R
3 or T

3. Let (v, π) be a weak solution to

(1.1) with divergence-free initial data v0 ∈ L2(Ω) ∩ L4(Ω). Assume that 0 ≤ θ ≤ 1 and that

π

(e−|x|2 + |v|)θ
∈ Lp(0, T ;Lq,∞(Ω)), (1.8)

where p and q are finite, and

2

p
+

3

q
= 2− θ. (1.9)

Then v is regular on (0, T ]×Ω. In a bounded domain (the space-periodic case), we may replace

e−|x|2 simply by 1.

The aim of the present work is to extend the above Theorem 1.1 to the non-slip boundary
value problem in a bounded domain. Reference [6] should be assumed as Part I of the present
paper. Hence we will not repeat here many of the notes, historical remarks and references,
given in [6]. We refer to Sections 1 to 6 in this last reference.

Our main result is the following.

Theorem 1.2 Assume that Ω is a smooth bounded domain in R
3, and f = 0. Let (v, π)

be a weak solution to (1.1) with divergence-free initial data v0 ∈ H1
0 (Ω) ∩ L4(Ω). Furthermore,

assume that

π

(1 + |v|)θ
∈ Lp(0, T ;Lq,∞(Ω)), (1.10)

where p ≥ 2,

2

p
+

3

q
= 2− θ (1.11)

and

0 ≤ θ ≤ 1. (1.12)

Then v is regular on (0, T ]× Ω.

An interesting and challenging problem would be to prove that the above conclusion still
holds for p < 2, even in a weaker but significant form. See the remark below.
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For completeness, let’s briefly recall some regularity criteria in Lorentz spaces. Concerning
the P-V problem, the pioneering result in Lorentz spaces is Theorem 1.1 of [3]. The first strong
result in Lorentz spaces (for the velocity alone) was obtained by Sohr [24]. He established a
Lorentz spaces’ strong version of L-P-S criteria in the three-dimensional domain. Furthermore,
in [9], Berselli and Manfrin obtained similar results. Recently, Suzuki [26–27], and Ji-Wang-
Wei [16] studied some regularity criteria in terms of the pressure π in Lorentz spaces. In [16]
Ji-Wang-Wei extended Suzuki’s result to the range 3

2 ≤ q < 5
2 , by partially appealing to ideas

in [4–5].

Remark 1.1 Compared with Theorem 1.1 for the whole space (see [6, Theorem 5.2]),
the above result in bounded domains is restrictive. Now, as in [5, Theorem 1.1], we need to
assume that p ≥ 2

(
or q ≤ 3

1−θ

)
. It looks suitable to comment on the reasons that lead to this

restriction. Our proof start from Lemma 2.2 below. The main point in the proof is to control the
term

∫
Ω |π|2|v|2dx on the right-hand side of (2.10). In [6] we estimate the norm ‖π‖L(2−β)r1,2 ,

see the last row of equation (3.2) below, by appealing to the equation −∆π =
3∑

i,j=1

∂i∂j(vivj)

together with the boundedness of the Riesz Transform (2.3). This shows that ‖π‖L(2−β)r1,2 ≤
C‖|v|2‖L(2−β)r1,2 . However, for bounded domains, we can not appeal to the boundedness of
the Riesz Transform. To overcome this difficulty, after some calculations and by choosing an
appropriate exponent r1, the problem is reduced to control the quantity ε

∫ t

0
‖∇π‖2

L2dτ . By

applying Lemma 2.1 below, we show that ε
∫ t

0
‖∇π‖2

L2dτ ≤ Cε
∫ t

0
‖∇|v|2‖2

L2dτ , which can be
controlled by the left-hand side of (2.10).

Finally, we show why in our proofs the exponent p must be lager than 2. In [6] the choice
of r1 is relatively free since we can choose r1 such that δ1, δ2 ∈ [0, 1] for any p > 1 satisfying
(1.9). However, for a bounded domain under boundary conditions, due to Lemma 2.1 below,
the choice of a suitable r1 is quite restrained. We need p ≥ 2 to have δ ∈ [0, 1] (see (3.8) below).
Actually this corresponds to the case δ1 = 1 in [6].

