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The Isoperimetric Inequality in Steady Ricci Solitons∗

Yuqiao LI1

Abstract The author proves that the isoperimetric inequality on the graphic curves over

circle or hyperplanes over S
n−1 is satisfied in the cigar steady soliton and in the Bryant

steady soliton. Since both of them are Riemannian manifolds with warped product metric,

the author utilize the result of Guan-Li-Wang to get his conclusion. For the sake of the

soliton structure, the author believes that the geometric restrictions for manifolds in which

the isoperimetric inequality holds are naturally satisfied for steady Ricci solitons.
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1 Introduction and Statement of the Main Results

Let Ω be a bounded domain in the two-dimensional Euclidean space. We know that the

isoperimetric inequality

L2 ≥ 4πA

holds, where L and A are the boundary length and the area of Ω, respectively. Equality is

attained only when Ω is a ball.

In Rn, if Ω ⊂ Rn is a bounded domain with boundary ∂Ω which is an (n− 1)-dimensional

hypersurface, then the corresponding isoperimetric inequality reads

Area(∂Ω) ≥ c(n)(Vol(Ω))
n−1

n ,

where Area(∂Ω) denotes the (n− 1)-Haussdorff measure of the hypersurface ∂Ω and Vol(Ω) is

the n-dimensional volume of Ω and c(n) = nω
1
n

n is a constant depends only on the dimension

n. Equality holds only when Ω is a ball.

Ricci soliton is a self-similar solution of the Ricci flow. It is obtained by a family of diffeo-

morphisms of the initial metric and satisfies the soliton equation

−2Ric(g) = LXg + εg,

where X is a vector field and ε is a constant. A Ricci soliton is called a steady soliton if ε = 0

and a gradient soliton if X = ∇f for some function f . We always write a triple (M, g, f) to

denote a gradient Ricci soliton and we say a Riemannian manifold (M, g) has a gracient soliton

structure if there is a function f satisfying the soliton equation.
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We consider the isoperimetric problem on manifolds that have a steady gradient Ricci soliton

structure. Because of the Ricci soliton equation, we find that the isoperimetric inequality still

holds in the cigar steady soiton and in the Bryant steady soliton. Our main theorems are the

followings.

Theorem 1.1 Let (R2, g, f) be the cigar steady Ricci soliton. If γ ⊂ R2 is a graph over S1,

the length of γ and the area of the compact domain whose boundary is γ are denoted by L(γ)

and A(γ), respectively. Then

L(γ) ≥ F (A(γ))

with equality holds if and only if γ is a circle {r} × S1, where F is a single variable function

which represents the relation between the length and the area of circles in the cigar (see Theorem

2.4 in Section 2).

Theorem 1.2 Let (M, g, f) be the complete steady Bryant soliton with M = (0,∞)×Sn−1,

g = dr2 + φ(r)2gSn−1 . Let Σ ⊂ M be a hypersurface which is defined as r = ρ(p), p ∈ Sn−1 for

a smooth function ρ on Sn−1. Let S(r0) be the level set of r = r0 and Ω be the domain bounded

by Σ and S(r0). Then

Area(Σ) ≥ ξ(Vol(Ω)),

where ξ is a well-defined single-valued function that relates the area and volume of spheres in

(M, g) (see Theorem 2.2 in Section 2). Moreover, the equality is attained if and only if Σ is a

level set of r.

2 The Isoperimetric Inequality in Riemannian Manifolds with Warped

Product Metric

In the paper of Guan-Li-Wang [4], they proved an isoperimetric inequality by investigating

a deformed mean curvature type flow which preserves the volume but decreases the area in

manifolds with warped product metric. We will briefly state their results in this section.

