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Abstract Given n samples (viewed as an n-tuple) of a γ-regular discrete distribution π,
in this article the authors concern with the weighted and unweighted graphs induced by
the n samples. They first prove a series of SLLN results (of Dvoretzky-Erdös’ type). Then
they show that the vertex weights of the graphs under investigation obey asymptotically
power law distributions with exponent 1+ γ. They also give a conjecture that the degrees
of unweighted graphs would exhibit asymptotically power law distributions with constant
exponent 2. This exponent is obviously independent of the parameter γ ∈ (0, 1), which is
a surprise to us at first sight.
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1 Introduction

Let ξ := (ξn : n ≥ 1) be a random symbol sequence. Let Rn be the number of distinct

values among the first n elements of the process ξ. We call (Rn : n ≥ 1) the range-renewal

process of ξ. An interesting problem is to investigate the growth rate of Rn.

In the autumn of 2010, the second author reported a classic result of Dvoretzky and Erdös

[13] in a seminar at Fudan University and was fascinated by their neat and beautiful result

that, for a simple symmetric random walk (SSRW for short) on Z
d with d ≥ 2, (Rn) satisfies

the following strong law of large numbers (SLLN for short): Rn

ERn

a.s.
−−→ 1. We then try to find

out the more recent results concerning Rn for more general process ξ. For Markov chains,

Chosid and Isaac [9–10], and Athreya [3] obtained that, under a suitable integrable condition,
Rn

n

a.s.
−−→ 0. Derriennic [11] extended Dvoretzky-Erdös’ result to simple random walks ξ on

arbitrarily discrete Abelian groups, and showed that lim
n

Rn

n
= 0 a.s. when ξ is recurrent;

otherwise the limit is the escape probability. In addition, the central limit theorem of Rn of

SSRW on Z
d can be found in Jain and Pruitt [21, 23] (d ≥ 3) and Le Gall [25] (d = 2); the

corresponding laws of the iterated logarithm are discussed by Jain and Pruitt [22] (d ≥ 4)

and Bass and Kumagai [7] (d = 2 or 3). More discussions on Rn of null recurrent or transient

Markov chains can be found in [14, 16–19, 27–29] and references therein.

However, there are relatively few results concerning Rn of positive recurrent Markov chains

(or of stationary processes). What will be the accurate order of Rn tending to +∞? This
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problem has rather few investigation even for independent and identically distributed (i.i.d. for

short) sequence ever since Dvoretzky and Erdös’ work in [13].

So, in this paper, we focus on the simple (but nontrivial) case that ξ = (ξn : n ≥ 1) is an

sequence of i.i.d. random variables with a common discrete distribution π. In such situation,

after our main work of the current paper being done, we recently found that, Bahadur [4]

had proved lim
n→∞

Rn

ERn
= 1 in probability; while we will prove as a preliminary result that

the convergence indeed holds almost surely. We next consider the random digraph
−→
Gn (and

undigraph Gn respectively) formed by the first n-steps of ξ, and establish a system of SLLNs for

the numbers of different kinds of vertices in
−→
Gn (and in Gn respectively) under the condition

of π being γ-regular (see Definition 2.2). These results lead us to the discovery of an interesting

phenomenon that the vertex weights of
−→
Gn (and of Gn respectively) obey asymptotically power-

law distributions with exponent 1 + γ. Based on these results, we also propose a conjecture

that the un-weighted (directed and undirected) graphs, with their degrees concerned, would

exhibit power law distributions with exponent 2, independent of the regular index γ ∈ (0, 1).

As it is well known, there are thousands of works (see [1–2, 5–6] and references therein and

thereafter) concerning power-laws of different kinds of random graph models; a significant part

of our current work was influenced and inspired by them.

The paper is organized in the following way. Section 2 is devoted to the presentation of

the main settings and the main results. In Section 3 we present some necessary estimates for

our model. Section 4 is devoted to the proof of the main Theorems 2.1–2.4. In Section 5 we

discuss the critical case of γ = 0 and γ = 1. There, for the non-critical case of γ ∈ (0, 1), we

also propose the conjecture just mentioned above with a heuristic deduction.

2 Main Settings and Main Results

2.1 Main settings

Let π be a probability measure on N with πi ≥ πi+1 > 0 for all i ∈ N. Let ξ = (ξn : n ≥ 1)

be a sequence of i.i.d. random variables with common law π. Let Rn be the number of distinct

values achieved by the first n samples from ξ, i.e.,

Rn := #{ξk : 1 ≤ k ≤ n}. (2.1)

We define
−→
Gn := (Vn,

−→
E n,Wn) to be the random weighted directed graph formed by the first

n steps of ξ. Here, vertex set Vn, edge set
−→
E n and weight function Wn are defined as follows:

Vn := {ξi : 1 ≤ i ≤ n},
−→
E n := {

−−−→
ξiξi+1 : 1 ≤ i ≤ n− 1} and Wn(x, y) :=

n−1
∑

i=1

1{ξi=x,ξi+1=y}. Let

Wn(x) :=
∑

y

Wn(x, y) be the weight of vertex x in
−→
Gn. Write

−→
V n(x) := {y ∈ Vn :Wn(x, y) ≥ 1} (2.2)

for the set of outgoing neighbors of x in
−→
Gn, thus #

−→
V n(x) is the out-degree of vertex x. We also

define Gn := (Vn, En) for the un-directed graph corresponding to
−→
Gn, so that, Gn is a connected

graph without multiedge but possibly has loops. Put Vn(x) := {y ∈ Vn :Wn(x, y)+Wn(y, x) ≥

1}, it is the set of neighbors of x in Gn.
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We will investigate the numbers of different kinds of vertices in
−→
Gn and Gn, which are

introduced as the following. First, put

Nn(x) :=

n
∑

k=1

1{ξk=x}, (2.3)

which is the number of visit times (visit intensity) of ξ at vertex x up to time n. Then

Wn(x) = Nn−1(x). For each ℓ ≥ 1, set Rn, ℓ :=
∑

x

1{Nn(x)=ℓ}, this is the number of vertices

with visit intensities being exactly ℓ in
−→
Gn. Define Rn, ℓ+ :=

n
∑

k=ℓ

Rn, k. Then Rn = Rn,1+.