2 Auxiliary Results

We start by recalling the definition of Lorentz spaces.

Definition 2.1 Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The Lorentz space Lp,q(Ω) is the set of all

functions f such that ‖f‖Lp,q(Ω) < ∞, where

‖f‖Lp,q(Ω) :=





(
p

∫ ∞

0

τq |{x ∈ Ω : |f(x)| > τ}|
q
p
dτ

τ

) 1
q

, q < ∞,

sup
τ>0

τ |{x ∈ Ω : |f(x)| > τ}|
1
p , q = ∞.

(2.1)

Actually the quantity ‖f‖Lp,q(Ω) is merely a quasi-norm, not a norm. However, it is well-
known that there are equivalent norms. Next we collect some useful properties. For the readers’
convenience we recall that these properties are listed, for instance, in [16, 28].

(i) Interpolation characteristic of Lorentz spaces (see [7, Theorem 5.3.1]),

(Lp0,q0(Ω), Lp1,q1(Ω))λ,q = Lp,q(Ω),
1

p
=

1− λ

p0
+

λ

p1
,
1

q
=

1− λ

q0
+

λ

q1
, 0 < λ < 1. (2.2)

(ii) Boundedness of Riesz Transform in Lorentz spaces (see [10, Lemma 2.2]),

‖Rjf‖Lp,q(Rn) ≤ C‖f‖Lp,q(Rn), 1 < p < ∞. (2.3)

(iii) Hölder inequality in the Lorentz spaces (see [20, Theorems 3.4–3.5]),

‖fg‖Lr,s(Ω) ≤ ‖f‖Lr1,s1 (Ω)‖g‖Lr2,s2(Ω), (2.4)
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where 1
r
= 1

r1
+ 1

r2
, 1

s
= 1

s1
+ 1

s2
.

(iv) For 1 ≤ p < ∞, 1 ≤ q1 < q2 ≤ ∞, we have that (see [15, Proposition 1.4.10])

‖f‖Lp,q2(Ω) ≤
(q1
p

) 1
q1

− 1
q2
‖f‖Lp,q1(Ω). (2.5)

(v) Sobolev inequality in Lorentz spaces (see [19, Theorem 6.5]),

∥∥∥f −

∫

Ω

fdx
∥∥∥
L

np
n−p

,q
(Ω)

≤ C‖∇f‖Lp,q(Ω) with 1 ≤ p < n, 1 ≤ q ≤ ∞. (2.6)

Next, we consider the Stokes system





∂tv −∆v +∇π = f, in Ω× (0, T ),

∇ · v = 0, in Ω× (0, T ),

v(x, 0) = v0, in Ω,

v = 0, on Γ× (0, T ),

(2.7)

where Ω is a smooth domain in R
3. For the above Stokes system, the following Solonnikov’s

Lemma holds (see [25]). See also the classical Ladyzenskaya’s treatise [18, Chapter 4, Theorem
6].

Lemma 2.1 Let 1 < r < ∞, and r 6= 3
2 . Suppose that f ∈ Ll(0, T ;Lr(Ω)) and v0 ∈

W 2− 2
r
,r(Ω). If the pair (v, π) is a solution of the Stokes system (2.7), then (v, π) satisfies the

following estimate:

‖vt‖Lr(0,T ;Lr) + ‖∇2v‖Lr(0,T ;Lr) + ‖∇π‖Lr(0,T ;Lr) ≤ C(‖f‖Lr(0,T ;Lr) + ‖v0‖
W

2− 2
r
,r ). (2.8)

In particular, if r = 2, we have

‖vt‖L2(0,T ;L2) + ‖∇2v‖L2(0,T ;L2) + ‖∇π‖L2(0,T ;L2) ≤ C(‖f‖L2(0,T ;L2) + ‖v0‖H1). (2.9)

General mixed-norm estimate also holds. See, for instance, [14, Theorem 2.8].
Lemma 5.3 below follows from [4, (2.3)] by setting in this estimate α = 4 and dimension

n = 3. It can be obtained by multiplying both sides of (1.1) by |v|2v, integrating by parts, using
divergence-free condition and Cauchy-Schwarz inequality. See also [1, Lemmas 1.1–1.2] and [5,
Lemma 3.1].

