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Diophantine Inequality by Unlike Powers of Primes

Li ZHU!

Abstract Suppose that A1,---, A5 are nonzero real numbers, not all of the same sign,
satisfying that i—; is irrational. Then for any given real number 1 and £ > 0, the inequality

19

. .\ —FEg TE
[Aip1 + A2p3 + Aaps + Aapi + Asp3 + 1] < (ggags pj-) 0
=)=

has infinitely many solutions in prime variables pi,--- ,ps. This result constitutes an im-
provement of the recent results.
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1 Introduction
In 1953, Prachar [11] showed that for sufficiently large odd integer N, the equation
N =pi+p3 +p3 + 05 + 03 (1.1)

is solvable in primes pq, - - -, ps. Motivated by the work of Prachar [11], Ge and Li [2] considered
the analogous form for Diophantine inequality. Let A1, -+, A5 be nonzero real numbers, not all
of the same sign, satisfying that i—; is irrational and let 0 < 0 < =1-. Ge and Li [2] proved that
for any given real number 1 and ¢ > 0, the inequality

.\ —O0+e
IA1p1 + Aap3 + Aspi + Aapit + Asp + 1| < (11;1;@%(51);) (1.2)

is solvable in primes py, - -+, ps. In 2017, the result (1.2) was improved by Mu [9]. By employing
the method in Languasco and Zaccagnini [7], Mu [9] enlarged the range of the exponent to
o< ﬁ. Afterwards, Liu [8] further improved the result to o < 2%8. Motivated by Wang and
Yao [12], by combining the sieve method in Harman [4] and Harman and Kumchev [5], Mu and
Qu [10] refined Liu’s result and showed that (1.2) holds for o < 525.

In this paper, by applying a new method to estimating the related integral over the minor
arc (see Lemma 3.5), we are able to provide a stronger minor arc estimate and obtain the

following sharper result.
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Theorem 1.1 Suppose that \1,--- , A5 are nonzero real numbers, not all of the same sign
with ’A\—; irrational. Then for any given real number nn and € > 0, the inequality
) — %—ka

[Aip1 + Aop3 + Asp3 + Aap + Aspi 11| < ( max_p;

Jnax (1.3)

has infinitely many solutions in prime variables p1,--- , ps.

2 Outline of the Method

Throughout the paper, the letter p, with or without subscript, is reserved for a prime
number. Let € be a sufficiently small positive number and § > 0 is a small constant depending
on the coefficients A1, ---, A\5. We use e(a) to denote e*™. Since i—; is irrational, we let 2 be

a convergent to i—;, with the denominator ¢ sufficiently large. Write

X =g, r=X"#t" L—logX, I;=[0X)7,X/].

Denote
sin(rra)\2
—_— f 0
ko= Tra ) a0
72, if « =0.
Then
K (a) < min(7?, ]a|7%), (2.1)
+oo
/ e(yz) K, (z)dz = max(0,7 — |y|). (2.2)

We borrow the function p(m) defined in [5, (5.2)]. Set

1, ifplm=p=>z,
0, otherwise,

1, if m is prime
< ) )
p(m) < {O, otherwise. (2.4)



Diophantine Inequality by Unlike Powers of Primes 127

Let

Sila) = Y plme(m?a), Sj(a) = 3 e('a)logp. (25)

mels, pEl;

For any measurable subset X of R, write

(7, %) = /3e S1Mma)S500a) [T S5(a)K-(a)e(an)da. (2.6)

3<j<5

From (2.2) and (2.4), we have

I(TvnaR): Z p(m2) H 1ngj

p1€l1,mo€ls 1<5<5
pj€l;,3<j<5 J#2

X /Re(()\lpl + )\gmg —i—ji/\jpg + n)a)KT(a)da

= Y pma) [] logp;

p1€l1,mo€l> 1<5<5
P €15,3<5<5 J#2

5
X max (O, T — ’/\1]91 + Aom3 + Z Ajpj + nD
j=3

<L Z max(0, 7 — [AMp1 + Aap3 + Aspj + Aapy + Asp3 + 1))

pi€l;
1<<5

< 7N, (X)L, (2.7)
where N.(X) counts the number of solutions of the inequality
[A1p1 + Aoph + Aspi + Aapi + Aspd + 1 < T (2.8)
with p; € I;. Let ¢ = X% and &= 772X 50125 We divide the real line into three parts
M={a:lo| <o}, m={a:¢<l|o| <&}, t={a:]al>c} (2.9)
These sets are called the major arc 91, the minor arc m and the trivial arc t, respectively. Thus
I(rt,n,R) = I(r,n, M) + I(1,n,m) + I(1,n,1t). (2.10)
Following the argument of [10, (3.26) and (5.3)], we can get
I(r,0,0) > 72 XL |I(r,n,8)] = o(r2X & LY. (2.11)
In the following, we will prove

|I(r,m,m)| < 72X 62, (2.12)



128 L. Zhu

3 Some Auxiliary Lemmas

In this section, we collect some auxiliary results required in the proof of Theorem 1.1.
Lemma 3.1 Let

T () € {S1(Ma)?, S3(Asa)®, S5(X20)*S5(As0)®, S5 (A2)*Sa(Ms)?,
S;(/\Qa)253()\3&)4, S;()\2&)253(/\304)285()\50)2}.

