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Abstract This paper is concerned with the spreading speeds of time dependent partially

degenerate reaction-diffusion systems with monostable nonlinearity. By using the principal

Lyapunov exponent theory, the author first proves the existence, uniqueness and stability

of spatially homogeneous entire positive solution for time dependent partially degenerate

reaction-diffusion system. Then the author shows that such system has a finite spreading

speed interval in any direction and there is a spreading speed for the partially degenerate

system under certain conditions. The author also applies these results to a time dependent

partially degenerate epidemic model.
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1 Introduction

Reaction-diffusion models have been widely used to describe the spatial dynamics of popu-

lations in biology and ecology, for example, see the benthic-pelgic population model in [14] and

man-environment-man epidemics model in [6–7] and so on. In these two models, at least one

diffusion coefficients of population are zero and we usually call such models as partially degen-

erate reaction-diffusion system, in which some diffusion coefficients are zero. Spreading speeds

and traveling waves of partially degenerate reaction-diffusion system are two important issues

in the study of biological invasions and disease spread and have attracted a lot of attention, see

[2, 7–8, 11–12, 26, 28–32] and references therein.

Due to the presence of various temporal and spatial in many biological models, spreading

speeds and traveling wave solution for general time and\or space dependent reaction-diffusion

models have been widely investigated in many works. For example, see [1, 4–5, 13, 16–17, 19–

24, 27] and references therein. Recently, Bao et al. [4] have introduced the notion of spreading

speeds for general time dependent cooperative systems with different dispersal types and see

[3] for the existence and stability of generalized transition waves for time-dependent reaction-

diffusion systems. However, in general time dependent case, there is little understanding about

the spatial spread and front propagation dynamics for partially degenerate reaction-diffusion
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systems. The objective of the current paper is to study the spatial spreading speed of partially

degenerate reaction-diffusion systems with general time dependent coefficients.

Consider the following time dependent partially degenerate reaction-diffusion system:






∂u1

∂t
(t, x) = ∆u1(t, x) + f(t, u1, u2),

∂u2

∂t
(t, x) = g(t, u1, u2),

(t, x) ∈ R× R
N , (1.1)

where u1(t, x) and u2(t, x) are the densities of two species at time t ∈ R and location x ∈ R
N .

The reaction terms of (1.1) satisfy the following standard assumptions:

(H1) f, g : R× R
2
+ → R

2, f(t,u) and g(t,u) are C2 in u, Hölder continuous in t, f(t,0) =

g(t,0).

(H2) There exists a positive vector M = (M1,M2) such that f(t,M) ≤ 0 and g(t,M) ≤ 0

for any t ∈ R. Moreover, fu2
(t, u1, u2) > 0 and gu1

(t, u1, u2) > 0 for any t ∈ R and (u1, u2) ∈

[0,M1]× [0,M2].

(H3) F(t,u) := (f(t,u), g(t,u)) is strictly subhomogeneous on [0,M1]× [0,M2] in the sense

that F(t, µu) > µF(t,u) for any t ∈ R, µ ∈ (0, 1), u ∈ [0,M1] × [0,M2] with ui > 0 for all

i = 1, 2.

Let C = BC(RN ,R2) be the set of all bounded and continuous functions from R
N to R

2.

For a constant vector in R
2
+, define [0, r]C := {u ∈ C : 0 ≤ u(x) ≤ r, ∀x ∈ R

N}. Clearly,

C+ = {u ∈ C : u(x) ≥ 0} is a positive cone of C. Let C++ := {u ∈ C : u(x) > 0, ∀x ∈ R
N}.

By general semigroup theory (see [18]), for any u0(·) ∈ C, (1.1) has a unique (local) solution

u(t, x;u0) with u(0, x;u0) = u0. By comparison principle, if u0(·) ∈ C+, then u(t, x;u0) exists

for all t ≥ 0 and u(t, ·;u0) ∈ C+.

Consider the linearization of (1.1) at 0, namely,





∂u1

∂t
= ∆u1(t, x) + fu1

(t,0)u1 + fu2
(t,0)u2,

∂u2

∂t
= gu1

(t,0)u1 + gu2
(t,0)u2.

(1.2)

For any µ ∈ R and ξ ∈ SN−1, the solution u(t, x) of (1.2) with the initial value u(0, x) = e−µx·ξα

and α ∈ R
2 is of the form u(t, x) = e−µx·ξη(t), where η(t) satisfies the following system of

ordinary differential equations






dη1
dt

= µ2 + fu1
(t,0)η1(t) + fu2

(t,0)η2(t),

dη2
dt

= gu1
(t,0)η1 + gu2

(t,0)η2.

(1.3)

Let

Aµ(t) =

(
µ2 + fu1

(t,0) fu2
(t,0)

gu1
(t,0) gu2

(t,0)

)
.

By (H2), we have fu2
(t,0) > 0 and gu1

(t,0) > 0 for all t ∈ R. Then the matrix Aµ(t) is

quasi-positive for all t ∈ R. Moreover, we assume that

(H4) The matrix Aµ(t) is strongly irreducible and unique ergodic.