Similarly, we define
−→
Rn, ℓ :=

∑

x

1
{#

−→
V n(x)=ℓ}

to be the number of vertices whose out-degrees are

exactly ℓ in
−→
Gn. Then

∑

ℓ

−→
Rn, ℓ = Rn−1. Noting that

∑

y

1{Wn(x,y)≥1} and
∑

y

1{Wn(y,x)≥1} have

the same law, we only consider the out degree #
−→
V n(x) here. Set

−→
Rn, ℓ+ :=

n
∑

k=ℓ

−→
Rn, k. Define

Rn,ℓ and Rn,ℓ+ in a similar way for undigraphs Gn.

2.2 Main results

For the above range-renewal processes induced by i.i.d. samples ξ with a common distribu-

tion π, an SLLN of Dvoretzky-Erdös’ type holds true as is indicated below.

Theorem 2.1 For any discrete probability measure π, we have lim
n→∞

Rn

ERn
= 1 almost surely.

To present the other main results in a neat way, we introduce the following definitions.

Definition 2.1 Let ζ : [1,∞) → [1,∞) be a strictly increasing function. Let γ ∈ [0, 1]. We

say that ζ is γ-regular if

lim
x→∞

ζ(λx)

ζ(x)
= λγ , ∀λ > 0. (2.4)

Note that if ζi is γi-regular for each i ∈ {1, 2} and lim
x→∞

ζ1(x)
ζ2(x)

= 1, then γ1 = γ2. So, the

following definitions of regular distributions on N are well-posed.

Definition 2.2 Let γ ∈ (0, 1). A distribution π on N is said to be γ-regular if there is a

γ-regular function ζ satisfying

lim
n→∞

πn · ζ−1(n) = 1, (2.5)

where ζ−1 is the inverse function of ζ.

Definition 2.3 A distribution π on N is said to be 0-regular if: (1) There is a 0-regular

function ζ satisfying (2.5); (2) the function ζ is continuously differentiable and

lim
x→∞

ζ′(λx)

ζ′(x)
= λ−1, ∀λ > 0. (2.6)

Definition 2.4 A distribution π on N is said to be 1-regular if: (1) There is a 1-regular

function ζ satisfying (2.5); (2) there exists an increasing function ψ : R+ → R
+ and a contin-

uous and integrable function g : R+ → R
+ such that lim

x→∞
ψ(x) = ∞ and

lim
x→∞

ζ(x · eλψ(x))

ζ(x) · eλψ(x)
= g(λ) (2.7)
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holds uniformly on each compact λ-set in (0,∞).

For any γ-regular distribution π on N with γ ∈ [0, 1], we will refer γ(π) := γ to be the

regular index of π. In the following we will show some backgrounds for the regular functions.

Remark 2.1 (2.4) is just the definition of regularly varying function with exponent γ,

which is originally introduced by Karamata [24]. See for example [15, pp. 241–250], [30, pp.

13], [20, pp. 321–324], or [8] for the definition and related properties.

Remark 2.2 If ζ is γ-regular for some γ ∈ [0, 1], then lim
x→∞

log(ζ(x))
log x = γ.

Remark 2.3 In the previous versions of this paper, we remarked that we need suitable

dominations (without an explicit presentation of those dominations) in limits (2.4) and (2.7)

so that the Lebesgue’s Dominated Convergence theorem (DCT for short) can be applied in

the proof of Lemma 3.2 (and in other similar estimates). Thanks to the anonymous referee

for reminding us the following important fact: For regularly varying function ϕ with exponent

γ ∈ R, the limit lim
x→∞

ϕ(λx)
ϕ(x) = λγ holds uniformly on each compact λ-set in (0,∞) (see [8,

Theorem 1.5.1]). It is also clear that, for any γ-regular function ζ (with 0 ≤ γ ≤ 1) and any

ε ∈ (0, 1), there exist constants Cε,Mε ≥ 1 such that

ζ(λx)

ζ(x)
≤ Cε · λ

γ+ε, ∀x ≥Mε, λ ≥ 1. (2.8)

So the exchangeability of the limit z → ∞ and the integral with respect to ds in the proof of

Lemma 3.2 (and in other similar estimates) holds for regular distributions π on N with index

γ = γ(π) ∈ [0, 1). The requirement of uniformly convergence of the limit (2.7) is to serve the

same end in our deductions for the case of 1-regular distributions.

As follows, we show that the regular distributions on N contain many interesting examples.

Example 2.1 Let C > 0, a > 0 and b > 0.

(1) If πn = C+o(1)
n1+a , then choosing ζ(x) = (Cx)γ , one can prove that π is γ-regular with

γ = 1
1+a ∈ (0, 1).

(2.a) If πn = C · e−an
b

· [1 + o(1)], then one can choose ζ(x) =
[ log(Cx)

a

]
1
b and prove that π

is 0-regular.

(2.b) If πn = C · e−a(logn)
1+b

· [1+ o(1)], then one can choose ζ(x) = exp
{[ log(Cx)

a

]
1

1+b
}

and

prove that π is 0-regular.

(3) If πn = C
n·(logn)1+a · [1 + o(1)], then one can choose ζ(x) = Cx

(log x)1+a , ψ(x) = log x and

g(λ) = 1
(1+λ)1+a and prove that π is 1-regular.

Now we assume the common distribution π to be γ-regular for some γ ∈ (0, 1). Then we

have a series of SLLNs as Theorems 2.2–2.4. For completeness, the interested readers can find

in Section 5 the corresponding results for π being 0-regular or 1-regular.

Theorem 2.2 For each k ∈ N, we have lim
n→∞

Rn,k+

ERn,k+
= 1 almost surely. The same result

holds when we replace Rn,k+ by
−→
Rn,k+, Rn,k+ respectively.

