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1 Introduction

Entropy including metric entropy and topological entropy plays an important role in dy-

namical systems, which describes the complexity of a given dynamical system from different

points of view. It is well known that there is a variational principle connecting metric entropy

and topological entropy, which says that for a given system (X,T ), where X is a compact

topological space and T : X → X is a surjective and continuous map, its topological entropy

is equal to the supremum of all metric entropies over all invariant probability measures with

respect to T . As a generalization of entropy, pressure with respect to a potential function is

introduced, and a similar variational principle can also be established. The reader can refer to

[7] for more details concerning entropy theory.

In order to obtain more information from a dynamical system, various versions of entropy

are introduced, among which local entropy including local metric entropy and local topological

entropy is an important one. Correspondingly, related variational principle is formulated. In

[14], given a T -invariant measure µ, for a given open cover U of X , Romagnoli introduced two

types of metric entropies with respect to U : hµ(T,U) and h+
µ (T,U) with hµ(T,U) ≤ h+

µ (T,U),

and gave the following local variational principle:

htop(T,U) = sup
µ is T -invariant

{hµ(T,U)},
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where htop(T,U) is the local topological entropy with respect to U . In addition, if T is invertible,

Glasner and Weiss [2] proved that the above variational principle also holds for h+
µ (T,U). For

more results concerning local entropies, the reader can refer to [1, 5–6]. Specially, in [6], for

a given factor map π : X → Y between two topological dynamical systems, a Borel cover U

and an invariant Borel probability measure µ, two notions of measure-theoretical conditional

entropy h+
µ (T,U | Y ) and h−

µ (T,U | Y ) were introduced. And the authors showed that h+
µ (T,U |

Y ) = h−
µ (T,U | Y ). Moreover, max

µ
h+
µ (T,U | Y ) = htop(T,U | Y ) when U is an open cover.

Then as a consequence of the above results, the relative variational principle was given.

Equipping X with additional structure, e.g. Riemannian structure, we can establish more

results concerning entropies. Due to the differential structure, we can require that T is Cr

(r ≥ 1). And we often require that T is equipped with some hyperbolicity, e.g. T is a uniformly

hyperbolic diffeomorphism or a partially hyperbolic diffeomorphism. Under the above assump-

tions, the unstable manifold can be introduced. In Ledrappier and Young’s papers (see [8–9]),

a kind of metric entropy defined via increasing measurable partitions subordinate to unstable

manifolds was introduced, which is suitable for developing the relationship between Lyapunov

exponents and metric entropy. A new type of entropy including metric and topological versions,

focusing on the expansive part of a dynamical system, was introduced by Hu, Hua and Wu in

[3] for C1 partially hyperbolic diffeomorphisms, which is called unstable entropy. The unstable

metric entropy was given by a finite partition α and a measurable partition η subordinate to

unstable manifolds in the form lim
n→∞

1
n
Hµ(

∨n−1
i=0 T−iα|η), where for two measurable partitions

β and γ of X , H(β|γ) is the conditional entropy of β with respect to γ. It is important to point

out that, for establishing a variational principle between unstable metric entropy and unstable

topological entropy, the latter form in [3] is easier to take advantage of. In [3], the authors also

gave the relationship between unstable metric entropy and Ledrappier-Young’s entropy, which

implies that the complexity of a partially hyperbolic system is caused by the expansive part.

In [4], unstable pressure was introduced, and a variational principle for unstable pressure was

also formulated.

In [19], the concepts of unstable entropies and unstable pressure were generalized to local

case for partially hyperbolic diffeomorphisms, which bring us a new point of view to investigate

the complexity of a partially hyperbolic dynamical system. Variational principles for local

unstable topological entropy and local unstable pressure were obtained respectively. Note that

in order to give the above variational principles, unstable topological conditional entropy and

unstable tail entropy were introduced, which play crucial roles in the proofs.

Noticing that plenty of physical processes are irreversible, in addition, the evolution law

dependents on time, some counterparts of the above objects are considered for noninvertible

map via preimage structure (see [20]) and some of the above results are generalized to random

case (see [16, 18]). It is interesting to investigate corresponding results as in [3–4, 19]. In

[17], the authors introduced unstable entropies and unstable pressure for partially hyperbolic

endomorphisms, and obtained a corresponding variational principle. The main purpose of this

paper is to introduce local unstable entropies and local unstable pressure for partially hyperbolic

endomorphisms. However, for endomorphisms, there are some difficulties to establish similar

results. Due to non-invertibility, the notion of unstable manifolds is not well defined, in order
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to overcome this difficulty, in [22], Zhu introduced the inverse limit space (see Section 2, for

details), which makes it possible to define the unstable manifolds and borrow some ideas from

the smooth ergodic theory of random dynamical systems. Moreover, some techniques and

results in [17] can be applied.

This paper is organized as follows. In Section 2, we give some basic knowledge necessary

for our goal and state our main results. In Section 3, we give the definitions of two kinds of

local unstable metric entropies, and some properties of these two local entropies and relations

between them are also obtained. In Section 4, we give the definition of local unstable topological

entropy with some important properties of them. In Section 5, we give the definitions of unstable

topological conditional entropy and unstable tail entropy and their relations with local unstable

entropies and unstable entropies, which are crucial to the proofs of our variational principles.

In Section 6, we give the proofs of the variational principles for both local entropies and local

pressure.

2 Preliminaries and Main Results

Throughout this paper, let M be a C∞ Riemannian manifold without boundary endowed

with metric d(·, ·) and f : M → M be a C1 endomorphism. Denote TM the tangent bundle of

M with norm ‖ · ‖. Both d(·, ·) and ‖ · ‖ are induced by the Riemannian metric.

For a metric spaceX , denote B(X) the Borel σ-algebra of X . Let MZ be the infinite product

space of M endowed with the product topology and the metric d̃(x̃, ỹ) =
∞∑

n=−∞
2−|n|d(xn, yn)

for x̃ = {xn}∞n=−∞ and ỹ = {yn}∞n=−∞. In order to define unstable manifolds, we need the

concept of inverse limit space denoted by Mf , which means it is a subspace of the product

space MZ, and fxn = xn+1, n ∈ Z, for x̃ = {xn}
+∞
n=−∞ ∈ Mf . It is clear that Mf is a closed

subspace of MZ. Let Π: Mf → M be the projection such that for x̃ = {xn}
+∞
n=−∞, Π(x̃) = x0.

Let τ : Mf → Mf be the left shift operator.

Consider the pull back bundle E = Π∗TM . The tangent map Df on TM induces a fiber

preserving map on E with respect to the left shift operator τ , defined by Π∗ ◦Df ◦Π∗, which

is still denoted by Df for simplicity.