Partially Degenerate Reaction-Diffusion Systems 81

By the definition of principle Lyapunov exponent and the principal Floquent bundle, also

see Definition 2.2, there is a principle Lyapunov exponent λ(Aµ) of (1.3) for any µ ≥ 0 and

{span(φ(σtA
µ))}t∈R is the principal Floquent bundle of (1.3) associated to λ(Aµ).

Let A(t) := A0(t) for µ = 0. Following from Theorem 2.2, if λ(A) > 0, (1.1) has a unique,

globally stable, spatially homogeneous entire solution u∗(t). Thus we consider the spreading

speeds of (1.1) from u∗(t) to 0. Roughly, for any given ξ ∈ SN−1, a finite interval [c∗inf , c
∗
sup] is

called the spreading speed interval of (1.1) from u∗ to 0 in the direction of ξ if for any u0 ∈ C+

satisfying 0 ≤ u0 ≪ u∗(0, ·), u0(x) = 0 for x · ξ ≫ 1 and lim inf
x·ξ→−∞

u0(x) ≫ 0, there holds

lim sup
t→∞,x·ξ≤ct

|u(t, x;u0)− u∗(t, x)| = 0, ∀ c < c∗inf ,

lim sup
t→∞,x·ξ≥ct

|u(t, x;u0)| = 0, ∀ c > c∗sup,

see Definition 3.1 for details.

Throughout this paper, we assume (H1)–(H4) and λ(A) > 0. Among others, on the spread-

ing speeds of (1.1), we prove

• (1.1) has a finite spreading speed interval [c∗inf(ξ), c
∗
sup(ξ)].

• c∗(ξ) := c∗inf(ξ) = c∗sup(ξ) = inf
µ>0

λ(Aµ)
µ

is the spreading speed of (1.1).

• The spreading speed c∗(ξ) is of some important spreading features (see Theorem 3.3 for

details).

• Let c∗+ = inf
µ>0

λ(Aµ)
µ

be the rightward spreading speed of (1.1). Then there exists c∗− =

inf
µ>0

λ(A−µ)
µ

being the leftward spreading speed of (1.1). Moreover, c∗+ + c∗− > 0.

We point out that the spreading speed and traveling wave solution of (1.1) with time periodic

have been studied in [12] for monostable nonlinearity case and in [30] for bistable nonlinearity

case. For system (1.1) with monostable nonlinearity in space periodic habitat, Wu et al. [29]

has established the existence of spreading speed and Wang and Zhao [28] proved the existence

and stability of pulsating wave to such partially degenerate reaction-diffusion system. Here,

we establish the existence of spreading speed of time dependent partially degenerate reaction-

diffusion system (1.1) with monostable nonlinearity and apply the results to a time dependent

epidemic model. The existence and stability of generalized transition wave solution of (1.1) will

be studied somewhere else.

The rest of this paper is organized as follows. In Section 2, we will present the Lyapunov

exponent theory and prove the existence of entire solution for system (1.1). In Section 3, we

will establish the existence of the spreading speed and prove some important spreading features.

We apply the results to a time dependent epidemic model in Section 4.

2 The Lyapunov Exponent Theory and Entire Solution

In this section, we present the principle Lyapunov exponent theory for time dependent linear

system and study entire positive solution of (1.1).
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We first define the sub- and supersolution of (1.1) and prove the comparison principle. For

any given u0(x) := (u10, u20) ∈ C, consider the following initial value problem:





∂u1

∂t
= ∆u1(t, x) + f(t, u1, u2),

∂u1

∂t
= g(t, u1, u2), t > 0, x ∈ R

N ,

ui(0, x) = ui0(x), i = 1, 2, x ∈ R
N .

(2.1)

Definition 2.1 A continuous vector-valued function (u1, u2) is called a supersolution (sub-

solution) of (2.1) on R × R
N , if ui(t, ·) ∈ C2(RN ) for any t ∈ (0,+∞), ui(x, ·) ∈ C1(0,+∞)

for any x ∈ R
N and (u1(t, x), u2(t, x)) satisfies





∂u1

∂t
−∆u1(t, x)− f(t, u1, u2) ≥ 0 (≤ 0),

∂u1

∂t
− g(t, u1, u2) ≥ 0 (≤ 0)

for any (t, x) ∈ R× R
N .

Theorem 2.1 Recall that u±(t, x) ∈ [0,M]C are supersolution and subsolution of (2.1) on

[0,∞), respectively, and satisfy u+(0, x) ≥ u−(0, x) for any x ∈ R
N . Then one has u+(t, x) ≥

u−(t, x) for all t ≥ 0 and x ∈ R.

Proof Let C = BC(R,R2) be the set of all bounded and continuous functions from R to

R
2. It is easy to see that C+ := {u ∈ C : u(x) ≥ 0, ∀x ∈ R

N} is a positive cone of C. Let T1(t)

be a strongly continuous semigroup on C generated by the operator −∂u1

∂t
+∆u1. We define

[F(u)](x) = F(t,u) =

(
f(t, u1, u2)
g(t, u1, u2)

)
and T (t) =

(
T1(t) 0
0 1

)
.

Then a mild solution of (2.1) on t ∈ [0, b) with the initial value u0 ∈ [0,M]C means a continuous

function u(t, x;u0) : [0, b) → X satisfying the following integral system

u(t, ·) = T (t)u0 +

∫ t

0

T (t− s)F(s,u)ds for 0 < b ≤ +∞.