Then we have

/ﬂo IT ()| K, (a)da < 7X ~1T(0)' . (3.1)

Proof It follows easily from [10, Lemma 3.7].

Lemma 3.2 Suppose that X > Z; > Xé12, X2 > Z, > X712 X1 > Zy > Xst2e
and [S1(Ma)| > Z1, |S5(Aecr)| > Za, |Ss(Asar)| > Zs. Then there are integers a1, qi, az,q2 and
as, q3 satisfying
X%—Q—s X%+s

Z; Zi
Proof For i =1, see [8, Lemma 2.1]. For ¢ = 3, see [3, Corollary 2.2]. We prove the case

2 2
(ana) =1, a<(S5—) lavo—al<X (5 =) i=123 (3.2)

for ¢« = 2. By Dirichlet’s theorem, there exist co-prime integers as, g2, such that

X3te\ —4 X3te4
1§Q2§X( ) ; qux\zoc—a2|<<X‘1( Z ) . (3.3)
2
It follows from [10, (4.7)] that
1 1
155 (\ea)| < X%+%5+X%+%5(—+@)4. (3.4)
2 X
1
Since |S3(Aa)| > Zo > X725 and X 7+3° 4 Xit2g] <« Z,X 2%, we have
1
Zy < |S5(Maa)| < X2F3%¢, 1
Hence
X3+3e\4 X3te\4
o< ( ) lehea —asl < X7 () (3.5)
Z Z

Then we can deduce from the proof of [5, Lemma 1] with Q = X 7~¢ that (or see [6, Lemma
5.6] with z = X 3

* X3te 145+e e
Zy < |82()\20z)| < -+ X7T307¢ 4 X8
(g2 + X|gAocx — az|)®
X%+5

< .

(22 + X|g2A20x — a2])?

Therefore, by (3.6), we can obtain
X3+te

2 X5tey2
) , lgedea —as] < X_l(L) )

o < ( 7
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Lemma 3.3 Suppose that |Ss(Aza)| > X512 and there exist integers a and q satisfying
(a,q) =1, ¢« X5, [gAsa — a| < X, (3.7)

Then we have
X%—!—s
(¢ + X|ghsa —a])z

|S3(Aza)| <

Proof It follows easily from [3, Lemma 2.1].
Lemma 3.4 Write
M ={a: acm X% < |S5(Asa)[}.
Then we have

/ 155 (A) 2] Sa (A) 2K - () dax < 7X -+
RIS

Proof We first note that K;(5-) = MK - (). Hence

3

A 2
[ 15500 RIS ) PR (@) = 2 [ [sh(054(5e) g ), @)

where
o Lo
Ny = {a o em X< |53(a)|}. (3.10)
3
Denote
a a 1 a 1
N*(n) = (+———, +—+—},
() LaL:Jl " q qX%n q qX%
1<g<XT8 (4 q)=1
+oo
= ] NWn). (3.11)

Let V(«) be the function of period 1 and defined for « € [0,1) by

V(a) = (¢+ Xl|ga—al)™t, aeN*N0,1),
1o, ac(o,1)\ N

Applying Lemma 3.2 with Z3 = X 36 72°, we get
Ny C N (3.12)
Then we can deduce from Lemma 3.3 and (3.12) that

195(a)] < X3T5V2(a) for o € Ms. (3.13)
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Write

¥(v) = > log p1 log p2,

pl—p3=v
1 1
(6X)4<p1,p2<X7

)= [si(5e) = S vtre(3ro)

From (3.12)—(3.14), we have

/9"(2 ’5’3(04)25’4(:\\—204)2’1(

< [ X3t2V(a)¥(a)K = ()da

A
Ny 3

b

< X%*'ZE/*V(O()\I/(Q)KL(a)da.