Theorem 2.3 For each k ≥ 1, we have lim
n→∞

Rn,k

Rn
= rk(γ) :=

γΓ(k−γ)
Γ(1−γ)Γ(k+1) almost surely,

where Γ(·) is the usual Gamma function. Consequently, we have almost surely

lim
n→∞

Rn,k+1

Rn,k
=
k − γ

k + 1
, (2.9)
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lim
n→∞

Rn,k

Rn,k+
=
γ

k
. (2.10)

Remark 2.4 (2.10) means that the proportion of the relatively ‘new’ vertices at visit in-

tensity level k is approximately γ
k
; this is a kind of average escape rate (at intensity level k).

In the case of SSRW on Z
d with d ≥ 3, the limit in (2.10) is always γd, the usual escape rate

(escape probability), see for example [26, pp. 220].

Theorem 2.4 We have almost surely

lim
n→∞

−→
Rn,k

Rn
= −→r k(π) :=

∞
∑

ℓ=k

rℓ(γ)P(Rℓ = k), (2.11)

lim
n→∞

Rn,k

Rn
= rk(π) :=

∞
∑

ℓ=
⌊

k+1
2

⌋

rℓ(γ)P(R2ℓ = k). (2.12)

Note
∞
∑

ℓ=1

rk(γ) = 1 and rk(γ) =
γ

Γ(1−γ) · k
−(1+γ) · [1 + O(k−1)] as k → ∞. We remark here

that, Theorem 2.3 indeed tells us that
{Rn,k

Rn

}∞

k=1
is asymptotically a power law distribution

with exponent 1 + γ.

With a heuristic argument in Section 5, we also conjecture that {−→r k(π)}∞k=1 and {rk(π)}∞k=1

(defined in Theorem 2.4) are power law distributions with exponent 2.

In the rest of this section, we show that Theorems 2.2–2.4 may fail to be true without any

regular condition. See the following counter example.

Example 2.2 Let α1 > α2 > 1. There exist some distribution π and an increasing sequence

{nj}∞j=1 ⊂ N such that almost surely

lim
j→∞

Rn
2j−1

,1

Rn
2j−1

=
1

α1
and lim

j→∞

Rn
2j
,1

Rn
2j

=
1

α2
. (2.13)

For the convenience of readers, we now present a proof of the above example based on

Theorems 2.1–2.4, while their own proofs are postponed to the successive sections.

Proof of Example 2.2 For any distribution π on N, write Pπ for the probability measure

induced by the i.i.d. sequence of {ξn : n ≥ 1} with common distribution π.

Let α2k−1 = α1, α2k = α2 for each k ≥ 1. Let π(1) be a probability measure on N with

π
(1)
x := 1

Z1·xα1
, x ∈ N, where Z1 :=

∑

x

1
xα1

is the normalizing constant. We know that π(1) is

1
α1

-regular by Example 2.1(1). Applying Theorem 2.3, we have
Rn,1

Rn

a.s.
−−→ 1

α1
with respect to

Pπ(1) . Thus there exist large enough integers n1,m1 ≥ 1 such that

Pπ(1)

(∣

∣

∣

Rn
1
,1

Rn
1

−
1

α1

∣

∣

∣
≤

1

2
, Vn

1
⊂ [1,m1)

)

≥ 1−
1

2

and
∑

x≥m1

π
(1)
x ≤ 1

2 . Inductively, we can define a sequence of distributions (π(k), k ≥ 1) and two

strictly increasing integer sequences (nk, k ≥ 1) and (mk, k ≥ 1) such that

π(k+1)
x =











π
(k)
x , 1 ≤ x < mk;

1

Zk+1 · xαk+1
, x ≥ mk;
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and for each k ≥ 1, with Ak :=
{
∣

∣

Rnk,1

Rnk

− 1
αk

∣

∣ ≤ 1
2k

}

∩ {Vnk
⊂ [1,mk)},

Pπ(k)(Ak) ≥ 1− 2−k and
∑

x≥mk

π(k)
x ≤

1

2k
.

(

Here, Zk+1 > 0 is the constant which satisfies
∑

x

π
(k+1)
x = 1.

)

Let π
(∞)
x := lim

n→∞
π
(n)
x for each x ∈ N. Clearly π(∞) is still a probability measure on N.

Since {x ∈ N : π
(∞)
x 6= π

(k)
x } ⊂ [mk,∞) for each k ≥ 1, we get

Pπ(∞)(Ak) = Pπ(k)(Ak) ≥ 1− 2−k.

Therefore, (2.13) holds Pπ(∞) -almost surely.

3 Preliminary Estimates

3.1 Expectation-variance estimate for Rn

For any discrete distribution π, we have the following estimation.

Lemma 3.1 For each n ∈ N, we have

ERn =
∑

x

[1− (1 − πx)
n], (3.1)

and Var (Rn) ≤ ERn. As n→ ∞, ERn

n
= o(1).

Proof (3.1) is obvious since Rn =
∑

x

1{Nn(x)≥1} and P(Nn(x) = 0) = (1 − πx)
n. Next,

since E[Rn(Rn − 1)] =
∑

x 6=y

P(Nn(x) ≥ 1, Nn(y) ≥ 1), we have

E[Rn(Rn − 1)] =
∑

x 6=y

[1− (1 − πx)
n − (1− πy)

n + (1− πx − πy)
n]

≤
∑

x,y

[1− (1− πx)
n][1− (1− πy)

n] = [ERn]
2.

It follows Var (Rn) ≤ ERn immediately. Furthermore, noting lim
n→∞

1−(1−πx)
n

n
= 0 and 1−(1−πx)

n

n
≤

πx, we have ERn

n
= o(1) in view of the DCT.

Fix γ ∈ (0, 1) now. We always assume that π is γ-regular and ζ is a γ-regular function

which satisfies (2.5). In the forthcoming subsection, we will give some necessary estimates for

the related quantities as n→ ∞, which will be helpful for the proofs of Theorems 2.2–2.4.