Let u±(t)(x) := u±(t, x). Due to the positivity of T (t), we have

u+(t) ≥ T (t)u+
0 +

∫ t

0

T (t− s)F(s,u+(s, ·))ds

and

u−(t) ≤ T (t)u−
0 +

∫ t

0

T (t− s)F(s,u−(s, ·))ds

for all 0 ≤ t < +∞. Using (H2), we have that F(t,u) is quasi-monotone on [0,M]C in the sense

that

lim
h→0+

1

h
dist(φ− ψ + h[F(t, φ)− F(t, ψ)] : C+) = 0

for all φ, ψ ∈ [0,M]C with φ ≥ ψ.
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Applying [15, Corollary 5] with S(t, s) = T (t, s) = T (t− s) and B(t, φ) = F(t, φ), we obtain

that u+(t, x) ≥ u−(t, x) for all t > 0 and x ∈ R
N . In particular, for any u0 ∈ [0,M]C with

u−(0, x) ≤ u0(x) ≤ u+(0, x) for all x ∈ R, (2.1) has a unique mild solution u(t, x;u0) on t > 0

satisfying 0 ≤ u−(t, x) ≤ u(t, x;u0) ≤ u+(t, x) ≤ M for t > 0 and x ∈ R
N .

Next, we present the principle Lyapunov exponent theory for time dependent linear system.

Consider the following ordinary differential system




∂u1

∂t
= fu1

(t,0)u1 + fu2
(t,0)u2,

∂u2

∂t
= gu1

(t,0)u1 + gu2
(t,0)u2

(2.2)

and let

A(t) =

(
fu1

(t,0) fu2
(t,0)

gu1
(t,0) gu2

(t,0)

)
.

For each u0 ∈ R
2 and s ∈ R, (2.2) has a unique solution u(t; s,u0) with u(s; s,u0) = u0. Put

U(t, A)u0 = u(t; 0,u0) for any u0 ∈ R
2. By (H2), A(t) is quasi-positive for any t ∈ R.

Definition 2.2 Assume that A(t) is strongly irreducible and unique ergodic. Then λ(A) =

lim
t→∞

1
t
ln ‖U(t, A)‖ is called the principal Lyapunov exponent of (2.2) or A(·) and there is prin-

cipal Floquet bundle {span(φ(σtA))}t∈R of (2.2) or A(·) associated to λ(A).

Let

κ(A) = 〈A(0)φ(A),φ(A)〉, (2.3)

where 〈·, ·〉 denotes the standard inner product of R2. By [25, Proposition 4.10], the principal

Lyapunov exponent λ(A) can be calculated as follows

λ(A) = lim
t−s→∞

1

t− s

∫ t

s

κ(στA)dτ. (2.4)

For any µ ∈ R, consider the following system of ordinary differential equations






dη1
dt

= µ2 + fu1
(t,0)η1(t) + fu2

(t,0)η2(t),

dη2
dt

= gu1
(t,0)η1 + gu2

(t,0)η2

(2.5)

and

Aµ(t) =

(
µ2 + fu1

(t,0) fu2
(t,0)

gu1
(t,0) gu2

(t,0)

)
.

By (H2), we have fu2
(t,0) > 0 and gu1

(t,0) > 0 for all t ∈ R. Here the matrix Aµ(t) is

quasi-positive and strongly irreducible for all t ∈ R. Assume that Aµ(t) is unique ergodic, then

by Definition 2.2, there is a principle Lyapunov exponent λ(Aµ) of (2.5) for any µ ≥ 0 and

{span(φ(σtA
µ))}t∈R is the principal Floquent bundle of (2.5) associated to λ(Aµ).

Lemma 2.1 (1) For any given ξ ∈ SN−1 and µ > 0,

u(t, x) = exp
(
− µ

(
x · ξ −

∫ t

s
κ(στA

µ)dτ

µ

))
φ(σtA

µ)
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is a solution of (1.3).

(2) Let λ(µ,A) = λ(Aµ). For any ξ ∈ SN−1, if λ(A) > 0, then there exists a µ∗ > 0 such

that

inf
µ>0

λ(µ,A)

µ
=
λ(µ∗, A)

µ∗
(2.6)

and

λ(µ,A)

µ
≥
λ(µ∗, A)

µ∗
for 0 < µ < µ∗. (2.7)

Proof (1) It follows from the definition of principal Lyapunov exponent λ(µ,A) and the

principal Floquent bundle {span(φ(σtA
µ))}t∈R. (2) follows from [4, Lemma 3.4].

For given u1(·),u2(·) ∈ C++, if there is α0 ≥ 1 such that

1

α0
u1(x) ≤ u2(x) ≤ α0u1(x), ∀x ∈ R,

then the so-called part metric ρ(u1,u2) between u1 and u2 is defined as

ρ(u1,u2) = inf
{
lnα | α ≥ 1,

1

α1
u1(·) ≤ u2(·) ≤ αu1(·)

}
.