Let (Bn−1, g̃) be a closed Riemannian manifold and φ = φ(r) be a smooth positive function

defined on the interval [r0, r1] for some r0 < r1. Consider a Riemannian manifold of warped

product metric (Nn, g),

g = dr2 + φ2g̃, r ∈ [r0, r1], (2.1)

X = φ(r)∂r is a conformal Killing field of Nn, i.e., LXg = 2φ′(r)g. Let M be a smooth closed

embedded hypersurface in Nn with an embedding F0. Consider the following evolution equation

for a family of embeddings of hypersurfaces with F0 as an initial data,

∂F

∂t
= ((n− 1)φ′ − uH)ν, (2.2)

where ν is the outward unit normal vector field, H is the mean curvature, u = 〈X, ν〉. A

hypersurface is said to be graphical if it is defined by r = ρ(p), p ∈ Bn−1 for a smooth function

ρ on Bn−1. In [4], they proved the following theorem.

Theorem 2.1 Let M0 be a smooth graphical hypersurface in (Nn, g) with n ≥ 3 and g in

(2.1). If φ(r) and g satisfy the following conditions:

R̃ic ≥ (n− 2)Kg̃,
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0 ≤ (φ′)2 − φ′′φ ≤ K on [r0, r1], (2.3)

where K > 0 is a constant and R̃ic is the Ricci curvature of g̃. Then the evolution equation

(2.2) with M0 as the initial data has a smooth solution for t ∈ [0,∞). Moreover, the solution

hypersurface converges exponentially to a level set of r as t → ∞.

From the long-time existence of the flow (2.2), they got an isoperimetric inequality for

warped product space. Let S(r) be a level set of r and B(r) be the bounded domain enclosed

by S(r) and S(r0). The volume of B(r) and surface area of S(r) are denoted by V (r) and A(r),

respectively. There is a well-defined single variable function ξ(x) that satisfies

A(r) = ξ(V (r)) (2.4)

for any r ∈ [r0, r1].

Theorem 2.2 Let Ω ⊂ Nn be a domain bounded by a smooth graphical hypersurface M and

S(r0). Assume (2.3), then

Area(M) ≥ ξ(Vol(Ω)), (2.5)

where Area(M) is the area of M and Vol(Ω) is the volume of Ω. If either (φ′)2 − φ′′φ < K or

R̃ic > (n− 2)Kg̃ on [r0, r1], then “ =” is attained in (2.5) if and only if M is a level set of r.

For n = 2, similar result is proved by Dylan Cant in [1].

Let N = (0, R)× S1 be a surface with metric g = dr2 + φ(r)2dθ2, φ(r) > 0.

Theorem 2.3 Let N2 be a warped product space with warp potential φ(r) satisfying (φ′)2−
φφ′′ ≥ 0. If γ0 ⊂ N is a smooth hypersurface, then there is a unique flow γ(t) with (2.2) and

γ(0) = γ0.

Let Cr denote the circle {r} × S1 ⊂ N , and L(r) and A(r) denote its length and area,

respectively. There is some function F with L(r) = F (A(r)).

Theorem 2.4 If γ0 ⊂ N is a piecewise C1 Lipschitz radial graph and (φ′)2 − φφ′′ ∈ [0, 1],

then L(γ0) ≥ F (A(γ0)), where equality holds if and only if γ0 is a circle {r}×S1 if (φ′)2−φφ′′ 6≡
1.

3 Cigar Steady Soliton

We wonder if the isoperimetric inequality is still available on Ricci solitons. First, we

consider the gradient steady solitons of dimension n = 2. We have the following theorem (see

[3, Corollary 4.9]) which implies that the complete steady gradient Ricci soliton with positive

curvature is the cigar soliton.

Theorem 3.1 (see [3, Corollary 4.9]) If (M2, g(t)) is a complete steady gradient Ricci

soliton with positive curvature, then (M2, g(t)) is the cigar soliton.

Let (R2, g) be a complete Riemannian manifold with complete metric g = dx2+dy2

1+x2+y2 . In polar

coordinates, we can write

g =
dr2 + r2dθ2

1 + r2
.
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Let s = arcsinh r = log(r +
√
1 + r2), then

g = ds2 + tanh2 sdθ2.