Lemma 2.2 Let (v, π) be a regular solution to equation (1.1) in Ω× [0, T ]. Then we have

1

4

d

dt

∫

Ω

|v|4dx+
1

2

∫

Ω

|∇v|2|v|2dx+
1

2

∫

Ω

|∇|v|2|2dx ≤

∫

Ω

|π|2|v|2dx. (2.10)

3 Proof of Theorem 1.2

We start by controlling the right-hand side of (2.10). In the following we set β = 2
2−θ

, and
therefore β ∈ [1, 2], and 2 + θβ = 2β. Furthermore, we set

V = 1 + |v|, π̃ =
|π|

(1 + |v|)θ
. (3.1)

When 0 ≤ θ < 1, by Hölder’s inequality in Lorentz spaces (2.4), one has

∫

Ω

|π|2|v|2dx =

∫

Ω

( |π|

(1 + |v|)θ

)β

|π|2−β(1 + |v|)βθ|v|2dx
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≤

∫

Ω

|π̃|β |π|2−βV 2+βθdx

≤ ‖π̃β‖
L

q
β

,∞‖π2−β‖
L

r1,
2

2−β
‖V 2β‖

L
r2,

2
β

= ‖π̃‖βLq,∞‖π‖2−β

L(2−β)r1,2‖V
2‖β

Lβr2,2
, (3.2)

where

β

q
+

1

r1
+

1

r2
= 1. (3.3)

When θ = 1, i.e., β = 2, the corresponding estimate is
∫

Ω

|π|2|v|2dx ≤ ‖π̃‖2Lq,∞‖V 2‖2
L

2q
q−2

,2
. (3.4)

Now, we take r1 = 6
2−β

, and then r2 = 6q
4q+(q−6)β . By the Sobolev inequality in Lorentz

spaces (2.6), we have

‖π‖L(2−β)r1,2 = ‖π‖L6,2 ≤ C‖∇π‖L2 , (3.5)

where we have taken into account that π has zero mean-value. By the interpolation charac-
teristic of Lorentz spaces (2.2), and by Sobolev inequality in Lorentz spaces (2.6), it follows
that

‖V 2‖Lβr2,2 ≤ C‖V 2‖1−δ
L2,2‖V

2‖δL6,2 ≤ C‖V 2‖1−δ
L2 (‖V 2‖L2 + ‖∇V 2‖L2)δ, (3.6)

where

1

βr2
=

1− δ

2
+

δ

6
, (3.7)

i.e.,

δ = 1 +
3

q
−

2

β
= 1 +

3

q
− (2− θ) = 1−

2

p
∈ [0, 1]. (3.8)

Hence it easily follows from (3.2) and Young’s inequality that

∫

Ω

|π|2|v|2dx ≤ C‖π̃‖βLq,∞‖∇π‖2−β

L2 ‖V 2‖
(1−δ)β
L2 (‖V 2‖L2 + ‖∇V 2‖L2)δβ

≤ C‖π̃‖
2

1−δ

Lq,∞‖V 2‖2L2 + ε‖∇π‖2L2 + ε(‖V 2‖2L2 + ‖∇V 2‖2L2)

≤ C(1 + ‖π̃‖
2

1−δ

Lq,∞)‖V 2‖2L2 + ε‖∇π‖2L2 + ε‖∇V 2‖2L2 , (3.9)

where the constant C depends on ε. Noting

‖V 2‖2L2 = ‖1 + 2|v|+ |v|2‖2L2 ≤ 4(1 + ‖v‖2L2 + ‖|v|2‖2L2) (3.10)

and

‖∇V 2‖2L2 = ‖∇(1 + 2|v|+ |v|2)‖2L2 ≤ 4(‖∇v‖2L2 + ‖∇|v|2‖2L2), (3.11)

it follows that
∫

Ω

|π|2v2dx
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≤ 4C(1 + ‖π̃‖
2

1−δ

Lq,∞)(1 + ‖v‖2L2 + ‖v‖4L4) + ε‖∇π‖2L2 + 4ε(‖∇v‖2L2 + ‖∇|v|2‖2L2). (3.12)