Now, we give the definition of partial hyperbolicity.

Definition 2.1 f is said to be (uniformly) partially hyperbolic if there exists a continuous

splitting of the pull back bundle E into three subbundles, i.e., for any x̃ ∈ Mf , E(x̃) = Es(x̃)⊕

Ec(x̃)⊕Eu(x̃) and constants λ1, λ
′
1, λ2, λ2

′ and C with 0 < λ1 < 1 < λ2, λ1 < λ1
′ ≤ λ2

′ < λ2

and C > 0 such that for each x̃ ∈ Mf ,

(i) Dx̃f(E
k(x̃)) = Ek(τ(x̃)), for k = s, c, u;

(ii) for vs ∈ Es(x̃) and n ∈ Z
+, ‖Dx̃f

nvs‖ ≤ Cλ1
n‖vs‖;

(iii) for vc ∈ Ec(x̃) and n ∈ Z
+, C−1(λ1

′)
n
‖vc‖ ≤ ‖Dx̃f

nvc‖ ≤ C(λ2
′)n‖vc‖;

(iv) for vu ∈ Eu(x̃) and n ∈ Z
+, ‖Dx̃f

nvu‖ ≥ C−1λ2
n‖vu‖.

Denote M(f) the set of all f -invariant Borel measures on M , and denote M(τ) the set

of all τ -invariant measures on Mf . On one hand, for any µ ∈ M(f), there is a unique τ -

invariant measure µ̃ on Mf corresponding to µ with Π(µ̃) = µ (see [12, Proposition I.3.1]); on
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the other hand, for any µ̃ ∈ M(τ), µ := Π(µ̃) is an f -invariant measure on M . In addition, µ is

ergodic with respect to f if and only if µ̃ is ergodic with respect to τ . For more details on the

relationship between M(f) and M(τ), the reader can refer to [12, I.3]. In the remaining of this

paper, we always denote µ and µ̃ the measures on M and Mf , respectively, with Π(µ̃) = µ.

From now on, let (f,M, µ) be a dynamical system, where f is a partially hyperbolic en-

domorphism, and µ is an f -invariant Borel measure. Let µ̃ be the corresponding measure on

Mf .

For x̃ = {xn}∞n=−∞ ∈ Mf and ǫ > 0 small enough, define

Wu
ǫ (x̃, f) :=

{
z0 ∈ M : There exists z̃ ∈ Mf with Π(z̃) = z0,

d(z−n, x−n) < ǫ for n ∈ N and lim sup
n→∞

1

n
log d(z−n, x−n) ≤ − logλ2

}
,

where λ2 is the constant in Definition 2.1. Wu
ǫ (x̃, f) is called a local unstable manifold of f at

x̃. Now we have the following theorem, which is stated for hyperbolic endomorphisms, while it

is still valid for our partially hyperbolic case. The reader can also refer to [11, 15, 21] for more

details.

Theorem 2.1 (see [12, Theorem IV.2.1]) Let f be a partially hyperbolic endomorphism.

Then there exist a continuous family of C1 embedded disks {Du
x̃}x̃∈Mf in M and constants

0 < λ < 1 and ǫ > 0 such that

(i) Tx0D
u
x̃ = Eu(x0), for any x̃ ∈ Mf ;

(ii) for any z0 ∈ Du
x̃, there exists unique z̃ ∈ Mf such that Π(z̃) = z0 and

d(z−n, x−n) ≤ λnd(z0, x0) (2.1)

for n ∈ Z
+;

(iii) Du
x̃ ∩B(x0, ǫ) = Wu

ǫ (x̃, f), where B(x0, ǫ) = {y ∈ M : d(y, x) < ǫ}.

Then we can define

W̃u
ǫ (x̃, f) := {z̃ ∈ Mf : Π(z̃) ∈ Wu

ǫ (x̃, f) and z̃ satisfies (2.1)}.

Sometimes, we will use the notation Wu
loc(x̃, f) and W̃u

loc(x̃, f) for Wu
ǫ (x̃, f) and W̃u

ǫ (x̃, f)

respectively.

Remark 2.1 According to Theorem 2.1, it is clear that

Π|
W̃u

loc(x̃,f)
: W̃u

loc(x̃, f) → Wu
loc(x̃, f)

is a bijection, which is crucial for our subsequent proofs.

Now we define

Wu(x̃, f) =
{
z0 ∈ M : There exists z̃ with Π(z̃) = z0

and lim sup
n→+∞

1

n
d(z−n, x−n) ≤ − logλ2

}
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and

W̃u(x̃, f) =
{
z̃ ∈ Mf : Π(z̃) ∈ Wu(x̃, f) with lim sup

n→+∞

1

n
d(z−n, x−n) ≤ − logλ2

}
,

where λ2 is the constant in Definition 2.1. We call Wu(x̃, f) the global unstable set at x̃. It

can also be proved as in [22] that there exists a sequence of C1 embedded disks {W−n(x̃)}
+∞
n=0

in M such that fW−n(x̃) ⊃ W−(n−1)(x̃) for n ∈ Z
+ and

Wu(x̃, f) =

+∞⋃

n=0

fnW−n(x̃),

which shows that Wu(x̃, f) is in fact an immersed submanifold of M tangent at Π(x̃) to

Eu(Π(x̃)). Then we denote the set {Wu(x̃, f) : x̃ ∈ Mf} by Wu, which is called Wu-foliation.

A family of sets U = {Ui}i∈I is called a cover of Mf , if it satisfies

⋃

i∈I

Ui ⊃ Mf ,

where I is an index set. Denote by U(x̃) the element of U containing x̃. It is clear that

Π(U) := {Π(Ui)}i∈I is a cover of M . U is called a Borel cover, if Π(U) is a Borel cover of M .

Specially, if Π(U) is an open cover of M , U is called an open cover. A cover is said to be finite,

if I is a finite set. Denote by CMf and Co
Mf the set of finite Borel covers and the set of finite

open covers respectively.

For a Borel cover U of Mf , define diam(U) as follows

diam(U) := diam(Π(U)) = max
U∈U

diam(Π(U)),

where diam(Π(U)) = sup
x,y∈Π(U)

d(x, y).

It is clear that a measurable partition α of Mf can be regarded as a Borel cover of Mf , and

Π(α) is a Borel cover of M.

Now we give some definitions related to measurable partitions.