3.2 Expectation estimates for visit intensity statistics

Fix a ∈
(

1
2 ,

3
2

)

. For each z > 0, let E(z) := E(z; 1) with

E(z; a) :=
∑

j>ζ(2)

[

1−
(

1−
a

ζ−1(j)

)z]

. (3.2)

Lemma 3.2 E(z; a) = Γ(1 − γ) · aγ · ζ(z) · [1 + o(1)] as z → ∞.
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Proof Since ζ(·) is strictly increasing, the discrete sum in (3.2) can be approximated by the

integral
∫∞

ζ(2)

[

1−
(

1− a
ζ−1(x)

)z]
dx with the error term bounded by

[

1−
(

1− a
ζ−1(ζ(2))

)z]
≤ 1.

Hence

E(z; a) = O(1) +

∫ ∞

ζ(2)

[

1−
(

1−
a

ζ−1(x)

)z]

dx = O(1)−

∫ 1
2

0

[1− (1− at)z]dζ
(1

t

)

= O(1)−
[

1−
(

1−
a

2

)z]

· ζ(2) + lim
t→0

[1− (1 − at)z] · ζ
(1

t

)

+

∫ 1
2

0

az · ζ
(1

t

)

· (1 − at)z−1dt

= O(1) + lim
t→0

azt · ζ
(1

t

)

+ aζ(z) ·

∫ z
2

0

ζ( z
s
)

ζ(z)
·
(

1−
as

z

)z−1

ds.

For the second term on the right side of the above equation, we have lim
t→0

[

t · ζ
(

1
t

)]

= 0 based

on Remark 2.2. So that, we are left to estimate the third term. Applying (2.8) with ε = 1−γ
2

and λ = s−1, we get

ζ( z
s
)

ζ(z)
≤ C 1−γ

2
· s−

γ+1
2 , ∀ z ≥M 1−γ

2
, s ∈ (0, 1).

It is easy to get
(

1−
x

z

)z−1

≤ exp
{

−
x(z − 1)

z

}

≤ exp
{

−
x

2

}

, ∀ z > 2, x > 0.

Hence
ζ( z

s
)

ζ(z) ·
(

1 − as
z

)z−1
is bounded by max{1, C 1−γ

2
· s

−(γ+1)
2 }e

−as
2 for all z > 2 +M 1−γ

2
and

all s > 0. Therefore, we can apply the DCT to get

lim
z→∞

∫ z
2

0

ζ( z
s
)

ζ(z)
·
(

1−
as

z

)z−1

ds =

∫ ∞

0

lim
z→∞

ζ( z
s
)

ζ(z)
·
(

1−
as

z

)z−1

· 1{s< z
2 }
ds

=

∫ ∞

0

s−γe−asds = Γ(1− γ) · aγ−1.

This proves the lemma.

Lemma 3.3 ERn = Γ(1 − γ) · ζ(n) · [1 + o(1)].

Proof Fix 0 < ε < 1
2 . By (2.5), there exists sufficiently large integer i0, such that

πi ≤
1+ε
ζ−1(i) for all i ≥ i0. Hence ERn ≤ O(1) + E(n, 1 + ε). By Lemma 3.2,

lim
n→∞

ERn

ζ(n)
≤ lim

n→∞

E(n, 1 + ε)

ζ(n)
= Γ(1− γ) · (1 + ε)γ .

Similarly, lim
n→∞

ERn

ζ(n) ≥ Γ(1− γ) · (1− ε)γ . We prove the lemma by letting ε ↓ 0.

It is easy to see that, for any n ≥ ℓ ≥ 1,

ERn,ℓ =
∑

x

Cℓn · πℓx(1 − πx)
n−ℓ. (3.3)

In order to estimate ERn,ℓ, we define

Sℓ(n) :=
∑

x

πℓx(1− πx)
n−ℓ. (3.4)

Then ERn,ℓ =
nℓ

ℓ! Sℓ(n)[1 +O( 1
n
)] as n goes to infinity.
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Lemma 3.4 Fix ℓ ≥ 1 and d ≥ 1. As n goes to infinity,

Sℓ(n) = γΓ(ℓ− γ) ·
ζ(n)

nℓ
· [1 + o(1)],

ERn,ℓ =
γΓ(ℓ− γ)

ℓ!
· ζ(n) · [1 + o(1)]

and

Sℓ(n− d) =
[

1 +O
( 1

n

)]

· Sℓ(n). (3.5)

Proof Fix ℓ ≥ 1. For each z > ℓ and a ∈ (12 ,
3
2 ), let

Sℓ(z; a) :=
∑

n>ζ(2)

( a

ζ−1(n)

)ℓ(

1−
a

ζ−1(n)

)z−ℓ

.

Following the proofs of Lemmas 3.2–3.3, we can prove first Sℓ(z; a) = aγ ·γΓ(ℓ−γ)· ζ(z)
zℓ

·[1+o(1)],

and then Sℓ(n) = γΓ(ℓ− γ) · ζ(n)
nℓ · [1 + o(1)]. Hence we have the equation for ERn,ℓ.

In proving (3.5), we assume d = 1 for simplicity. Clearly Sℓ(n − 1)− Sℓ(n) = Sℓ+1(n) and

Sℓ+1(n)
Sℓ(n)

=
γΓ(ℓ+1−γ)· ζ(n)

nℓ+1 ·[1+o(1)]

γΓ(ℓ−γ)· ζ(n)

nℓ ·[1+o(1)]
= ℓ−γ+o(1)

n
. This proves (3.5).

3.3 Variance estimates for visit intensity statistics

Lemma 3.5 Fix ℓ ≥ 1. As n goes to infinity, Var (Rn,ℓ) ≤ [1 + o(1)] · ERn,ℓ.

Proof Mimicking the proof of Lemma 3.1, we have

E[R2
n, ℓ −Rn, ℓ] =

∑

x 6=y

P(Nn(x) = ℓ,Nn(y) = ℓ).

By (3.3) and (3.5),

E[R2
n, ℓ −Rn, ℓ] =

∑

x 6=y

n!

(ℓ!)2(n− 2ℓ)!
· πℓxπ

ℓ
y · (1− πx − πy)

n−2ℓ

≤
n!