By the gradient steady Ricci soliton equation

Ric(g) +∇2f = 0,

we have that (R2, g) is a gradient steady Ricci soliton with potential function

f(s) = −2 log(cosh s)

and its curvature is

Ric(g) =
2

cosh2 s
g.

This soliton is said to be the cigar steady soliton (see [3, Section 3 of Chapter 4]).

Corresponding to Theorems 2.3–2.4, in the cigar steady soliton case,

φ(s) = tanh s,

we can calculate directly to get

φ′(s) =
1

cosh2 s
, φ′′(s) = −2

sinh s

cosh3 s
.

Thus

(φ′)2 − φφ′′ = cosh−4 s(1 + 2 sinh2 s) > 0

and

(φ′)2 − φφ′′ =
2 cosh2 s− 1

cosh4 s
= 1− (cosh2 s− 1)2

cosh4 s
≤ 1.

Therefore, Theorem 2.4 implies that the isoperimetric inequality is still true for cigar steady

soliton. Theorem 1.1 is concluded.

4 Bryant Steady Soliton

In this section, we focus on the gradient steady Ricci solitons which is radial symmetric

with n ≥ 3. Let gSn−1 be the standard metric on the unit (n − 1)-sphere. We will search for

gradient steady Ricci solitons on (0,∞)× Sn−1 which extend to Ricci solitons on Rn by a one

point compactification of one end. Consider the metric

g = dr2 + φ2(r)gSn−1 ,

its Ricci curvature is

Ric(g) = −(n− 1)
φ′′

φ
dr2 + ((n− 2)(1− (φ′)2)− φφ′′)gSn−1 .

The Hessian of a function f with respect to g is

∇2f(r) = f ′′(r)dr2 + φφ′f ′gSn−1 .
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From the steady Ricci soliton equation

Ric(g) +∇2f = 0,

we get the following ODE system

f ′′ = (n− 1)
φ′′

φ
,

φφ′f ′ = −(n− 2)(1− (φ′)2) + φφ′′.

Making the transformations

x = φ′, y = (n− 1)φ′ − φf ′, dt =
dr

φ
,

the ODE system becomes

dx

dt
= x(x − y) + (n− 2),

dy

dt
= x(y − (n− 1)x). (4.1)

We will check the condition (2.3). Notice that the first assumption of (2.3) is naturally

satisfied because Ric(gSn−1) = (n− 2)gSn−1 and K = 1. We calculate

(φ′)2 − φφ′′ = (φ′)2 − φφ′f ′ − (n− 2)(1− (φ′)2)

= −φφ′f ′ + (n− 1)(φ′)2 − (n− 2)

= xy − (n− 1)x2 + (n− 1)x2 − (n− 2)

= xy − (n− 2). (4.2)

Thus, the second condition 0 ≤ (φ′)2 − φφ′′ ≤ 1 of (2.3) is equivalent to

n− 2 ≤ xy ≤ n− 1. (4.3)

We can see the ODE system (4.1) has constant solutions (1, n− 1) and (−1,−n+ 1). They

both satisfy (4.3). For the extendability of g to the origin, we need the following lemma of

necessary conditions.

Lemma 4.1 (see [2, Lemma A.2]) Let 0 < L ≤ ∞ and let g be a warped product metric

on the topological cylinder (0, L)× Sn−1 of the form

g = dr2 + w(r)2gSn−1 ,

where w : (0, L) → R+ is a positive function. Then g extends to a smooth metric as r → 0+ if

and only if

lim
r→0+

w(r) = 0,

lim
r→0+

w′(r) = 1,

lim
r→0+

d2kw

dr2k
(r) = 0

for all k ∈ N.
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Remark 4.1 For example, when w(r) = r, then g represents R
n, and we could compute

that

lim
r→0+

w(r) = lim
r→0+

r = 0,

lim
r→0+

w′(r) = lim
r→0+

1 = 1,

lim
r→0+

wk = 0

for any k ∈ N, k > 1.