Definition 2.2 A measurable partition η of Mf is said to be subordinate to Wu-foliation

if for µ̃-a.e. x̃, η(x̃) has the following properties:

(i) Π|η(x̃) : η(x̃) → Π(η(x̃)) is bijective;

(ii) there exists a k(x̃)-dimensional (where k(x̃) = dimEu(x0)) C
1 embedded submanifold Wx̃

of M with Wx̃ ⊂ Wu(x̃), such that Π(η(x̃)) ⊂ Wx̃, and Π(η(x̃)) contains an open neighborhood

of x0 in Wx̃.

Given µ̃ ∈ M(τ). For a measurable partition η of Mf , there exists a canonical system

{µ̃η
x̃
}x̃∈Mf of conditional measures of µ̃ associated with η, satisfying

(i) for every measurable set B̃ ∈ Mf , x̃ 7→ µ̃
η
x̃(B̃) is measurable;

(ii) µ̃(B̃) =
∫
Mf µ̃

η
x̃
(B̃)dµ̃(x̃).

See [13] for more details.

For two covers α and β of Mf , α ≥ β means for any element A ∈ α, there is an element

B ∈ β such that A ⊂ B. In the following, we consider a special type of measurable partitions.
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Definition 2.3 A measurable partition ξ of Mf is said to be increasing if τ−1ξ ≥ ξ.

Consider a measurable partition ξ = {Ai}i∈I of Mf . A measurable set B is called a ξ-set if

B =
⋃

A∈I′

A, where I ′ ⊂ I. Denote B(ξ) the σ-algebra of Mf consisting of all measurable ξ-sets.

Given µ̃ ∈ M(τ), define

Bu := {B ∈ Bµ̃(M
f ) : x̃ ∈ B implies W̃u(x̃) ⊂ B},

where Bµ̃(M
f ) is the completion of B(Mf) with respect to µ̃.

The following proposition ensures the existence of increasing measurable partitions, the

reader can see [12, Section IX.2.2] for details.

Proposition 2.1 There exists a measurable partition ξ of Mf which has the following

properties:

(i) τ−1ξ ≥ ξ;

(ii)
∨∞

n=0 τ
−nξ is equal to the partition into single points;

(iii) B(
∧∞

n=0 τ
n(ξ)) = Bu, µ̃-mod 0;

(iv) ξ is subordinate to Wu-foliation of f.

We denote by Qu(Mf ) the set of all increasing measurable partitions subordinate to Wu-

foliation as in Proposition 2.1.

Define Wu(x̃, δ) = {y ∈ Wu(x̃) : dux̃(y, x) ≤ δ}, where dux̃(·, ·) is the distance along Wu(x̃, f).

We can choose ǫ1 > 0 small enough and C0 > 1 such that d(·, ·) ≤ dux̃(·, ·) ≤ C0d(·, ·) on any

local unstable manifold Wu(x̃, ǫ1).

Choose and fix a variable λ0 such that λ0 > ‖DΠ(x̃)f |Eu(x̃)‖ > 1 for any x̃ ∈ Mf . Choose

L > 0 and 0 < ǫ0 ≪ min{ǫ1, L} such that

(i) for any x̃ ∈ Mf , Wu(x̃, L) ∩B(Π(x̃), ǫ0) has only one connected component.

(ii) λ0C0ǫ0 ≪ L.

Let P(Mf ) denote the set of all finite Borel partitions α of Mf with diam(α) < ǫ0. For a

partition α ∈ P(Mf), adapting method in [3], we can construct αu ≥ α satisfying αu(x̃) =

α(x̃) ∩ W̃u(x̃, ǫ0) for any x̃ ∈ Mf , where W̃u(x̃, ρ) = {ỹ ∈ W̃u
loc(x̃) : Π(ỹ) ∈ Wu(x̃, ρ)} and

C0ǫ0 < ǫ0 < L.

Denote by Pu(Mf ) the set of all partitions constructed by above method.

Remark 2.2 By the definition of W̃u
ǫ (x̃, f) and Theorem 2.1, if µ(∂(Π(α))) = 0, η is

a measurable partition subordinate to Wu-foliation, where ∂(Π(α)) =
⋃

A∈α

∂(Π(A)) and for

B ⊂ M , ∂B means the boundary of B.

Given U ∈ Co
Mf . As generalizations of local unstable metric entropy and local unstable

topological entropy in [19], we introduce corresponding notions for endomorphisms, denote

them by hu
µ(f,U|ζ), h

u,+
µ (f,U|ζ) (see Section 3) and hu

top(f,U) (see Section 4), respectively,

where ζ ∈ Pu(Mf) ∪ Qu(Mf ).

Now we can give our main results as follows.

Theorem A Let f be a partially hyperbolic endomorphism, and U ∈ Co
Mf with small enough
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diameter. Then for any µ ∈ M(f) and ζ ∈ Pu(Mf ) ∪ Qu(Mf ), we have

hu
µ(f,U|ζ) = hu,+

µ (f,U|ζ) = hu
µ(f |ζ) = hu

µ(f)

and

hu
top(f,U) = hu

top(f),

where for the definition of hu
µ(f |ζ) and hu

µ(f), see Definition 3.2, hu
top(f) is the unstable topo-

logical entropy, for more details, we refer the reader to the paper [17].

As a corollary of [17, Theorems A and D], we have the following theorem.

Theorem B Let f be a partially hyperbolic endomorphism, and U ∈ Co
Mf with small enough

diameter. Then for any ζ ∈ Pu(Mf ) ∪ Qu(Mf ), we have

hu
top(f,U) = sup

µ∈M(f)

hu
µ(f,U|ζ) = sup

µ∈M(f)

hu,+
µ (f,U|ζ).

We can generalize above results to the unstable pressure for endomorphisms. Firstly, we

have the following theorem. Denote the set

{φ : M → R : φ is continuous}

by C(M).

Theorem C Let f be a partially hyperbolic endomorphism, and U ∈ Co
Mf with small enough

diameter. Then for any φ ∈ C(M), we have

Pu(f, φ,U) = Pu(f, φ).

Applying [17, Theorem C], we can obtain a variational principle as follows.

Theorem D Let f be a partially hyperbolic endomorphism, and U ∈ Co
Mf with small enough

diameter. Then for any φ ∈ C(M), we have

Pu(f, φ,U)

= sup
µ∈M(f)

{
hu
µ(f,U|ζ) +

∫

M

φdµ
}

= sup
µ∈M(f)

{
hu,+
µ (f,U|ζ) +

∫

M

φdµ
}
.

3 Local Unstable Metric Entropy

In this section, we give the precise definition of local unstable metric entropy for a partially

hyperbolic endomorphism.

Firstly we give some knowledge on the information function, which is slightly modified in

our context.