Lemma 2.2 For any u1,u2 ∈ C++, ρ(u(t, ·;u1),u(t, ·;u2)) is non-increasing in t. More-

over, if ε ≤ u1(·) ≤ M, ε ≤ u2(·) ≤ M for all x ∈ R
N and ρ(u1,u2) ≥ σ for any positive

constants ε, σ and M with ε < M and σ ≤ ln M
ε
, then there is δ > 0 such that

ρ(u(τ, ·;u1),u(τ, ·;u2)) ≤ ρ(u1,u2)− δ for any τ > 0.

This lemma can be proved by the similar arguments as those in [10, Proposition 3.4] and

we omit it here.

Theorem 2.2 Assume λ(A) > 0. Then there is a unique spatially homogeneous entire

solution u∗(t) of (1.1), which is globally stable in the sense that for any u0 ∈ [0,M]C \ {0},

lim
t→∞

u(t+ s; s,u0) = u∗(t+ s) uniformly in s ∈ R.

Proof First, consider

∂u

∂t
= F(t,u), t ∈ R. (2.8)

For any u0 ∈ R
2, let u(t; s,u0) be the solution of (2.8) with u(s; s,u0) = u0. We prove that

(2.8) has an entire solution u∗(t) with inf
t∈R,i=1,2

u∗i (t) > 0. By Lemma 2.1(1), e
∫

t

s
κ(στA)dτφ(σtA)

is the solution of (2.2). For any given τ2 > τ1 > 0, there exists β ∈ R
2 with 0 < βi ≪ 1 such

that F(t,u) ≥ (1 − τ1)A(t)u − τ2u for any u ∈ [0, β]. Since λ(A) > 0, for any τ1 and τ2 small

enough, there exists T > 0 such that

∫ s+T

s

(1 − τ1)κ(στA)dτ > τ2T.
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Note that e
∫

t

s
(1−τ1)κ(στA)dτ−τ2(t−s)φ(σtA) is the solution of

du

dt
= (1− τ1)A(t)u− τ2u.

For any u0 ≫ 0, there exists ρ > 0 such that u0 ≥ φ(σsA) for any x ∈ R
N . Then by the

comparison principle, we have

u(t; s,u0) ≥ e
∫

t

s
(1−τ1)κ(στA)dτ−τ2(t−s)φ(σtA) > 0 (2.9)

for any t ≥ s. By (H2), F(t,u) < 0 for any t ∈ R and u(t; s,M) ≥ M. Then u(t; s,M) ≤

M for t > s. Let u∗(t) = u(t;−nT,M), t ≥ −nT. Then

u(t;−(n+ 1)T,u0) < un+1(t) < un(t), t ≥ −nT.

Let

u∗(t) = lim
n→∞

un(t).

Then u∗(t) is an entire solution of (2.8) and it is also a spatially homogeneous positive entire

solution of (1.1).

Next, we show that u∗(t) is globally stable. Assume that there is u0 ∈ C++ such that

‖u(t+ s; s,u0)−u∗(t+ s)‖∞ does not converge to 0 as t→ ∞. Then there are ε0 > 0, sn ∈ R,

tn ∈ R with tn → ∞ as n→ ∞ such that

‖u(t+ s; s,u0)− u∗(t+ s)‖∞ ≥ ε0.

By Lemma 2.2, we have ρ(u(t+ sn; sn,u0),u
∗(t+ s)) < ρ(u0,u

∗(sn)) for t > 0. Together with

(2.9), there are 0 < ε ≤ M such that

ε ≤ u(t+ sn; sn,u0) ≤ M, ε ≤ u∗(t+ s) ≤ M, ∀t ≥ sn.

Apply Lemma 2.2 again, there are σ0, δ0 > 0 and τ > 0 such that

σ0 ≤ ρ(u(tn + sn; sn,u0),u
∗(tn + s)) < ρ(u0,u

∗(sn))− kδ0

for n ≥ 1 and 1 ≤ k ≤ [ t
τ
]. This is a contradiction. Hence, we have ‖u(t + s; s,u0) − u∗(t +

s)‖∞ → 0 as t → ∞, which implies that lim
t→∞

u(t + s; s,u0) = u∗(t + s) uniformly in s ∈ R.

This completes the proof.

3 Spreading Speed

In this section, we first give the definition of the spreading speed interval [c∗inf , c
∗
sup] of system

(1.1) and establish its basic properties.

Define

u∗
inf :=

(
inf
t∈R

u∗1(t), inf
t∈R

u∗2(t)
)
(≥ 0).

For any given u0(·) ∈ [0,u∗]C , we define

X+ =
{
u0 ∈ C | 0 ≤ u0 ≪ u∗

inf , lim inf
x·ξ→−∞

u0(x) ≫ 0, u0(x) = 0, ∀x · ξ ≫ 1
}
.



86 J. Liu

Definition 3.1 (Spreading speed interval) Let

C∗
inf =

{
c ∈ R | ∀u0 ∈ X+, lim sup

x·ξ≤ct,t→∞

‖u(t+ s, x; s,u0)− u∗(t+ s)‖ = 0 uniformly in s ∈ R

}

and

C∗
sup =

{
c ∈ R | ∀u0 ∈ X+, lim sup

x·ξ≥ct,t→∞

‖u(t+ s, x; s,u0)‖ = 0 uniformly in s ∈ R

}
.

