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Abstract LetG be a finite group, H be a proper subgroup ofG, and S be a unitary subring
of C. The kernel of the restriction map S[Irr(G)] → S[Irr(H)] as a ring homomorphism
is studied. As a corollary, the main result in [Isaacs, I. M. and Navarro, G., Injective
restriction of characters, Arch. Math., 108, 2017, 437–439] is reproved.
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1 Introduction

In [4], by construction of some characters induced from a cyclic subgroup, Isaacs and Navarro

proved that the restriction map of generalized characters from a group to any of its proper

subgroup is not injective. The construction is very subtle. If we treat the restriction map as

a ring homomorphism from the character ring (with coefficients integers) of the group to the

character ring of the proper subgroup, then the main result of Isaacs and Navarro is equivalent

to saying that the mentioned ring homomorphism is not injective, i.e., the kernel of it is not

zero.

In this paper, we will approach this question in a more general context. We use the same

technique similar as in [1]. We explain our method in the following paragraph.

One can view the complex irreducible characters of a finite group as a basis of the vector

space of complex class functions on the finite group (see [6, Chapter 2, Theorem 6]). The

vector space of complex class functions of the finite groups is thus the character ring with

coefficients complex numbers of the finite group. This vector space has another basis which

is the characteristic class functions of the finite group. Using this basis, one can easily prove

that the restriction homomorphism from the complex character ring of the finite group to the

complex character ring of a proper subgroup is not injective. Hence, its kernel is not zero. In

this kernel we may get some nonzero generalized characters of the finite group and prove the

main result of Isaacs and Navarro as a corollary.

Our notations are from [2] and [6].

Let G be a finite group. The set of all complex characters of G is denoted by Char(G) and

the set of all irreducible characters in Char(G) is denoted by Irr(G). For a unitary subring S

of C, the ring of S-generalized characters of G is denoted by S[Irr(G)].
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IfH is a proper subgroup of G, in [4] Isaacs and Navarro proved that the character restriction

from Char(G) to Char(H) is not injective. For a unitary subring S of C, it is stratightforward

that the original restriction of characters induces a ring homomorphism

rS : S[Irr(G)] → S[Irr(H)].

In this paper, we will study the rank of the kernel of the ring homomorphism rS for different

choices of S. The main result in [4] will be a corollary of the main theorem, where S = Z.

Let ω be a |G|-th primitive root of 1 in C. Denote the Galois group Gal(Q[ω]/Q) by K and

all the algebraic integers in Q[ω] by A. Set ClaH to be the set of all conjugacy classes consisting

of elements in G which are not conjugate to any element in H . Since H is proper in G, ClaH is

not empty (see [3, Problem 1A.7]). Also, each element of K maps ω to a power of ω with the

power coprime to |G|. Thus, each element of K induces a natural permutation on G. Thus,

each element of K induces a permutation on ClaH .

2 Main Results

The following is the main result of this paper.

Theorem 2.1 Let notations be as above. For any unitary subring S of C, the kernel ker(rS)

of rS is an ideal and a free S-submodule of S[Irr(G)]. Moreover, the following are true.

(i) If S = C, then the dimension of ker(rS) as a complex vector space is equal to |ClaH |.

(ii) If S = A, then the rank of the S-module ker(rS) is equal to |ClaH |.

(iii) If S = Z, then the rank of the S-module ker(rS) is not less than the number of orbits

of K on ClaH .

Proof For the unitary subring S, we consider the S-linear map

rS : S[Irr(G)] → S[Irr(H)].

One can easily see that rS is a ring homomorphism. It follows that ker(rS) is an ideal and a free

S-submodule of S[Irr(G)]. To prove the remaining statements, recall that for each conjugacy

class C of G, the characteristic function fC of C is a class function on G, which is defined as

follows:

fC(x) =

{

1, if x ∈ C,
0, if x ∈ G\C.

It is well known that, as an element in C[Irr(G)],

fC =
∑

χ∈Irr(G)

|C|χ(c)

|G|
χ,

where c ∈ C (see [1, section 3.2]).

Now assume that S = C. For any function h ∈ ker(rS), one can see that h vanishes on each

conjugacy class of G which is not disjoint with H since h is a class function. This implies that

ker(rS) ⊆
⊕

C∈ClaH

CfC .
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Conversely, it is obvious that every fC with C ∈ ClaH is contained in ker(rS). It follows that

⊕

C∈ClaH

CfC ⊆ ker(rS).

We then get the equality, which proves statement (i).

Next, assume that S = A. By statement (i), one can see that the rank of the S-module

ker(rS) is not greater than |ClaH |. However, by the expression of fC , we can prove that |G|fC

belongs to ker(rS) for each C ∈ ClaH . Thus, {|G|fC : C ∈ ClaH} is an S-basis of ker(rS). This

completes the proof of statement (ii).

Finally, assume that S = Z. For each orbit O of K on ClaH , observe that

fO :=
∑

C∈O

|G|fC =
∑

χ∈Irr(G)

(

∑

x∈O∪

χ(x)
)

χ,

where O∪ is the union of all conjugacy classes in O. Since for each χ ∈ Irr(G), the coefficient
∑

x∈O∪

χ(x) is an algebraic integer and K-invariant. This implies that each of the coefficients is

also a rational number and hence the coefficient lies in Z (see [6, Section 6.4]). It follows that

each fO is a nonzero element in Z[Irr(G)]. As all these fO are Z-independent, statement (iii)

follows.

Remark 2.1 Assume that S = Z. It may happen that the rank of ker(rS) is greater than

the number of K-orbits of ClaH : For instance, if we take G to be a cyclic group of order, a

prime p with p > 3 and H to be the identity subgroup, then the rank of ker(rS) is p − 1 and

the number of K-orbits of ClaH equals 1. However, if G is a rational group, then both the rank

of ker(rS) and the number of K-orbits are equal to |ClaH |.

So far we did not get an exact formula of the rank of ker(rS) for S = Z. Also, we cannot

completely describe the generalized characters in the kernel of rZ. There are similar results in

[5, Theorem B]. In fact, Ferguson and Isaacs completely described the generalized characters

which vanish at elements outside any conjugate of the proper subgroup.

Corollary 2.1 For a proper subgroupH of G, the restriction map from Char(G) to Char(H)

is not injective.

Proof By statement (iii) of Theorem 2.1, there exists a nonzero element h in Z[Irr(G)]

such that h(x) = 0 for any x ∈ H . One can find disjoint subsets M and N of Irr(G) such that

h =
∑

χ∈M

aχχ−
∑

φ∈N

bφφ,

where all aχ and bφ are positive integers. As h(1) = 0, one can see that neither M nor N is

empty. Now the distinct characters
∑

χ∈M

aχχ and
∑

φ∈N

bφφ have the identical restrictions to H,

which proves the corollary.
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