Definition 3.1 Let α and η be two measurable partitions of Mf . The information function

of α with respect to µ̃ is defined as

Iµ̃(α)(x̃) := − log µ̃(α(x̃)),
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and the entropy of α with respect to µ̃ is defined as

Hµ̃(α) :=

∫

Mf

Iµ̃(α)(x̃)dµ̃(x̃) = −

∫

Mf

log µ̃(α(x̃))dµ̃(x̃).

The conditional information function of α with respect to η is defined as

Iµ̃(α|η)(x̃) := − log µ̃η
x̃(α(x̃)),

where {µ̃η
x̃
}x̃∈Mf is a canonical system of conditional measures of µ̃ with respect to η. Then the

conditional entropy of α with respect to η is defined as

Hµ̃(α|η) :=

∫

Mf

Iµ̃(α|η)(x̃)dµ̃(x̃) = −

∫

Mf

log µ̃η
x̃
(α(x̃))dµ̃(x̃).

Now we can give the definition of unstable metric entropy by finite partitions.

Definition 3.2 The conditional entropy of f for a finite measurable partition α of Mf with

respect to η ∈ Pu(Mf ) is defined as

hµ(f, α|η) = lim sup
n→∞

1

n
Hµ̃(α

n−1
0 |η).

The conditional entropy of f with respect to η is defined as

hµ(f |η) = sup
α∈P(Mf )

hµ(f, α|η),

and the conditional entropy of f along Wu-foliation is defined as

hu
µ(f) = sup

η∈Pu(Mf )

hµ(f |η).

In the following, we give some useful conclusions from [17].

Lemma 3.1 (see [17, Proposition 2.14]) For any α ∈ P(Mf ) and η ∈ Pu(Mf ), the map

µ̃ 7→ Hµ̃(α|η) from M(τ) to R
+ ∪ {0} is concave. Moreover, the map µ̃ 7→ hu

µ(f) from M(τ)

to R
+ ∪ {0} is affine.

Lemma 3.2 (see [17, Proposition 2.15]) Let µ̃ ∈ M(τ) and η ∈ Pu(Mf ). Assume that

there exists a sequence of partitions {βn}∞n=1 ⊂ P(Mf) such that β1 < β2 < · · · < βn < · · ·

and B(βn) ր B(η), and moreover, µ(∂(Π(βn))) = 0, for n = 1, 2, · · · . Let α ∈ P(Mf) satisfy

µ(∂(Π(α))) = 0. Then the function µ̃′ 7→ Hµ̃′(α|η) is upper semi-continuous at µ̃, i.e.,

lim sup
µ̃′→µ̃

Hµ̃′(α|η) ≤ Hµ̃(α|η).

Moreover, the function µ̃′ 7→ hu
µ′(f) is upper semi-continuous at µ̃, i.e.,

lim sup
µ̃′→µ̃

hu
µ′(f) ≤ hu

µ(f).

Lemma 3.3 (see [17, Corollary 3.5]) Suppose that µ̃ ∈ M(τ) is ergodic, then for any

α ∈ P(Mf ) and η ∈ Pu(Mf ), we have

hu
µ(f) = hµ(f, α|η) = lim

n→∞

1

n
Hµ̃(α

n−1
0 |η).
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We denote
∨n

j=m τ−jα by αn
m, for any m ≤ n, m, n ∈ Z ∪ {±∞}. Given µ ∈ M(f), now,

we give the definition of hu,+
µ (f,U|ζ). Note that we can still define hµ(f, α|ξ) for ξ ∈ Qu(Mf )

as in Definition 3.2 with η replaced by ξ.

Definition 3.3 For any U ∈ CMf , and ζ ∈ Pu(Mf ) ∪ Qu(Mf ), define

hu,+
µ (f,U|ζ) = inf

α∈P(Mf ),α≥U
hµ(f, α|ζ).

In order to study properties of hu,+
µ (f,U|ζ), which are crucial to the proofs of our main

results, we give some lemmas as follows.

Lemma 3.4 Let α ∈ P(Mf ) with diameter smaller than ǫ0
λ0
, and η ∈ Pu(Mf ). Then for

any n ∈ N, we have

α−1
−n ∨ τnη ≥ (τα)u.

Proof Given x̃ ∈ Mf , let ỹ ∈ (α−1
−n ∨ τnη)(x̃). Thus, we have τ−n(ỹ) ∈ η(τ−n(x̃)), which

implies that

duτ−n(x̃)(Π(τ
−n(ỹ)),Π(τ−n(x̃))) < C0ǫ0.

Thus, we get

du
τ−(n−1)(x̃)(Π(τ

−(n−1)(ỹ)),Π(τ−(n−1)(x̃))) < C0ǫ0λ0 ≪ L.

For the choice of ỹ, we have Π(τ−(n−1)(ỹ)) ∈ Π(α(τ−(n−1)(x̃))), which implies that

d(Π(τ−(n−1)(ỹ)),Π(τ−(n−1)(x̃))) <
ǫ0

λ0
.

As ǫ0 is small enough, we have

duτ−(n−1)(x̃)(Π(τ
−(n−1)(ỹ)),Π(τ−(n−1)(x̃))) <

C0ǫ0

λ0
.

Then, we can obtain

duτ−1(x̃)(Π(τ
−1(ỹ)),Π(τ−1(x̃))) <

C0ǫ0

λ0

by induction. Recall that f is uniformly expanding onWu, we have dux̃(Π(x̃),Π(ỹ)) < C0ǫ0 < ǫ0,

which implies that ỹ ∈ W̃u(x̃, ǫ0). Noticing that ỹ ∈ (τα)(x̃), we have ỹ ∈ (τα)u(x̃), hence we

have

(α−1
−n ∨ (τnη)) ≥ (τα)u.

Because of the arbitrariness of ỹ, we obtain the result we need.

Lemma 3.5 For any η ∈ Pu(Mf ) and ζ ∈ Pu(Mf ) ∪Qu(Mf), Hµ̃(η|ζ) is finite.

Proof Let β ∈ P(Mf ) such that η = βu satisfying αu(x̃) = α(x̃) ∩ W̃u(x̃, ǫ0) for any

x̃ ∈ Mf , then

Hµ̃(η|ζ) = −

∫

Mf

logµζ
x̃
(η(x̃))dµ̃(x̃)

= −

∫

Mf

logµζ
x̃
(β(x̃) ∩ W̃u(x̃, ǫ0))dµ̃(x̃)
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= −

∫

Mf

logµζ
x̃(β(x̃))dµ̃(x̃)

= Hµ̃(β|ζ) ≤ Hµ̃(β) < ∞,

the last inequality is due to the definition of fiberwise finite partition.