(ℓ!)2(n− 2ℓ)!
Sℓ(n− ℓ)2 =

[ n!

ℓ!(n− ℓ)!

]2

·
[

1 +O
( 1

n

)]

· Sℓ(n)
2

=
[

1 +O
( 1

n

)]

· (ERn, ℓ)
2.

It follows Var (Rn, ℓ) ≤
[

1+O
(

ERn, ℓ

n

)]

·ERn, ℓ immediately. This proves the lemma by ERn,ℓ ≤

ERn and ERn

n
→ 0.

3.4 Estimates for out-degree statistics

Recall the definition of
−→
V n(x) in (2.2) and recall also Wn(x) = Nn−1(x). In order to

investigate
−→
Rn,k, we define

−→
Rn, k, ℓ :=

∑

x

1
{Wn(x)=ℓ,#

−→
V n(x)=k}

. (3.6)

Then
−→
Rn,k =

∑

ℓ≥k

−→
Rn, k, ℓ.
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Lemma 3.6 Fix ℓ ≥ k ≥ 1. As n goes to infinity,

E
−→
Rn, k, ℓ =

γΓ(ℓ− γ)

ℓ!
· P(Rℓ = k) · ζ(n) · [1 + o(1)].

Proof Fix x ∈ N and n ≥ ℓ ≥ k ≥ 1. Define random set Wn(x) := {i ≤ n − 1 : ξi = x}.

Then Wn(x) = #Wn(x). Define A(k) := {A ⊂ N : |A| = k} and A
(k)
x := {A ⊂ N : |A| = k, x 6∈

A}. Write

Bℓ := {B ⊂ [1, n− 1] ∩ N : |B| = ℓ},

B
(1)
ℓ := {B ∈ Bℓ : |i− j| ≥ 2 for all i, j ∈ B with i 6= j}

and B
(2)
ℓ := Bℓ \ B

(1)
ℓ . Then according to the decompositions Bℓ = B

(1)
ℓ ∪ B

(2)
ℓ and A(k) =

A
(k)
x ∪ [A(k) \ A

(k)
x ], we have

{Wn(x) = ℓ,
−→
V n(x) ∈ A(k)

x } = {Wn(x) ∈ B
(1)
ℓ ,

−→
V n(x) ∈ A(k)

x },

{Wn(x) = ℓ,
−→
V n(x) ∈ A(k) \ A(k)

x } = {Wn(x) ∈ B
(2)
ℓ ,

−→
V n(x) ∈ A(k)}

∪ {Wn(x) ∈ B
(1)
ℓ , ξn−1 = ξn = x,

−→
V n(x) ∈ A(k)}.

So we can write P(Wn(x) = ℓ,#
−→
V n(x) = k) = I1(x) + I2(x) with

I1(x) := P(Wn(x) ∈ B
(1)
ℓ ,

−→
V n(x) ∈ A(k)

x ),

I2(x) := P(Wn(x) ∈ B
(2)
ℓ ,

−→
V n(x) ∈ A(k)) + P(Wn(x) ∈ B

(1)
ℓ , ξn−1 = ξn = x,

−→
V n(x) ∈ A(k)).

Then we have E
−→
Rn, k, ℓ =

∑

x

I1(x) +
∑

x

I2(x).

Since #B
(1)
ℓ = Cℓn−ℓ ≤ nℓ and #B

(2)
ℓ = Cℓn−1 − Cℓn−ℓ ≤ λℓ · nℓ−1 where λℓ is a constant

depending only on ℓ, we have

∑

x

I2(x) ≤
∑

x

[P(Wn(x) ∈ B
(2)
ℓ ) + P(Wn(x) ∈ B

(1)
ℓ , ξn−1 = ξn = x)]

≤ #B
(2)
ℓ ·

∑

x

πℓx(1 − πx)
n−1−ℓ +#B

(1)
ℓ ·

∑

x

πℓ+1
x (1− πx)

n−1−ℓ

≤ λℓ · n
ℓ−1Sℓ(n− 1) + nℓSℓ+1(n).

By Lemma 3.4, we have Sℓ(n− 1) = O
( ζ(n)
nℓ

)

and Sℓ+1(n) = O
( ζ(n)
nℓ+1

)

. So

∑

x

I2(x) = O
(ζ(n)

n

)

.

Now we turn to estimate
∑

x

I1(x). Let B ∈ B
(1)
ℓ . By our construction, Wn(x) = B and

−→
V n(x) ∈ A

(k)
x are just to say: ξi = x, ∀i ∈ B and {ξi+1 : i ∈ B} ∈ A

(k)
x , ξj 6= x, ∀j ∈ {i ≤

n− 1 : i 6∈ B, i− 1 6∈ B}. Note that {ξi+1, i ∈ B} has the same distribution with {ξi, i ≤ ℓ} and

that #{j ∈ [1, n− 1] ∩ N : j 6∈ B, j − 1 6∈ B} = n− 1− 2ℓ+ 1{n−1∈B}. Hence we have

1 ≥
P(Wn(x) = B,

−→
V n(x) ∈ A

(k)
x )

πℓx · (1− πx)n−1−2ℓ · P({ξi : i ≤ ℓ} ∈ A
(k)
x )

≥ 1− πx. (3.7)



72 X. X. Chen, J. S. Xie and J. G. Ying

Write ∆x := P({ξi : i ≤ ℓ} ∈ A(k)) − P({ξi : i ≤ ℓ} ∈ A
(k)
x ). Then by P(Rℓ = k) = P({ξi : i ≤

ℓ} ∈ A(k)), we have

P({ξi : i ≤ ℓ} ∈ A(k)
x ) = P(Rℓ = k)−∆x.

Furthermore, by #B
(1)
ℓ = Cℓn−ℓ and the first inequality of (3.7), we get

I1(x) =
∑

B∈B
(1)
ℓ

P(Wn(x) = B,
−→
V n(x) ∈ A(k)

x )

≤ Cℓn−ℓ · π
ℓ
x(1 − πx)

n−1−2ℓ · P({ξi : i ≤ ℓ} ∈ A(k)
x )

= Cℓn−ℓ · π
ℓ
x(1 − πx)

n−1−2ℓ[P(Rℓ = k)−∆x].