Define c∗inf = sup{c | c ∈ C∗
inf} and c∗sup = inf{c | c ∈ C∗

sup}. We call [c∗inf , c
∗
sup] as the spreading

speed interval of (1.1).

Let η(s) be the function defined by

η(s) =
1

2

(
1 + tanh

s

2

)
, s ∈ R.

Note that η′(s) = η(s)(1 − η(s)) > 0 and η′′(s) = η(s)(1 − η(s))(1 − 2η(s)) for any s ∈ R.

Without loss of generality, we can assume that there exists a vector u− ≪ 0 in R
2 such that

f(t,u) and g(t,u) are defined for all u ∈ [u−,∞), f(t,u−) ≥ 0 and g(t,u−) ≥ 0 for all t ∈ R,

and the condition (H3) holds for all u ∈ [u−,M].

Lemma 3.1 Let α± be given constant vectors with u− ≤ α− ≤ 0 ≪ α+ ≤ u∗
inf. There is

C0 > 0 such that for every C ≥ C0, s ∈ R and ξ ∈ SN−1, the following statements are valid :

(1) Let v±(t, x; s) = u(t, x; s, α±)η(x · ξ + C(t − s)) + u(t, x; s, α∓)[1 − η(x · ξ + C(t − s))].

Then v+ and v− are super- and subsolution of (1.1) on [0,+∞), respectively.

(2) Let w±(t, x; s) = u(t, x; s, α∓)η(x · ξ −C(t− s)) + u(t, x; s, α±)[1− η(x · ξ −C(t− s))].

Then w+ and w− are super- and subsolution of (1.1) on [0,+∞), respectively.

Proof We only prove v+(t, x; s) = (v+1 (t, x; s), v
+
2 (t, x; s)) is a supersolution of (1.1) and

other statements can be proven similarly. Set ζ = x · ξ+C(t− s) and w(t, x) = u(t, x; s, α+)−

u(t, x; s, α−). Since v+(t, x; s) = u(t, x; s, α+)η(ζ) + u(t, x; s, α−)[1 − η(ζ)], we obtain

∂v+1
∂t

−∆v+1 (t, x; s)− f(t, v+1 , v
+
2 )

= η′(ζ)[Cw1(t, x) − 2∇w1(t, x) · ξ − w1(t, x)(1 − 2η(ζ))]

+ η(ζ)[f(t,u(t, x; s, α+))− f(t,u(t, x; s, α−))] + f(t,u(t, x; s, α−))− f(t,v+). (3.1)

Note that

η(ζ)[f(t,u(t, x; s, α+))− f(t,u(t, x; s, α−))] + f(t,u(t, x; s, α−))− f(t,v+)

= η(ζ)

2∑

i=1

∫ 1

0

fui
(t,u(t, x; s, α+) + rw(t, x))wi(t, x)dr

−

2∑

i=1

∫ 1

0

fui
(t,u(t, x; s, α−) + rη(ζ)w(t, x))η(ζ)wi(t, x)dr

=

2∑

i=1

η(ζ)wi(t, x)

∫ 1

0

[fui
(t,u(t, x; s, α+) + rw(t, x)) − fui

(t,u(t, x; s, α−) + rη(ζ)w(t, x))]dr
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= η′(ζ)w1(t, x)

∫ 1

0

r[fu1u1
(t,ur(t, x))w1 + fu1u2

(t,ur(t, x))w2]dr

+ η′(ζ)w2(t, x)

∫ 1

0

r[fu2u1
(t, ũr(t, x))w1 + fu2u2

(t, ũr(t, x))w2]dr, (3.2)

where ur(t, x), ũr(t, x) are between u(t, x; s, α+) and u(t, x; s, α−).

Together with (3.1) and (3.2), we have

∂v+1
∂t

−∆v+1 (t, x; s)− f(t, v+1 , v
+
2 )

= η′(ζ)
[
Cw1(t, x)− 2∇w1(t, x) · ξ − w1(t, x)(1 − 2η(ζ)) + w2

2

∫ 1

0

rfu2u2
(t, ũr)dr

+ w1

∫ 1

0

r[fu1u1
(t,ur)w1 + fu1u2

(t,ur)w2 + fu2u1
(t, ũr)w2]

]
.

Note that the priori estimates for parabolic equation, there exist γ1, γ2 > 0 such that w1(t, x) ≥

γ1 and |∇w1(t, x) · ξ| < γ2 for all t ≥ s, x ∈ R
N . Thus there is C1 > 0 such that for C ≥ C1,

∂v+1
∂t

−∆v+1 (t, x; s)− f(t, v+1 , v
+
2 ) ≥ 0.

On the other hand,

∂v+2
∂t

− g(t, v+1 , v
+
2 ) = η′(ζ)

[
Cw2(t, x) + w2

1

∫ 1

0

rfu1u1
(t,ur)dr

+ w2

∫ 1

0

r[fu1u2
(t,ur)w1 + fu2u1

(t, ũr)w1 + fu2u2
(t, ũr)w2]

]
.

By the same way, there exists C2 > 0 such that for C ≥ C2,
∂v

+

2

∂t
≥ g(t, v+1 , v

+
2 ). This completes

the proof.

Similar to that in [20, Lemmas 3.3–3.4], for c∗inf and c∗sup, we have the following spreading

properties.