Lemma 3.6 hµ(f, α|η) = lim
n→∞

1
n
Hµ̃(α

n−1
0 |η) exists for any η ∈ Pu(Mf ) and any α ∈

P(Mf) with diam(α) < ǫ0
λ0
.

Proof Let β ∈ P such that η = βu. Then we have

Hµ̃(α
m+n−1
0 |η) = Hµ̃(α

n−1
0 |η) +Hµ̃(τ

−nαm−1
0 |αn−1

0 ∨ η)

= Hµ̃(α
n−1
0 |η) +Hµ̃(α

m−1
0 |α−1

−n ∨ τnη)

≤ Hµ̃(α
n−1
0 |η) +Hµ̃(α

m−1
0 |(τα)u)

≤ Hµ̃(α
n−1
0 |η) +Hµ̃(α

m−1
0 |η) +Hµ̃(η|(τα)

u),

in the third inequality, Lemma 3.4 is used. The diameter of (τα)u(x̃) with respect to dux̃ is no

more than C0ǫ0, which implies that (τα)u(x̃) ⊂ W̃u(x̃, ǫ0), hence by Lemma 3.5, we have

Hµ̃(η|(τα)
u) ≤ Hµ̃(β).

Then we have

Hµ̃(α
m+n−1
0 |η) ≤ Hµ̃(α

n−1
0 |η) +Hµ̃(α

m−1
0 |η) +Hµ̃(β),

which means that the sequence {Hµ̃(α
n−1
0 |η) +Hµ̃(β)} is a subadditive sequence. So we have

lim
n→∞

1

n
Hµ̃(α

n−1
0 |η) = lim

n→∞

1

n
(Hµ̃(α

n−1
0 |η) +Hµ̃(β)) = inf

n∈N

1

n
(Hµ̃(α

n−1
0 |η) +Hµ̃(β)).

Lemma 3.7 Let µ ∈ M(f). Then hu
µ(f) = hu

µ(f |η) = hµ(f, α|η) for any η ∈ Pu(Mf ) and

α ∈ P(Mf ) with diam(α) < ǫ0
λ0
.

Proof First we show that α∞
0 ∨ η = ε, where ε is the partition of Mf into points.

Fix x̃ ∈ Mf . If x̃ 6= ỹ and ỹ ∈ (α∞
0 ∨ η)(x̃), then we have ỹ ∈ η(x̃) and τ j(ỹ) ∈ α(τ j(x̃)) for

any j ∈ N. Let k be the first number such that

duτk(x̃)(Π(τ
k(x̃)),Π(τk(x̃))) > C0ǫ0,

meanwhile we have

duτk(x̃)(Π(τ
k(x̃)),Π(τk(x̃))) ≤ λ0d

u
τk−1(x̃)(Π(τ

k−1(x̃)),Π(τk−1(x̃))) ≤ λ0C0ǫ0

by the uniform expansion of Wu, while we have τk(ỹ) ∈ α(τk(x̃)), where a contradiction is

obtained.

Pick up β ∈ Pu(Mf ). Since Hµ̃(β|α
∞
0 ∨ η) = 0, for any ρ > 0, we can choose k ∈ N such

that Hµ̃(β|α
k−1
0 ∨ η) < ρ. Then we have

Hµ̃(β
n−1
0 |η) ≤ Hµ̃(β

n−1
0 |(αk−1

0 ∨ η)n−1
0 ) +Hµ̃((α

k−1
0 ∨ η)n−1

0 |η)

≤ nHµ̃(β|(α
k−1
0 ∨ η)n−1

0 ) +Hµ̃((α
k−1
0 ∨ η)n−1

0 |η)
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≤ nρ+Hµ̃((α
k−1
0 ∨ η)n−1

0 |η).

On the other hand, we have

Hµ̃((α
k−1
0 ∨ η)n−1

0 |η) = Hµ̃(α
n+k−2
0 ∨ τ−(n−1)η|η)

≤ Hµ̃(α
n+k−2
0 |η) +Hµ̃(τ

−(n−1)η|αn+k−2
0 ∨ η)

≤ Hµ̃(α
n+k−2
0 |η) +Hµ̃(η|α

k−1
−(n−1) ∨ τn−1η)

≤ Hµ̃(α
n+k−2
0 |η) +Hµ̃(η|(τα)

u),

in the last inequality, Lemma 3.4 is applied. Then by Lemma 3.6 we have

hµ(f, β|η) = lim
n→∞

1

n
Hµ̃(β

n−1
0 |η)

≤ ρ+ lim
n→∞

1

n
Hµ̃(α

n+k−2
0 |η) + lim

n→∞

1

n
Hµ̃(η|(τα)

u)

= ρ+ hµ(f, α|η).

Since ρ > 0 is arbitrary, we have

hµ(f, β|η) ≤ hµ(f, α|η),

then by the arbitrariness of β, we complete the proof.

The following lemma gives the relationship between hµ(f, β|η) and hµ(f, β|ξ), whose proof

is similar to that in [19], so we omit its proof.

Lemma 3.8 Let α ∈ P(Mf), η ∈ Pu(Mf ) and ξ ∈ Qu(Mf ). Then for µ-a.e. x̃ ∈ Mf , we

have

lim inf
n→∞

1

n
Iµ̃(α

n−1
0 |ξ)(x̃) = lim inf

n→∞

1

n
Iµ̃(α

n−1
0 |η)(x̃)

and

lim sup
n→∞

1

n
Iµ̃(α

n−1
0 |ξ)(x̃) = lim sup

n→∞

1

n
Iµ̃(α

n−1
0 |η)(x̃).

We also need the following theorem from [17].

Theorem 3.1 (see [17, Theorem B] Let f be a C1 partially hyperbolic endomorphism.

Suppose that µ is an ergodic measure of f . For any α ∈ P(Mf ), η ∈ Pu(Mf ), we have

lim
n→∞

1

n
Iµ̃(α

n−1
0 |η)(x̃) = hµ(f, α|η).

Now we give the following proposition, which plays an important role in this paper.

Proposition 3.1 For any ζ ∈ Pu(Mf ) ∪Qu(Mf ) and α ∈ P(Mf) with diam(α) < ǫ0
λ0
, we

have

hu
µ(f) = hu

µ(f |ζ) = hµ(f, α|ζ) = lim
n→∞

1

n
Hµ̃(α

n−1
0 |ζ).

Proof We prove Proposition 3.1 in two cases.

Case 1 For ζ ∈ Pu(Mf ).