By this estimate and Lemma 2.2, we have

1

4

d

dt
‖v‖4L4 +

1

2

∫

Ω

|∇v|2|v|2dx+
1

2
‖∇|v|2‖2L2

≤ 4C(1 + ‖π̃‖
2

1−δ

Lq,∞)(1 + ‖v‖2L2 + ‖v‖4L4) + ε‖∇π‖2L2 + 4ε(‖∇v‖2L2 + ‖∇|v|2‖2L2). (3.13)

Next we add side by side the classical energy inequality to estimate (3.13). By choosing ε

sufficiently small, this allows us to drop the full 4ε term on the right-hand side of (3.13). In
particular, it follows that (here, and in the following, we may drop non essential terms)

1

4

d

dt

(
1 + 2‖v‖2L2 + ‖v‖4L4

)
+

1

2

∫

Ω

|∇v|2|v|2dx+
1

2
‖∇|v|2‖2L2

≤ 4C(1 + ‖π̃‖
2

1−δ

Lq,∞)(1 + ‖v‖2L2 + ‖v‖4L4) + ε‖∇π‖2L2. (3.14)

Integrating (3.13) in time from 0 to t, for any given t ∈ (0, T ), we obtain

1

4
(1 + 2‖v‖2L2 + ‖v‖4L4)(t) +

1

2

∫ t

0

∫

Ω

|∇|v|2|2dxdτ

≤ 4C

∫ t

0

(1 + ‖π̃‖
2

1−δ

Lq,∞)(1 + ‖v‖2L2 + ‖v‖4L4)dτ

+
1

4
(1 + 2‖v0‖

2
L2 + ‖v0‖

4
L4 + C‖v0‖

2
H1), (3.15)

where the pressure term has been dropped by choosing ε sufficiently small, since, by (2.9) of
Lemma 2.1, one has

∫ t

0

‖∇π‖2L2dτ ≤ C(‖∇|v|2‖2L2(0,t;L2) + ‖v0‖
2
H1). (3.16)

Now we may also eliminate the last term in the left-hand side of (3.15). Next, by using
Gronwall’s lemma, we show that

v ∈ L∞(0, T ;L4(Ω)), (3.17)

since, due to (3.8) and the definition of π̃, condition π̃ ∈ L
2

1−δ (0, T ;Lq,∞) is just our main
assumption

π̃ ∈ Lp(0, T ;Lq,∞). (3.18)

Smoothness of the solution in Ω× [0, T ] follows from (3.18) together with Ladyzhenskaya-Prodi-
Serrin regularity criteria (1.2). Thus we have completed the proof of Theorem 1.2.
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[21] Prodi, G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48, 1959,
173–182.

[22] Seregin, G., On smoothness of L3,∞-solutions to the Navier-Stokes equations up to the boundary, Math.

Ann., 332, 2005, 219–238.

[23] Serrin, J., The initial value problem for the Navier-Stokes equations, Langer editor, Nonlinear Problems,
Univ. Wisconsin Press, Madison, Wisconsin, 69–98, 1963.

[24] Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1, 2001,
441–467.

[25] Solonnikov, V. A., Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations,
Amer. Math. Soc. Transl., 75, 1968, 1–116.

[26] Suzuki, T., Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-
Stokes equations, J. Math. Fluid Mech., 14, 2012, 653–660.

[27] Suzuki, T., A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the
pressure in Lorentz spaces, Nonlinear Anal. Theory Methods Appl., 75, 2012, 3849–3853.

[28] Wang, Y., Wei, W. and Yu, H., ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces,
J. Evol. Equ., 21, 2021, 1627–1650.

[29] Zhou, Y., Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain,
Math. Ann., 328, 2004, 173–192.