Lemma 3.2 The following statements are valid :

(1) If there is u∗(·) ∈ X+ such that

lim sup
x·ξ≤ct,t→∞

‖u(t+ s, x; s,u∗
0)− u∗(t+ s)‖ = 0

uniformly in s ∈ R. Then c ≤ c∗inf .

(2) If c < c∗inf, then for any u0 ∈ X+,

lim sup
x·ξ≤ct,t→∞

‖u(t+ s, x; s,u0)− u∗(t+ s)‖ = 0 uniformly in s ∈ R.

(3) If there is u∗(·) ∈ X+ such that

lim sup
x·ξ≥ct,t→∞

‖u(t+ s, x; s,u∗
0)‖ = 0

uniformly in s ∈ R. Then c ≥ c∗inf .
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(4) If c > c∗inf, then for any u0 ∈ X+,

lim sup
x·ξ≥ct,t→∞

‖u(t+ s, x; s,u0)‖ = 0 uniformly in s ∈ R.

Theorem 3.1 [c∗inf , c
∗
sup] is a finite interval.

Proof Let α± be given constant vectors with u− ≤ α− ≤ 0 ≪ α+ ≤ u∗
inf . Then there is

u∗
0(·) ∈ X+ such that

w+(s, x; s) = α−η(x · ξ) + α+[1− η(x · ξ)] ≥ u∗
0(x), ∀x ∈ R

N , s ∈ R.

Then it follows from comparison principle and Lemma 3.1 that

w+(t+ s, x; s) = u(t+ s; s, α−)η(x · ξ − C0t) + u(t+ s; s, α+)[1 − η(x · ξ − C0t)]

≥ u(t+ s, x; s,u∗
0)

for t ≥ 0 and s ∈ R. For any C > C0, the fact η(∞) = 1 implies that

0 ≤ lim sup
t→∞,x·ξ≥C1t

‖u(t+ s, x; s,u∗
0)‖

≤ lim sup
t→∞,x·ξ≥C1t

‖w+(t+ s, x; s)‖ = lim sup
t→∞,x·ξ≥C1t

‖u(t+ s; s, α−)‖ = 0.

Then we have

lim sup
t→∞,x·ξ≥C1t

‖u(t+ s, x; s,u∗
0)‖ = 0 uniformly in s ∈ R.

By Lemma 3.2(3), it follows that c∗sup ≤ C1.

On the other hand, let α± be given constant vectors with u− ≤ α− ≤ 0 ≪ α+ ≤ u∗
inf .

There is ũ∗
0(·) ∈ X+ such that

v−(s, x; s) = α−η(x · ξ) + α+[1− η(x · ξ)] ≤ ũ∗
0(x)

for s ∈ R. By the comparison principle and Lemma 3.1 again, we have

v−(t+ s, x; s) = u(t+ s; s, α−)η(x · ξ + C0t) + u(t+ s, s, α+)(1 − η(x · ξ + C0t))

≤ u(t+ s, x; s, ũ∗0)

for t ≥ 0, s ∈ R. Then for each C2 < −C0, the fact η(−∞) = 0 implies that

lim inf
t→∞,x·ξ≤C2t

‖u(t+ s, x; s, ũ∗
0)− u∗(t+ s)‖ = 0

uniformly in s ∈ R. Then c∗inf ≥ C2. Hence, [c
∗
inf , c

∗
sup] is a finite interval.

Lemma 3.3 Let c ∈ R and u0 ∈ X+ be given. If there are 0 ≪ δ0 ≤ u∗
inf and T0 > 0 such

that

lim
n→∞,x·ξ≤cnT0

u(nT0 + s, x; s,u0) ≥ δ0 uniformly in s ∈ R, (3.3)

then for each c′ < c,

lim sup
t→∞,x·ξ≤c′t

‖u(t+ s, x; s,u0)− u∗(t+ s)‖ = 0 uniformly in s ∈ R.
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Proof By (3.3), there is n0 ∈ N such that

u(nT0 + s, x; s,u0) ≥
δ0

2
for n ≥ n0, x · ξ ≤ cn0T. (3.4)

Let ũ0(x) ≡
δ0
2 . Then for each ε > 0, there exists n1 ≥ n0 such that

u(t+ s, x; s, ũ0) ≥ u∗(t+ s)− ε for t ≥ n1T0, x ∈ R
N . (3.5)

For a given B > 1, let ũB(·) ∈
[
0, δ02

]
C
be such that ũB(x) =

δ0
2 for x · ξ ≤ B−1 and ũB(x) = 0

for x · ξ ≥ B. By (3.5), there is B̃0 > 1 such that for any B ≥ B̃0,

u(t+ s, 0; s, ũB) ≥ u∗(t+ s)− 2ε for n1T0 ≤ t ≤ (n1 + 1)T0, s ∈ R. (3.6)

For given c′ < c, (c− c′)nT0 → ∞ as n→ ∞. Then there is n2 ≥ n1 such that

(c− c′)nT0 ≥ B0 + c′(n1 + 1)T0 for n ≥ n2. (3.7)