Since 0 ≤ ∆x ≤ P(x ∈ {ξi : i ≤ ℓ}) ≤ ℓπx, we have

0 ≤
∑

x

Cℓn−ℓ · π
ℓ
x(1 − πx)

n−1−2ℓ∆x ≤ ℓCℓn−ℓ

∑

x

πℓ+1
x (1 − πx)

n−1−2ℓ.

By Lemma 3.4, we have
∑

x

πℓ+1
x (1 − πx)

n−1−2ℓ = O( ζ(n)
nℓ+1 ). So

∑

x

Cℓn−ℓ · π
ℓ
x(1− πx)

n−1−2ℓ∆x = O
(ζ(n)

n

)

.

On the other hand, applying Lemma 3.4 again, we get

∑

x

πℓx(1− πx)
n−1−2ℓ = γΓ(ℓ− γ) ·

ζ(n)

nℓ
· [1 + o(1)].

Therefore,

∑

x

I1(x) ≤ O
(ζ(n)

n

)

+
∑

x

Cℓn−ℓ · π
ℓ
x(1− πx)

n−1−2ℓ
P(Rℓ = k)

≤
γΓ(ℓ− γ)

ℓ!
· P(Rℓ = k) · ζ(n) · [1 + o(1)].

In the same way, we can apply the second inequality of (3.7) to get

∑

x

I1(x) ≥
γΓ(ℓ− γ)

ℓ!
· P(Rℓ = k) · ζ(n) · [1 + o(1)].

Hence we finish the proof of the lemma.

Lemma 3.7 For fixed 1 ≤ k ≤ ℓ, Var (
−→
Rn, k, ℓ) ≤ [1 + o(1)] · E

−→
Rn, k, ℓ.

Proof The proof is similar to that of Lemmas 3.5–3.6. Here we just give a sketched proof

by outlining the main differences.

Let x, y ∈ N with x 6= y. Recall A(k) := {A ⊂ N : |A| = k} in the proof of Lemma 3.6.

Define A
(k)
x,y := {A ⊂ N : |A| = k, {x, y} ∩ A = ∅}. Write

Dℓ := {(B,C) : B ∪ C ⊂ [1, n− 1] ∩ N, B ∩ C = ∅, |B| = |C| = ℓ},

D
(1)
ℓ := {(B,C) ∈ Dℓ : |i− j| ≥ 2 for all i, j ∈ B ∪ C with i 6= j}

and D
(2)
ℓ := Dℓ \ D

(1)
ℓ . Then we have

P(Wn(x) =Wn(y) = ℓ,#
−→
V n(x) = #

−→
V n(y) = k) = J1(x, y) + J2(x, y),
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where

J1(x, y) = P((Wn(x),Wn(y)) ∈ D
(1)
ℓ , {

−→
V n(x),

−→
V n(y)} ⊂ A(k)

x,y),

J2(x, y) = P((Wn(x),Wn(y)) ∈ D
(2)
ℓ , {

−→
V n(x),

−→
V n(y)} ⊂ A(k))

+ P((Wn(x),Wn(y)) ∈ D
(1)
ℓ , {ξn−1, ξn} ⊂ {x, y}, {

−→
V n(x),

−→
V n(y)} ⊂ A(k)).

Furthermore,

E(
−→
R 2
n, k, ℓ −

−→
Rn, k, ℓ) =

∑

x 6=y

P(Wn(x) =Wn(y) = ℓ,#
−→
V n(x) = #

−→
V n(y) = k)

=
∑

x 6=y

J1(x, y) +
∑

x 6=y

J2(x, y).

A direct calculation gives

#D
(1)
ℓ = C2ℓ

n−2ℓC
ℓ
2ℓ =

[

1 + O
( 1

n

)]

·
n2ℓ

(ℓ!)2
and #D

(2)
ℓ = C2ℓ

n−1C
ℓ
2ℓ − C2ℓ

n−2ℓC
ℓ
2ℓ ≤ λℓn

2ℓ−1,

where λℓ > 0 is a constant depending only on ℓ. So in view of Lemmas 3.4 and 3.6,

∑

x 6=y

J2(x, y) ≤ #D
(2)
ℓ ·

∑

x 6=y

πℓxπ
ℓ
y(1− πx − πy)

n−1−2ℓ

+#D
(1)
ℓ ·

∑

x 6=y

πℓxπ
ℓ
y(πx + πy)(1 − πx − πy)

n−1−2ℓ

≤ λℓn
2ℓ−1 · Sℓ(n− 1− ℓ)2 + 2n2ℓ · Sℓ+1(n− ℓ)Sℓ(n− 1− ℓ)

≤ O
(ζ(n)2

n

)

= o(1) · E
−→
Rn, k, ℓ.

Since

0 ≤ P({ξi : i ≤ ℓ} ∈ A(k))− P({ξi : i ≤ ℓ} ∈ A(k)
x,y) ≤ ℓ(πx + πy),

we write ∆x,y := P({ξi : i ≤ ℓ} ∈ A(k))2 − P({ξi : i ≤ ℓ} ∈ A
(k)
x,y)2 and get

0 ≤
∑

x 6=y

πℓxπ
ℓ
y(1− πx − πy)

n−1−4ℓ∆x,y ≤
∑

x 6=y

πℓxπ
ℓ
y(1− πx − πy)

n−1−4ℓ · 2ℓ(πx + πy)

≤ 4ℓSℓ+1(n− 3ℓ)Sℓ(n− 1− 3ℓ)

= O
( ζ(n)2

n2ℓ+1

)

.