Applying [1, Lemma 3] with Q = X 15, we get

o E

< TXE(14 )X (le J+X% 3 )
I3

<TX (Y @l Xt Y [p)).

ll< g

: 10
Since 7 = X ~ 76 75¢, we have

> ) < Z = Y [P<xite

Moreover, it is easy to find that

|U‘S\>\T4\ ‘1)1 pz >\ P1:<P)2{%
l P1,P2>
P1s P2<X4
§ :|¢ )< X312

Now combining (3.9) and (3.15)—(3.18), we obtain

/ 195 (A30)2S4 (A2 | K » (a)dar < 7X 3+,
Ny

Lemma 3.5 Let

and

Then we have

ms ={aem: [S5(\a)] < X742 [S3(Mz0)| < X 72}

sz/ 1S5 (A2)?S3(A30)| K (a)da

233
J12 < TX 53 +23€'

L. Zhu

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Proof Write Gy () = |S5(M\2)?S3(A30)*~2|. We have

Ji = Sg()\ga)Sg( A3) G (@) K, (a)da

= Z log p) / (aA3p®)S3(—A30) G () K1 (a)dox

pEls3

< Z (logp) ‘/ (aX3p?)S3(—A30) G () K, (a )da}
pels

> / (029n®)S5(~X30) G (@) K (0)da| L. (3.21)
nely YMs

By Cauchy’s inequality and the obvious facts Gi(a) = G(—a), K;(a) = K;(—«), we can get

(S

Jk<<X6L Z ‘/ (aA3n?)S3(—A30) G () K (oz)dozr)

nels

< XPL( | Si0aB)GHBK,(B)

ms

Nl=

(| Ss(-Asa)Gr(@)Kr(a) Y e(Aan* (@ — #))da)ds)

ms3 nels
< xPL( / S5 aBCL(B)K-(B)F()a5) . (3.22)
where
. / Ss(—Xaa)Gi (@)K (a) 3 e(an(a — 6)|der (3.23)
ms nels

From [3, (7.6)—(7.11)], we obtain

F(p) < T%X%+E(/ |Gk(oz)|2KT(oz)do<)%

ms

+ xie / G (0) S5 (As ) | K » (@) der. (3.24)

Hence, by (3.22) and (3.24), we have

1

Ji < T%X%H(/ |Gk(a)|2KT(a)da)4(/ml |G;€(a)S3(/\3a)|KT(a)da)

ms

1
2

L xE / G () S3(As)| Ko (a)dev, (3.25)
ms
Note that
s = / 1G(@) | Kr (0)dav (3.26)
ms
Then we can deduce from Cauchy’s inequality that

/ G () S5 (A50) [ K+ (@) dax
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1

(/ Gula) K (@)da)

< ( /m |Gk(o<)83(/\30<)2|KT(o<)doz)

11
=J2JE . (3.27)
Since
max |53 (\pa)| < X712
aecmsg
and
max |S3(Aza)| < X5t
acmsg
we have

[ 1Gu@PK(@)da = [ 185000 ISi0000) P K (@)da

ms3
< HéaX |S;(/\2a)253()\3a)k_4|Jk
aEms

6, 11(k—4)
+—36

<L X7

e g, (3.28)

Combining (3.25) and (3.27)—(3.28), we conclude that

[N

- 1 1
Jp < TEX (X PG A gk (g2 g2 )
1 1
F XTIt gEgE (3.29)

This yields that
I < T%J2 X14+11(k Uk=D) | (k+2)e X%J’_%Jk—z- (3'30)

Moreover, for k = 4, we can deduce from Lemma 3.1 that

“+oo
I < / 1S3 (Maa)?S3(Az) | Kr(a)da < TX 3¢, (3.31)

— 00

Applying (3.30) and (3.31), we can obtain

1 4 1 13 4 11 i 4 23
Jo < T2 7-)(3"'5)2){14"‘36"‘8‘E + X12+25(7-X3+5) < TX12+36,

(
(TX%+3€)%X1—Z 11110 X1—72+25(TX%+25) <<TX%+125,
(
(

Nl
WIH

Js LT

=

5 1 13 4 11 . 5 65
JlO < T TX§+126)2X14+12+126+X12+25(TX2+12€) <<7_X2‘{+18€’

Jig < - TX%H&)%XI—Z %+145+X1—72+25(TX%+185) < F X +23e
4 The Minor Arc m

Now we come to estimate I(7,7,m). We first introduce a detailed division of the minor arc

m. Let

my ={acm: [Si(\a)| < XET%Y

my = {aem: [SE(ha)| < X7TT2 |S5(A30)| > X502},
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ms = {aem: [S5(h0)| < XF, [Sa(hga)| < XY,
my =m\ (m; Umgy Umg).
Thus
[I(rn,m)| < D [I(r,m,mg). (4.1)
1<i<4

Applying Holder’s inequality and Lemma 3.1, we have

|I(7—7777m1)|

< max |$1 (M) (/

— 00

([ ss0s K wgan) * (|

— 00 — 00

“+oo 1
15 (A20)?S3(As)255 (A5 | K £ (a)der)

“+o0

Bl

|S§(/\ga)25’4()\4a)4|KT(a)da)

13
32

X (/_+°° |5§()\za)255(/\5a)6|KT(a)da) s (/_"'OO 5, ()\104)|2KT(04)da) 3
(4.2)