This together with (3.1), implies that

u(nT0 + s, x+ x′ + c′nT0ξ + c′τξ; s,u0) ≥ ũB(x
′), ∀x′ ∈ R

N , τ ∈ [n1T0, (n1 + 1)T0] (3.8)

for all x ∈ R
N with x · ξ ≤ 0 and n ≥ n2. For any given n ≥ n2 and (n + n1)T0 ≤ t <

(n+ n1 + 1)T0, let τ = t− nT0, by (3.7) and (3.8), we get

u(t+ s, x+ c′tξ; s,u0) = u(t+ s, x+ c′tξ; s,u(nT0, ·; 0,u0))

≥ u(t+ s, 0; s, ũB(·))

≥ u∗(t+ s)− 2ε

for all x ∈ R
N with x · ξ ≤ 0. Thus we obtain

u(t+ s, x; s,u0) ≥ u∗(t+ s)− 2ε

for x · ξ ≤ c′t, t ≥ (n1 + n2)T0, s ∈ R, which implies the result.

Theorem 3.2 The following statements are valid :

(1) c∗inf = c∗sup = inf
µ>0

λ(Aµ)
µ

.

(2) Let c∗+ = inf
µ>0

λ(Aµ)
µ

be the rightward spreading speed of (1.1). Then there exists c∗− =

inf
µ>0

λ(A−µ)
µ

being the leftward spreading speed of (1.1). Moreover, c∗+ + c∗− > 0.

Proof (1) First, we show that c∗inf ≥ inf
µ>0

λ(Aµ)
µ

. For any s ∈ R, µ > 0 and T > 0, let

Φ(T ; s, A, µ)u0 = u(s+ T ; s,u0, A
µ), (3.9)

where u(t; s,u0, A
µ) is the solution of (2.5) with initial value u(s; s,u0, A

µ) = u0 ∈ R
2. Since

Φ(T ; s, A, µ) is a compact and strongly monotone operator, by the Krein-Rutman theorem,
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there is a principal eigenvalue of Φ(T ; s, A, µ) and denote by γT (s, µ). By [4, Lemma 3.5], we

have that

lim
T→∞

ln γT (s, µ)

T
= λ(Aµ) uniformly in s ∈ R. (3.10)

Since there exists β ≫ 0 with 0 < βi ≪ 1 such that F(t,u) ≥ (1− τ−1)A(t)u for u ∈ [0, β] and

(1− τ−1)A(t)u → A(t)u as τ → ∞ for any t ∈ R, then by [4, Lemma 4.1], there are T ≥ 1 and

v0(·) ∈ X+ such that

ui(T + s, x; s,v0) ≥ vi0(x− cξT ), i = 1, 2

for all x ∈ R
N , s ∈ R and c < inf

µ>0

λ(Aµ)
µ

− ε. By induction, we have that

ui(s+ nT, x; s,v0) ≥ vi0(x− cnT ξ), i = 1, 2

for all x ∈ R
N , s ∈ R and c < inf

µ>0

λ(Aµ)
µ

− ε. Then for any ε > 0 and c < inf
µ>0

λ(Aµ)
µ

− ε,

lim inf
x·ξ≤cnT0,n→∞

ui(s+ nT, x; s,v0) > 0, i = 1, 2

uniformly in s ∈ R. Then by Lemmas 3.2(1) and 3.3, we have

c∗inf ≥ inf
µ>0

λ(Aµ)

µ
− ε.

Since ε is arbitrary, we have c∗inf ≥ inf
µ>0

λ(Aµ)
µ

.

Next, we show that c∗sup ≤ inf
µ>0

λ(Aµ)
µ

. By (H4), we know that F(t,u) ≤ A(t)u for all t ∈ R

and u ≥ 0. Let φ(t, µ) be the principal Floquent bundle associated to λ(Aµ). Let µ∗ ∈ (0,+∞)

such that inf
µ>0

λ(Aµ)
µ

= λ(Aµ∗

)
µ∗

. For any u0(·) ∈ X+, there is a positive constant ρ such that

u0(·) ≤ ρe−µ∗x·ξφ(s, µ∗) for x ∈ R
N and s ∈ R. Since

λ(Aµ) = lim
t−s→∞

1

t− s

∫ t

s

κ(στA
µ)dτ,

then by the comparison principle and Lemma 2.1(1) that

u(t, x; s,u0) ≤ ρ exp
(
− µ∗

(
x · ξ −

λ(Aµ∗

) + ε

µ∗
t
))

φ(t, µ∗)

for t≫ s and s ∈ R. This implies that for any c ≥ λ(Aµ∗

)
µ∗

,

lim sup
x·ξ≥ct,t→∞

‖u(t+ s, x; s,u0)‖ = 0 uniformly in s ∈ R.

By Lemma 3.2(3), c∗sup ≤ λ(Aµ∗

)
µ∗

. Hence we have c∗sup = c∗inf = inf
µ>0

λ(Aµ)
µ

.

(2) By the change variable w(t, x) = u(t,−x) and then repeat the same procedure, we have

that c∗− is the leftward spreading speed of (1.1) and c∗− = inf
µ>0

λ(A−µ)
µ

. By (3.9) and the Riesz
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representation theorem, for any s ∈ R, there are bounded nonnegative measures mij(s, y, dy)

such that

(Φ(T ; s, A, µ)u0)i =

2∑

j=1

∫

RN

eµy·ξuj0mij(s, y, dy), i = 1, 2.