When w(r) = sin r, then g represents Sn, and

lim
r→0+

w(r) = lim
r→0+

sin r = 0,

lim
r→0+

w′(r) = lim
r→0+

cos r = 1,

lim
r→0+

d2kw

dr2k
(r) = lim

r→0+
(−1)k sin r = 0

for k ∈ N.

When w(r) = sinh r, then g represents Hn, and

lim
r→0+

w(r) = lim
r→0+

sinh r = 0,

lim
r→0+

w′(r) = lim
r→0+

cosh r = 1,

lim
r→0+

d2kw

dr2k
(r) = lim

r→0+
sinh r = 0

for k ∈ N.

Thus, by Lemma 4.1, in the space forms Rn, Sn,Hn, the metric extends smoothly across the

origin.

Remark 4.2 In Section 3, the cigar steady soliton has g = ds2 + tanh2 sdθ2, then for

φ(s) = tanh s, we can calculate

lim
s→0+

φ(s) = lim
s→0+

tanh s = 0,

lim
s→0+

φ′(s) = lim
s→0+

1

cosh2 s
= 1.

Since φ′′(s) = −2φφ′, then lim
s→0+

φ′′(s) = 0; inductively, we get

lim
s→0+

d2kφ(s)

ds2k
= 0.

So the cigar steady soliton extends smoothly across the origin by Lemma 4.1.

Now we return to the ODE system (4.1). Since we want the metric to close up smoothly as

r → 0, by Lemma 4.1, we need

x → 1, y → n− 1.

From the facts that dt = dr
φ

and φ > 0, we see that t = t(r) is an increasing function of r.

So, by the implicit function theorem, r = r(t) is also an increasing function of t.
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We have

x =
dφ

dr
=

dφ

dt

dt

dr
=

dφ

dt

1

φ
,

dφ

φ
= xdt,

so

φ(t) = φ(r(t)) = φ(r(0))e
∫

t

0
x(ξ)dξ.

Take limit as r → 0, by Lemma 4.1, we obtain

lim
r→0

φ = 0 = φ(r(0))e
lim
r→0

∫
t

0
x(ξ)dξ

.

Therefore,

lim
r→0

∫ t(r)

0

x(ξ)dξ = −∞. (4.4)

The linearization of (4.1) at (1, n− 1) is

du

dt
= −(n− 3)u− v,

dv

dt
= −(n− 1)u+ v

and its eigenvalues are 2 and 2 − n. From phase plane analysis, the right-hand trajectory is

incomplete and the left-hand trajectory is complete (see [2, Proposition 1.32]). The Bryant

steady soliton is the left-hand trajectory. We see that x is decreasing, y is increasing, and

(y − (n− 1)x) > 0 along this trajectory. Moreover,

x → 0+, y → +∞

as t increases. We have lim
r→0

t = −∞ from the fact that 0 < x < 1 and (4.4). Let

X =
√
n− 1

x

y
, Y =

√
(n− 1)(n− 2)

y
, ds = ydt.

Then as x → 0+, y → +∞, we see X → 0+ decreasingly and Y → 0+ decreasingly too. The

ODE system turns out to be

dX

ds
= X3 −X + αY 2,

dY

ds
= Y (X2 − αX),

where α = 1√
n−1

.

As t → −∞, we have r → 0, x → 1, y → n − 1. Because ds = ydt and y > 0, by the

implicit function theorem, we have s = s(t) is an increasing function of t and t = t(s) is also an

increasing function of s. There exists a constant T0, such that y ≤ n when t < T0; accordingly,

we have y ≤ n when s < S0 = s(T0).
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From

dt =
ds

y(t(s))
,

we have

t(s) =

∫ s

S0

dξ

y(ξ)
+ t(S0).