This is the results of Lemmas 3.6–3.7.
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Case 2 For ζ ∈ Qu(Mf ).

Given η ∈ Pu(Mf ), and denote ζ by ξ. By Lemmas 3.1–3.2, we know that µ̃ 7→ hµ(f, α|η)

is affine and upper semi-continuous, for any µ̃ ∈ M(τ), by the Ergodic Decomposition theorem,

let µ̃ =
∫
Me(τ)

ν̃dm(ν̃), where Me(τ) is the set of ergodic measures with respect to τ and m is

the measure on M(τ) such that m(M(τ)) = 1, then by Theorem 3.1, we have

hµ(f, α|η) =

∫

Me(τ)

hν(f, α|η)dm(ν̃) =

∫

Mf

lim
n→∞

1

n
Iµ̃(α

n−1
0 |η)(x̃)dµ̃.

Then by Fatou’s lemma and Lemma 3.8, we have

hµ(f, α|ξ) ≥ lim inf
n→∞

1

n
Hµ̃(α

n−1
0 |ξ)

≥

∫

Mf

lim inf
n→∞

1

n
Iµ̃(α

n−1
0 |ξ)(x̃)dµ̃

=

∫

Mf

lim inf
n→∞

1

n
Iµ̃(α

n−1
0 |η)(x̃)dµ̃

= hµ(f, α|η).

On the other hand, we have

Hµ̃(α
n−1
0 |ξ) ≤ Hµ̃(α

n−1
0 |η) +Hµ̃(η|ξ),

by Lemma 3.5 we know that Hµ̃(η|ξ) < ∞, thus we have

hµ(f, α|ξ) = lim sup
n→∞

1

n
Hµ̃(α

n−1
0 |ξ) ≤ lim

n→∞

1

n
Hµ̃(α

n−1
0 |η) = hµ(f, α|η).

Combining Lemmas 3.3 and 3.7, we complete the proof of Proposition 3.1.

The following corollary can be obtained easily from Proposition 3.1.

Corollary 3.1 If U ∈ CMf , has diameter smaller than ǫ0
λ0
, then

hu,+
µ (f,U|ζ) = hu

µ(f |ζ) = hu
µ(f)

for any ζ ∈ Pu(Mf ) ∪ Qu(Mf ).

Now we begin to define another notation of local unstable metric entropy hu
µ(f,U|ζ).

Definition 3.4 For ζ ∈ Pu(Mf ) ∪ Qu(Mf ), define

hu
µ(f,U|ζ) := lim sup

n→∞

1

n
Hµ̃(U

n−1
0 |ζ),

where Hµ̃(U|ζ) = inf
α∈P(Mf ),α≥U

Hµ̃(α|ζ).

The following proposition gives the relation between hu
µ(f,U|ζ) and hu,+

µ (f,U|ζ), whose

proof is similar to that of [19, Proposition 3.18].

Proposition 3.2 hµ(f,U|ζ) ≤ hu+
µ (f,U|ζ) for any ζ ∈ Pu(Mf ) ∪ Qu(Mf ).
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In the definition of hu
µ(f,U|ζ), we use “lim sup”, in fact, we can show that for any η ∈

Pu(Mf), it can be replaced by “lim”. To prove this, we need some lemmas.

Using the similar method to that for Lemma 3.4, we have the following lemma.

Lemma 3.9 Let α ∈ P(Mf) with α ≥ Un−1
0 , and η ∈ Pu(Mf ). Then τnα ∨ τnη ≥ (τnα)u

for any n ∈ N.

Lemma 3.10 For any η ∈ Pu(Mf ), hu
µ(f,U|η) := lim

n→∞

1
n
Hµ̃(U

n−1
0 |η) exists.

Proof Let β ∈ P(Mf) with η = βu. Choose any α, γ ∈ P(Mf) such that α ≥ Un−1
0 and

γ ≥ Um−1
0 , then we have

Hµ̃(U
m+n−1
0 |η) ≤ Hµ̃(α ∨ τ−nγ|η)

= Hµ̃(α|η) +Hµ̃(γ|τ
nα ∨ τnη)

≤ Hµ̃(α|η) +Hµ̃(γ|(τ
nα)u)

≤ Hµ̃(α|η) +Hµ̃(γ|η) +Hµ̃(η|(τ
nα)u)

≤ Hµ̃(α|η) +Hµ̃(γ|η) +Hµ̃(β),

in the third and last inequality Lemmas 3.9 and 3.5 are applied respectively. Because of the

arbitrariness of α and γ, we have

Hµ̃(U
m+n−1
0 |η) ≤ Hµ̃(U

m−1
0 |η) +Hµ̃(U

n−1
0 |η) +Hµ̃(β).

As in the proof of Lemma 3.6, we have shown that {Hµ̃(U
n−1
0 |η) + Hµ̃(β)} is a subadditive

sequence, which implies what we need.

The following lemmas are similar to [19, Proposition 3.17 and Lemma 2.5(ii)] respectively.

Lemma 3.11 hu
µ(f,U|η) is independent of η ∈ Pu(Mf).

Lemma 3.12 Fix N ∈ N, for any k ≥ 1 and α ≥ UN−1
0 , we have

τNkα ∨ · · · ∨ τNα ∨ τNkη ≥ (τNα)u.

Lemma 3.13 For η ∈ Pu(Mf ), we have

(i) hu
µ(f,U|η) =

1
n
hu
µ(f

n,Un−1
0 |η) for any n ∈ N,

(ii) hu
µ(f,U|η) = lim

n→∞

1
n
hu,+
µ (fn,Un−1

0 |η).

Proof In the proof, Lemmas 3.5, 3.12 and Proposition 3.2 are used. The proof is completely

parallel to that of [19, Lemma 3.19], so we omit it here.

Lemma 3.14 hu,+
µ (fn,Un−1

0 |η) = nhu
µ(f |η) for any η ∈ Pu(Mf ) and n ∈ N.

Proof Choose arbitrary α ≥ Un−1
0 , as in Lemma 3.7, we can show that

η ∨
∞∨

i=0

τ−niα = ε.

Then following the line of the proof of [19, Lemma 3.13], for any β ∈ P(Mf) and ρ > 0 we can

show that

hu
µ(f

n, β|η) ≤ ρ+ hµ(f
n, α|η).
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Then by the arbitrariness of β, ρ and α, we have

nhu
µ(f |η) = hu

µ(f
n|η) ≤ hu,+

µ (fn,Un−1
0 |η).

And it is clear that nhu
µ(f |η) ≥ hu,+

µ (fn,Un−1
0 |η).