So, we can apply Lemmas 3.4 and 3.6 again to get

∑

x 6=y

J1(x, y) ≤ #D
(1)
ℓ ·

∑

x 6=y

πℓxπ
ℓ
y(1 − πx − πy)

n−1−4ℓ[P({ξi : i ≤ ℓ} ∈ A(k))2 −∆x,y]

=
1 +O(n−1)

(ℓ!)2
n2ℓ ·

[

Sℓ(n− 1− 3ℓ)2 · P(Rℓ = k)2 +O
( ζ(n)2

n2ℓ+1

)]

= [1 + o(1)](E
−→
Rn, k, ℓ)

2,

and
∑

x 6=y

J1(x, y) ≥ #D
(1)
ℓ ·

∑

x 6=y

πℓxπ
ℓ
y(1− πx − πy)

n−4ℓ[P({ξi : i ≤ ℓ} ∈ A(k))2 −∆x,y]
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= [1 + o(1)](E
−→
Rn, k, ℓ)

2.

Therefore, we have E(
−→
R 2
n, k, ℓ −

−→
Rn, k, ℓ) = [1 + o(1)](E

−→
Rn, k, ℓ)

2 and complete the proof of the

lemma.

4 Proofs for the Main Theorems 2.1–2.4

First we state the following lemma. It plays an important role in the proof of the main

theorems.

Lemma 4.1 Let Sn be a sequence of non-negative increasing random variables. Suppose

ESn → +∞ and M := sup{E(Sn+1 − Sn) : n ≥ 1} < +∞. Suppose that there exist constants

C, δ > 0 such that

Var (Sn) ≤ C · (ESn)
2−δ, n ≥ 1 (4.1)

or even more weakly

Var (Sn) ≤
C · (ESn)2

(logESn)1+δ
, n ≥ 1. (4.2)

Then lim
n→∞

Sn

ESn
= 1 almost surely.

Since the proof of the above lemma is in fact contained implicitly in [13] and is indeed an

easy application of Borel-Cantelli lemma, we omit the details here.

Now we present the proofs of Theorems 2.1–2.4. The main idea is to exploit Lemma 4.1.

We split the proofs into 5 parts.

(A) By the construction of the range-renewal process (Rn : n ≥ 1), we have 0 ≤ Rn+1−Rn ≤

1 for all n ≥ 1. Using Lemmas 3.1 and 4.1, we prove Theorem 2.1.

(B) Since Rn,k is not increasing in n, we turn to Rn,k+. By Lemmas 3.3–3.4,

ERn,k+ = ERn −
k−1
∑

ℓ=1

ERn,ℓ =
[

1 + o(1)
]

·
Γ(k − γ)

(k − 1)!
· ζ(n).

In view of Cauchy’s inequality and Lemmas 3.1, 3.3–3.4 and 3.7, we have

Var (Rn, k+) = Var
(

Rn −
k−1
∑

ℓ=1

Rn, ℓ

)

≤ k ·
[

Var (Rn) +

k−1
∑

ℓ=1

Var (Rn, ℓ)
]

≤ k ·
[

ERn + [1 + o(1)] ·
k−1
∑

ℓ=1

ERn, ℓ

]

= O(ζ(n)) = O(ERn,k+). (4.3)

So
Rn,k+

ERn,k+

a.s.
−−−−→
n→∞

1 by Lemma 4.1. This proves the first result of Theorem 2.2.

(C) By Lemmas 3.3–3.4, lim
n→∞

ERn, k

ERn
= rk(γ) and lim

n→∞

ERn, k+

ERn
= rk+(γ) :=

∑

ℓ≥k

rℓ(γ).

Combining this with the SLLNs for Rn and Rn,k+, we have

lim
n→∞

Rn,k

Rn
= lim

n→∞

Rn,k+ −Rn,(k+1)+

Rn
= lim
n→∞

ERn,k+

ERn
− lim
n→∞

ERn,(k+1)+

ERn
= rk(γ)

almost surely, which implies Theorem 2.3 immediately.
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(D) Write
−→
Rn, k+, ℓ+ := Rn−1 −

∑

i<k

∑

j<ℓ

−→
Rn, i, j . Then using Lemmas 3.6–3.7, we can get

Var (
−→
Rn, k+, ℓ+) = O(E

−→
Rn, k+, ℓ+) as (4.3). Hence lim

n→∞

−→
Rn, k+, ℓ+

E
−→
Rn, k+, ℓ+

= 1 almost surely by Lemma

4.1. Combining this with Lemmas 3.3 and 3.6 and noting

−→
Rn, k, ℓ =

−→
Rn, k+, ℓ+ −

−→
Rn, (k+1)+, ℓ+ −

−→
Rn, k+, (ℓ−1)+ +

−→
Rn, (k+1)+, (ℓ−1)+,

we obtain almost surely

lim
n→∞

−→
Rn, k, ℓ

Rn−1
= lim

n→∞

E
−→
Rn, k, ℓ

ERn−1
= rℓ(γ) · P(Rℓ = k).

Note that
∞
∑

k=1

∞
∑

ℓ=k

−→
Rn, k, ℓ

Rn−1
= 1 and

∞
∑

k=1

∞
∑

ℓ=k

rℓ(γ) · P(Rℓ = k) = 1. By Scheffés’ theorem (see [12,

pp. 101]), we have almost surely

lim
n→∞

−→
Rn,k

Rn
= lim
n→∞

∞
∑

ℓ=k

−→
Rn, k, ℓ

Rn−1
=

∞
∑

ℓ=k

lim
n→∞

−→
Rn, k, ℓ

Rn−1
=

∞
∑

ℓ=k

rℓ(γ) · P(Rℓ = k),

which implies the first result of Theorem 2.4. Then we can establish an SLLN of Dvoretzky-

Erdös’ type for (
−→
Rn,k, n ≥ 1), and prove the second statement of Theorem 2.2.

(E) The proof for the results of the induced undirected graph Gn is omitted here since it is

rather similar to the directed graph case.

By (A)–(E), we finish the proofs of Theorems 2.1–2.4.

5 Discussions

In the first two subsections, we will discuss the critical cases of the distribution π being

0-regular and 1-regular respectively. Then in the last subsection, we will propose a conjecture

concerning the asymptotic degree distributions of our unweighted random graphs in the case of

π being γ-regular with γ ∈ (0, 1).

Recall (3.4) for the definition of Sℓ(n). Similarly we have the following lemma.