Let 911 be defined as in Lemma 3.4. It is easy to see that mo C 91;. Then we can deduce
from Cauchy’s inequality, Lemmas 3.1 and 3.4 that

|I(T7 s m2)|

< X5 max |S§()\2a)|(/
acmso

— 00

“+o00 1
2

|Sl()\1a)|2KT(a)da)
%
« (/ 155(00) 1S3 (\a) K- (a)d)
RIS
L TX3tEtITEn e — Ly B tte, (4.3)
Moreover, by Holder’s inequality, Lemmas 3.1 and 3.5, we can get

(7,1, ms)|

< ( / |S§()\ga)253(/\3a)12|KT(a)da)%( /

— 00

X (/_+°° |S;(/\20‘)255()‘50‘)6|K7(a)da) % (/_*00 |S§F()\20[)254(/\404)4|K7—(04)da)%

—+ 1

h |Sl()\1a)|2KT(a)da) ’

< TXFE ittt — L x B3 Y

Remark 4.1 We remark that the constraint on the choice 7 = X ~ 756 75 arises from (4.4).

In view of (2.12), the estimate in (4.4) should not exceed O(72X 6 ~<). Hence this leads to the
constraint

T> X 786 t5e
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In the following, we consider the range my = m'\ (ml Uma U mg). Note that for o € my, we

have
[S1(na)] > XE[55(0a)] > X F4%)
So we can divide my into disjoint sets S(Z1, Z2,y) such that for o € S(Z7, Zs,y), we have
Zy < |Si(Ma)| <221, Zy < |S5(M\ea)| <272y, y <ol <2y, (45)

where Z; = 201 X 6125 7, = 22X 712 and y = 27X % for some positive integers ¢1, ¢, and 7.

Thus by Lemma 3.2, there are co-prime integers (a1, q1), (a2, g2) satisfying

X1t+e\2 X 1te\2
—al <X (1)
o< ( 7 ) s laa—ar| < Z )
Xitey2 X 5ten2
2 K ( Z ) , o @Aa—ag| < X_l( Z ) . (4.6)

We remark that ajas # 0, since otherwise we have o € 9. Furthermore, we subdivide
S(Z1,Z5,y) into sets S(Z1, Za,y, Q1,Q2), where Q; < g; < 2@Q); on each set. Then

‘a2(q1/\10¢ —ay) + a1(az — @A2a)

A1
‘0291— - 01112‘ =

A2 Ao
X1+e\ 2 X3tey2
X)X ()
< Q2 7 + Q1 Z
X2+4s T
< —Z12Z22 <« X i 7E, (47)
Note that ¢ = X721, Thus
A _
(12(]1)\—1 —a1q2| = o(q"). (4.8)
2
We also have
lazq1| < yQ1Q2. (4.9)

Hence, if |azq1| take R distinct values, we could deduce the existence of n satisfying
A
Hn—1H <« xHe Y92 (4.10)
A2 R
This would contradict % being a convergent to :\\—; if ¢ is sufficiently large, unless
R« Y1092 (4.11)
q

By (4.7) and the well-known bound on the divisor function, we find that each value of azq; corre-
sponds to O(X¢) values of ag, ¢1 and a1, g2. Then we obtain that each set of S(Z1, Z2,y, Q1,Q2)
is made up of O(RX¢) intervals of length

1+e 3+e
min (Qllx (le )2’ Q;X (XZQ )2) (4.12)
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Let £ denote such a set S(Z1, Za,y,Q1,Q2). We have

/2 lda < yQ1Q2¢~ ' min (QllX (XZl:rs)z7 Q21X (X%Jrs)z)

yX2+4a

<
92373

(4.13)

Recall that 7 = X 7615 y < € = 772X 012 g = X5, Z, > X742 7, > X812 and
K. (a) < 72. Then we can deduce from (4.5) and (4.13) that

I(m,n,8)| < 722, Z, X5 1%5 ([ 1da
n
e
2447 1 4e
< TQLZSZD < 72X TE, (4.14)
q41 42
Summing over all possible values of y, Q1, @2, Z1, Z2, we get
|I(7,n,my)| < |I(1,m, &)|L° < 72X Te130 28 (4.15)
Now combining (4.1)—(4.4) and (4.15), we have
[I(7,m,m)| < 7X 802 47X 5305 47X 08 3 4 2 X Tsint2e o« p2 X0 e, (4.16)

5 Proof of Theorem 1.1
Combining (2.7), (2.10)—(2.11) and (4.16), we can conclude that

I(r,n,R) > 72X® L™, Ny(X)>rX®L°. (5.1)

Since i—; is irrational, there are infinitely many pairs of co-prime integers ¢ and a such that %

is convergent to i—; Then we have X = ¢iT — +00 as ¢ — +00. This implies that (5.1) holds

for infinite sequence of values X. Thus the proof of the theorem is completed.
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