4 Local Unstable Topological Entropy and Pressure

In this section, we give the definition of local unstable topological entropy of f with respect

to a Borel cover U ∈ CMf .

Let K ⊂ Mf . For any U ∈ CMf , denote

N(K,U) := min
{
the cardinality of V : V ⊂ U ,

⋃

V ∈V

V ⊃ K
}
,

and denote logN(K,U) by H(U|K).

Definition 4.1 For any U ∈ CMf , we define

hu
top(f,U) := lim

δ→0
hu
top(f,U , δ),

where

hu
top(f,U , δ) = sup

x̃∈Mf

htop(f,U|W̃u(x̃, δ)),

htop(f,U|W̃u(x̃, δ)) := lim sup
n→∞

1

n
H(Un−1

0 |W̃u(x̃, δ))

and W̃u(x̃, δ) = {ỹ ∈ Mf : Π(ỹ) ∈ Wu(x̃, δ) and satisfies (2.1)}.

Using the same method in [3, 17, 19], we can prove that hu
top(f,U) is independent of δ.

Lemma 4.1 hu
top(f,U) = hu

top(f,U , δ) for any δ > 0.

As a generalization of local unstable topological entropy, we can give the definition of local

unstable pressure of f .

Definition 4.2 Let φ ∈ C(M). Define

Pu(f, φ, x̃, δ, n,U) = inf
{ ∑

V ∈V

sup
ỹ∈V ∩W̃u(x̃,δ)

exp(Snφ)(Π(ỹ)) :

V ∈ P(Mf), V ≥ Un−1
0

}
,

where Snφ(x) :=
n−1∑
i=0

φ(f i(x)) for x ∈ M . Then Pu(f, φ,U|W̃u(x̃, δ)) is defined as

Pu(f, φ,U|W̃u(x̃, δ)) = lim sup
n→∞

1

n
logPu(f, φ, x̃, δ, n,U).

Next, we define

Pu(f, φ,U , δ) = sup
x̃∈Mf

Pu(f, φ,U|W̃u(x̃, δ)).

Then the local unstable pressure of f with respect to φ is defined as

Pu(f, φ,U) = lim
δ→0

Pu(f, φ,U , δ).
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Now we give the relation between local unstable metric entropy and local unstable topolog-

ical entropy.

Proposition 4.1 Let µ ∈ M(f) and U ∈ CMf . Then for any ζ ∈ Pu(Mf) ∪ Qu(Mf ), we

have

hu
µ(f,U|ζ) ≤ hu

top(f,U).

Proof Fix δ > 0 such that ζ(x̃) ⊂ W̃u(x̃, δ). In the next, for any V = {Vj}kj=1 ∈ Co
Mf , we

will construct a finite partition α ∈ P(Mf) with α ≥ V such that

Hµ̃(α|ζ) ≤

∫

Mf

logN(W̃u(x̃, δ),V)dµ̃(x̃).

For any ỹ ∈ Mf , we can find a subset Iỹ(x̃) of {1, 2, · · · , k} with minimal cardinality no more

than N(W̃u(ỹ, δ),V) such that ⋃

j∈Iỹ

Vj ⊃ ζ(ỹ).

Then following the way in [19], we can construct a partition α = {Aj}Nj=1 of Mf with α ≥ V

such that

Hµ̃(α|ζ) ≤

∫

Mf

logN(W̃u(ỹ, δ),V)dµ̃(ỹ). (4.1)

Then by Fatou’s lemma, we have

hu
µ(f,U|ζ) = lim sup

n→∞

1

n
Hµ̃(U

n−1
0 |ζ)

≤ lim sup
n→∞

∫

Mf

1

n
logN(W̃u(x̃, δ),Un−1

0 )dµ̃(x̃)

≤

∫

Mf

lim sup
n→∞

1

n
logN(W̃u(x̃, δ),Un−1

0 )dµ̃(x̃)

=

∫

Mf

htop(f,U|W̃u(x̃, δ))dµ̃(x̃)

≤

∫

Mf

max
x̃∈Mf

htop(f,U|W̃u(x̃, δ))dµ̃(x̃)

= hu
top(f,U),

which completes the proof of Proposition 4.1.

5 Unstable Topological Conditional Entropy and Unstable Tail

Entropy

In this section, we give the definitions of unstable topological conditional entropy and un-

stable tail entropy, which are useful in the proof of Theorem A, for the case when ξ ∈ Qu(Mf).

Definition 5.1 For Y ∈ Mf and any two covers U , V ∈ CMf , define

Nu(Y,U) = sup
ỹ∈Y

N(Y ∩ W̃u(ỹ, δ),U)
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and

Hu(Y,U) = logNu(Y,U),

and if Y = ∅, we set Hu(∅,U) = 0. Define

Nu(U|V) = max
V ∈V

Nu(V,U)

and

Hu(U|V) = logNu(U|V).

The following proposition is a collection of properties for Hu, whose proof is simple.

Proposition 5.1 (i) Hu(Y,U) ≤ Hu(Z,V) if Y ⊂ Z and V ≥ U .

(ii) Hu(U1|V1) ≤ Hu(U2|V2) if U2 ≥ U1 and V1 ≥ V2.

(iii) Hu(Y,U) = sup
ỹ∈Y

logN(τ−1(Y ) ∩ τ−1(W̃u(ỹ, δ)), τ−1U).

(iv) Hu(U ∨ V|W) ≤ Hu(U|W) +Hu(V|U ∨W).

(v) Hu(U1 ∨ V1|U2 ∨ V2) ≤ Hu(U1|U2) +Hu(V1|V2).

(vi) Hu(Y,U ∨ V) ≤ Hu(Y,U) +Hu(Y,V).

(vii) Hu(Mf ,U) ≤ Hu(Mf ,V) +Hu(U|V).

(viii) Hu(U|V) ≤ Hu(U|W) +Hu(W|V).

Lemma 5.1 If diam(V) < ǫ0 ≪ δ, then lim
n→∞

1
n
Hu(Un−1

0 |Vn−1
0 ) exists.