Lemma 5.1 Let ℓ, d ∈ N be given.

(1) If γ = 0 then ERn = ζ(n)[1 + o(1)] and Sℓ(n) =
(ℓ−1)!
nℓ−1 · ζ′(n) · [1 + o(1)].

(2) If γ = 1, letting g and ψ be as introduced in Definition 2.4, then

ERn = ‖g‖1 · ζ(n) · ψ(n) · [1 + o(1)],

S1(n) =
‖g‖1
n

· ζ(n) · ψ(n) · [1 + o(1)],

Sℓ(n) =
(ℓ − 2)!

nℓ
· ζ(n) · [1 + o(1)], ℓ ≥ 2.

(3) For γ = 0 or 1, we always have Sℓ(n− d) = Sℓ(n) ·
[

1 +O
(

1
n

)]

.

When γ = 1, we have ERn = ‖g‖1 · ζ(n) · ψ(n) · [1 + o(1)]. Here lim
n

log ζ(n)
log n = 1 and

lim
n

ERn

n
= 0. Therefore, in this critical case, lim

n→∞

logψ(n)
log n = 0.

It is also notable that Lemmas 3.5 and 3.7 still hold for the critical cases γ ∈ {0, 1}.
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5.1 0-Regular case: γ(π) = 0

In the same spirit, we can prove the following SLLNs:

lim
n→∞

Rn, ℓ+

ERn, ℓ+
= 1 and lim

n→∞

−→
Rn, k+, ℓ+

E
−→
Rn, k+, ℓ+

= 1.

A careful calculation reveals that

ERn, ℓ+ = [1 + o(1)] · ERn and E
−→
Rn, k+, ℓ+ = [1 + o(1)] · ERn,

which implies lim
n→∞

Rn, ℓ+

Rn
= 1 and lim

n→∞

−→
Rn, k+, ℓ+

Rn
= 1. Hence almost surely we have for any

fixed ℓ ∈ N,

lim
n→∞

Rn, ℓ

Rn
= 0, lim

n→∞

−→
Rn, ℓ

Rn
= 0 and lim

n→∞

Rn, ℓ

Rn
= 0.

5.2 1-Regular case: γ(π) = 1

Since ERn = O(ζ(n) · ψ(n)) and O(ζ(n)) = O(ERn, ℓ+) for ℓ ≥ 2, we have

lim
n→∞

logERn
logn

= 1, (5.1)

lim
n→∞

logERn, ℓ+
logn

= 1, ℓ ≥ 2. (5.2)

Therefore, we can derive easily that Var (Rn, ℓ+) ≤ C · (ERn, ℓ+)
3
2 for some constant C > 0

(depending possibly on ℓ ≥ 2), which yields an SLLN for Rn, ℓ+ by our Lemma 4.1. In the same

spirit, we have also an SLLN for
−→
Rn, k+, ℓ+.

Now a detailed calculation of ERn, ℓ+ and E
−→
Rn, k+, ℓ+ reveals the following result:

lim
n→∞

Rn, 1

Rn
= 1 and lim

n→∞

Rn, ℓ

Rn
= 0, ℓ ≥ 2.

And a re-scaling yields

lim
n→∞

Rn, ℓ

Rn,2+
=

1

ℓ · (ℓ − 1)
, ℓ ≥ 2. (5.3)

Furthermore, for any k ≥ 2,

lim
n→∞

−→
Rn, k

Rn, 2+
= −→r k(π) :=

∞
∑

ℓ=k

P(Rℓ = k)

ℓ · (ℓ− 1)
,

lim
n→∞

Rn, k

Rn, 2+
= rk(π) :=

∞
∑

ℓ=
⌊

k+1
2

⌋

P(R2ℓ = k)

ℓ · (ℓ− 1)
.

5.3 A conjecture

As mentioned in Section 2, we conjecture here that, when π is γ-regular with γ ∈ (0, 1),

the out degrees of
−→
Gn (and of Gn respectively) exhibit asymptotically power law distributions

with exponent 2. More precisely, {−→r k(π)}
∞
k=1 and {rk(π)}

∞
k=1 should be 1

2 -regular and

lim
k→∞

log−→r k(π)

log( 1
k
)

= lim
k→∞

log rk(π)

log( 1
k
)

= 2, (5.4)
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whence the graphs
−→
Gn and Gn are asymptotically scale-free (see [30, pp. 12]). A heuristic

deduction is as the following. Define for each k ≥ 1,

Tk := inf{n ≥ 1 : Rn = k}. (5.5)

Clearly Rn < k if and only if Tk > n; here we always have Tk > k − 1. Hence

−→r k(π) =
∞
∑

ℓ=k

rℓ(γ) · P(Rℓ = k) =

∞
∑

ℓ=k

rℓ(γ) · E[1{Tk≤ℓ<Tk+1}]

= E

∞
∑

ℓ=k

rℓ(γ) · 1{Tk≤ℓ<Tk+1} = E[r
Tk+

(γ)− r
Tk+1+

(γ)].

Therefore

−→r k(π) = E[r
Tk+

(γ)]− E[r
Tk+1+

(γ)]. (5.6)

Now we assume πx = C
xα , x ∈ N for simplicity, where α = 1

γ
. We know that Rn is of order nγ

as n → ∞; it is natural to believe that Tk should be of order kα as k → ∞; and the difference

∆Tk := Tk+1 − Tk should be of the same order as T 1−γ
k , which comes from the following

observation: (n+ d)γ − nγ = 1 implies d ≈ α · n1−γ as n→ ∞. It is easy to know

r
ℓ+

=

ℓ−1
∏

j=1

(j − γ)

(ℓ− 1)!
= O(ℓ−γ)

for large enough ℓ. And

T
−γ
k − T

−γ
k+1 = T

−γ
k ·

[

1−
(

1 +
∆Tk
Tk

)−γ]

≈ γ · T−γ
k ·

(∆Tk
Tk

)

would be of the same order as T−2γ
k . Whence −→r k(π) should be of order (kα)−2γ = k−2 as

k → ∞. The same heuristic deduction also works for rk(π).
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