By the arguments of [29, Theorem 2.5], for γT (s, µ), we have

[γT (s, µ1)]
α[γT (s, µ2)]

1−α ≥ γT (s, αµ1 + (1 − α)µ2).

Using (3.10), we know that

lim
T→∞

ln[γT (s, µ1)]
α[γT (s, µ2)]

1−α

T
≥ lim

T→∞

ln γT (s, αµ1 + (1− α)µ2)

T
.

Thus we have

αλ(Aµ1 ) + (1− α)λ(Aµ2 ) ≥ λ(Aαµ1+(1−α)µ2),

that is, λ(Aµ) is convex in µ. Let µ1, µ2 > 0 such that c∗+ = λ(Aµ1 )
µ1

and c∗− = λ(A−µ2 )
µ2

. Let

ν = µ1

µ1+µ2
. Then ν ∈ (0, 1) and (1− ν)µ1 = νµ2. Note that λ(Aµ) is convex in µ, we have

c∗+ + c∗− =
1

ν

1

µ2
[(1− ν)λ(Aµ1 ) + νλ(A−µ)]

≥
1

νµ2
λ(A(1−ν)µ1−νµ2) =

1

νµ2
λ(A) > 0.

Hence we have c∗+ + c∗− > 0. This completes the proof.

Moreover, by the similar arguments to that in [9, 20], we have the following spreading

features for the spreading speeds c∗+ and c∗−.

Theorem 3.3 Let c∗+ and c∗− be defined as in Theorem 3.2. For any ξ ∈ SN−1, we have

(1) for any c < c∗+ and c′ < c∗−, if u0 ∈ X+ with u0 6= 0, then

lim sup
t→∞,−c′t≤x·ξ≤ct

‖u(t+ s, x; s,u0)− u∗(t+ s)‖ = 0 uniformly in s ∈ R.

(2) If u0 ∈ X+ has compact support and u0(·) ≪ u∗
inf for any x ∈ R

N , then for each c > c∗+

and c′ > c∗−,

lim sup
t→∞,x·ξ≥ct

‖u(t+ s, x; s,u0)‖ = 0 and lim sup
t→∞,x·ξ≤−c′t

‖u(t+ s, x; s,u0)‖ = 0

uniformly in s ∈ R.

4 A Time-Dependent Epidemic Model

We consider the following time dependent reaction diffusion systemmodeling man-environment-

man epidemics






∂u1

∂t
(t, x) = d∆u1 − a11(t, x)u1(t, x) + a12u2(t, x),

∂u2

∂t
(t, x) = −a22(t, x)u2(t, x) + g(t, u1(t, x)),

(4.1)
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where d, a11, a12 and a22 are positive constants. It is well known that (4.1) can be used to

model the spread of epidemics with oral-faecal transmission, see [6–7]. Here u1(t, x) represents

the spatial density of the infection agent and u2(t, x) denotes the spatial density of the infective

human population at time t ∈ R and point x ∈ R
N . In (4.1), 1

a11
is the mean lifetime of the

agent in the environment, 1
a22

is the mean lifetime period of the human infective, a12 is the

multiplicative factor of the infections agents and function g(t, u) is the force of infection on the

human population due to the concentration of the infection agent.

When g(t, u) is time periodic dependence in t, Liang et al. [12] have studied the spreading

speed and traveling wave solutions of epidemic model (4.1) in the monostable case. Recently,

Wu and Hsu [30] have studied the existence, uniqueness and stability of periodic traveling fronts

of (4.1) with bistable and time periodic nonlinearity. In this section, we will consider (4.1) with

time dependent in the monstable case and establish the spreading speed of (4.1) by applying

our main results.

For simplicity, we consider the following dimensionless epidemic system as (4.1), i.e.,





∂u1

∂t
(t, x) = d∆u1(t, x)− u1(t, x) + αu2(t, x),

∂u2

∂t
(t, x) = −βu2(t, x) + g(t, u1(t, x)),

(4.2)

where α = a12

a2
11

and β = a22

a11
.

Assume that

(A1) g ∈ C1(R2
+,R+) and g(t, ·) is strictly subhomogeneous on R+, g(·, 0) = 0 and

∂g
∂u

(t, u) > 0 for (t, u) ∈ R
2
+.

(A2) There exists u > 0 such that g(u)
u

≤ β
α
, where g(u) = max

t∈R

g(t, u).

By (A1), we know that (H1) and (H3) are true for (4.2). Using (A2), M =
(
u, u

α

)
satisfies

(H2). Note that the linear matrix of (4.2) is

A(t) =

(
−1 α

gu(t, 0) β

)
.

Since ∂g
∂u

(t, u) > 0 for (t, u) ∈ R
2
+, α, β are positive constants, A(t) is quasi-positive and strongly

irreducible. Hence we assume that A(t) is unique ergodic and then there is a principal Lyapunov

exponent λ(A) for A(t). Similar to that for system (1.1), there also is a principal Lyapunov

exponent λ(Aµ) for (4.2). Furthermore, we assume that λ(A) > 0. Hence, the assumptions

(H1)–(H4) hold for (4.2). Therefore, the conclusions of Theorems 3.1–3.3 are valid for system

(4.2).
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