Take limit as s → −∞, we get

lim
s→−∞

t(s) = −
∫ S0

−∞

dξ

y(ξ)
+ t(S0),

∫ S0

−∞

dξ

y(ξ)
≥

∫ S0

−∞

1

n
dξ = +∞.

Hence,

lim
s→−∞

t = −∞.

So as s → −∞, we have xy → n− 1.

We have the following lemma from [2, Lemma 1.33].

Lemma 4.2 (see [2, Lemma 1.33]) We have

lim
s→+∞

X

Y 2
= α,

where α = 1√
n−1

.

Then,

lim
s→+∞

xy = (n− 2)
√
n− 1 lim

s→+∞

X

Y 2
= n− 2.

We need to check condition (4.3).

Lemma 4.3 We have
X

Y 2
<

1

(n− 2)α

for s ∈ R, where α = 1√
n−1

.Therefore,

xy =
X

Y 2
(n− 2)

√
n− 1 < n− 1.

Proof From the ODE system, we can calculate directly

d

ds

( X

Y 2

)
=

X3 −X + αY 2

Y 2
− 2X(X2 − αX)

Y 2

= α− X

Y 2
(X2 − 2αX + 1).

Let

S =
{
s ∈ R

∣∣∣ X
Y 2

≥ 1

(n− 2)α

}
⊂ R.

If the set S = ∅, then we already get the conclusion. Now we consider the case that S 6= ∅.
Since as s → −∞, xy → n − 1, we can see X

Y 2 → 1
(n−2)α . Since X,Y are smooth functions
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of s, we know that S consists of isolated points or finite closed intervals or (−∞, s1] for some

s1 > −∞. Let s0 ∈ S be any minimal point of the finite closed intevals or one of the isolated

points, then at s0,
X
Y 2 = 1

(n−2)α and

d

ds

( X

Y 2

)
= α− X

Y 2
((X − α)2 + 1− α2)

= α− 1

(n− 2)α
((X − α)2 + 1− α2)

= − 1

(n− 2)α
(X − α)2

≤ 0, (4.5)

where the last step follows from the facts that X is decreasing and X → α as s → −∞, so

X ≤ α. If s0 > −∞, then X < α; this tells us that X
Y 2 is decreasing at s0. Then there is an

ε > 0 small, such that
X

Y 2
(s0 − ε) >

X

Y 2
(s0) =

1

(n− 2)α
.

This means that s0 − ε ∈ S and s0 − ε < s0, which contradicts to the definition of s0.

Therefore, S does not contain closed intervals or isolated points. By Lemma 4.2, there exists

s1 < +∞, such that S = (−∞, s1]. By the middle value theorem, there is s2 ∈ (−∞, s1), such

that at s2,
d

dt

( X

Y 2

)
= 0.

But from (4.5) and X < α at s2 > −∞, we have d
dt

(
X
Y 2

)
< 0 at s2, which leads to a

contradiction.

Then we get the conclusion.

From [2, Lemma 1.37], we know that the Bryant steady soliton has strictly positive curvature

away from the origin, and the sectional curvature of the plane tangent to the radial direction

is −φ′′

φ
, then we obtain that φ′′ < 0 and thus (φ′)2 − φφ′′ > 0. Therefore, the Bryant steady

soliton satisfies the condition (2.3) of Theorem 2.1, which implies the isoperimetric inequality

(2.5) by Theorem 2.2. Theorem 1.2 is proved.

Remark 4.3 Ievy also constructed steady solitons on doubly warped product metric (see

[5]). Let (Mn, dσ2) be a compact Einstein manifold with Einstein constant ε > 0, and dθ2 be

the standard metric on Sk. Consider the metric

g = dr2 + f(r)2dθ2 + h(r)2dσ2

on R × Sk × Mn. We do not know whether the isoperimetric inequality holds in this steady

soliton and this is an open question.
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