Proof Firstly, we show that V ∩ τn(W̃u(ỹ, δ)) = V ∩ W̃u(τn(ỹ), δ) for any V ∈ Vm−1
−n and

ỹ ∈ τ−nV . Because V ∈ Vm−1
−n , we know that if z̃ ∈ V ∩ τn(W̃u(ỹ, δ)), then

duτn−j(ỹ)(Π(τ
−j(z̃)),Π(τ−j(ỹ))) ≤ C0ǫ0

for 0 ≤ j ≤ n, so we have

duτn(ỹ)(Π(z̃),Πτ
n(ỹ)) ≤ C0ǫ0

which implies that z̃ ∈ V ∩ W̃u(τn(ỹ), δ). Then by Proposition 5.1, we have

Hu(Um+n−1
0 |Vm+n−1

0 )

≤ Hu(Un−1
0 |Vm+n−1

0 ) +Hu(τ−nUm−1
0 |τ−nVm−1

−n )

≤ Hu(Un−1
0 |Vn−1

0 )+

log max
V ∈Vm−1

−n

sup
ỹ∈τ−nV

N(τ−nV ∩ (W̃u(ỹ, δ)), τ−nUm−1
0 )

= Hu(Un−1
0 |Vn−1

0 ) + log max
V ∈Vm−1

−n

sup
ỹ∈τ−nV

N(V ∩ τnW̃u(ỹ, δ),Um−1
0 )

= Hu(Un−1
0 |Vn−1

0 ) + log max
V ∈Vm−1

−n

sup
τn(ỹ)∈V

N(V ∩ W̃u(τn(ỹ), δ),Um−1
0 )

= Hu(Un−1
0 |Vn−1

0 ) +Hu(Um−1
0 |Vm−1

−n )

≤ Hu(Un−1
0 |Vn−1

0 ) +Hu(Um−1
0 |Vm−1

0 ),

which means that {Hu(Un−1
0 |Vn−1

0 )} is subadditive, hence we complete the proof.

Because of Lemma 5.1, we have the following definition.
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Definition 5.2 The unstable conditional entropy of f on the cover U with respect to the

cover V is defined as

hu(f,U|V) = lim
n→∞

1

n
Hu(Un−1

0 |Vn−1
0 ).

And define hu(f, Y,U) = lim sup
n→∞

1
n
Hu(Y,Un−1

0 ).

The unstable conditional entropy with respect to V is defined as

hu(f |V) = sup
U∈Co

Mf

hu(f,U|V).

And define hu(f, Y ) = sup
U∈Co

Mf

hu(f, Y,U).

The unstable topological conditional entropy of f in the sense of Misiurewicz is defined as

h∗u(f) := inf
V∈Co

Mf

hu(f |V).

The following proposition is a collection of properties of unstable conditional entropy.

Proposition 5.2 (i) hu(f, Y,U) ≤ hu(f, Z,V) if Y ⊂ Z and V ≥ U .

(ii) hu(f,U1|V1) ≤ hu(f,U2|V2) if U2 ≥ U1 and V1 ≥ V2.

(iii) hu(f,Mf ,U) ≤ hu(f,Mf ,V) + hu(f,U|V).

(iv) hu(f,U|V) ≤ hu(f,U|W) + hu(f,W|V).

(v) hu
top(f,U) ≤ hu

top(f,V) + hu(f,U|V).

Proof (i)–(iv) are simple. For (v), by Lebesgue Dominated Convergence theorem, we have

hu(f,Mf ,U) = hu
top(f,U),

then by Proposition 5.1, we obtain what we need.

The following proposition is important.

Proposition 5.3

hu(f,Mf ) ≤ hu(f,Mf ,U) + hu(f |U)

and

hu
top(f) ≤ hu

top(f,U) + hu
top(f |U).

Proof The two inequalities can be obtained by Proposition 5.2(iii) and (v), respectively.

In the next, we begin to define the unstable tail entropy of f in the sense of Bowen.

Fix δ > 0, for ǫ > 0, x̃ ∈ Mf and Y ⊂ Mf , a subset Ẽn of W̃u(x̃, δ) is called an (n, ǫ)-

spanning set of Y ∩ W̃u(x̃, δ) if for any ỹ1, ỹ2 ∈ Ẽn, we have dn(ỹ1, ỹ2) ≤ ǫ, which means

duτ j(x̃)(Π(τ
j(ỹ1)),Π(τ

j(ỹ2))) ≤ ǫ for 0 ≤ j ≤ n− 1.

Denote

Ru
n(W̃

u(x̃, δ), ǫ) := the smallest cardinality of (n, ǫ)-spanning sets of Y ∩ W̃u(x̃, δ).
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Then define

run(Y, ǫ) = sup
ỹ∈Y

Ru
n(W̃

u(ỹ, δ), ǫ),

ru(Y, ǫ) = lim sup
n→∞

1

n
log run(Y, ǫ)

and

h
u
(f, Y ) := lim

ǫ→0
ru(Y, ǫ).

For ǫ > 0, denote
∞⋂
n=1

B̃n(x̃, ǫ) by Φ(x̃, ǫ), where

B̃n(x̃, ǫ) = {ỹ ∈ Mf : dn(x̃, ỹ) < ǫ}

and dn(x̃, ỹ) < ǫ means d(Π(τk(x̃)),Π(τk(x̃))) < ǫ for 0 ≤ k ≤ n − 1. Now we can give the

following definition.

Definition 5.3

h∗u(f, ǫ) = sup
x̃∈Mf

h
u
(f, x̃,Φ(x, ǫ)).

The following proposition gives the relation between unstable conditional entropy and un-

stable tail entropy, whose proof is completely similar to that of [19, Proposition 4.10], so we

omit it here. For U ∈ Co
Mf , let Leb(U) be the Lebesgue number of Π(U).

Proposition 5.4 For Y ∈ Mf and U ,V ∈ Co
Mf with C0diam(U) < ǫ <

Leb(V)
2 .

N(Y ∩ W̃u(ỹ, δ),Vn−1
0 ) ≤ run(Y, ǫ) ≤ N(Y ∩ W̃u(ỹ, δ),Un−1

0 ).

In fact, in our setting, both unstable conditional entropy and unstable tail entropy vanish,

i.e., we have the following theorem.

Theorem 5.1

h∗u(f) = 0

and

h∗u(f, ǫ) = 0

for any ǫ > 0 small enough.

Proof For U ∈ CMf with diam(U) ≪ ǫ0, we show that hu(f |U) = 0. For any ǫ > 0, choose

W ∈ Co
Mf with Leb(W) = 3ǫ. Then by Proposition 5.4, we have

max
U∈Un−1

0

sup
ỹ∈U

logN(U ∩ W̃u(ỹ, δ),Wn−1
0 )

≤ max
U∈Un−1

0

log run(U, ǫ)

≤ log run(B̃n(x̃, ǫ0), ǫ). (5.1)

Fix ỹ ∈ B̃n(x̃, ǫ0). Let z̃ ∈ B̃n(x̃, ǫ0) ∩ W̃u(ỹ, δ), which implies that

d(Π(τk(z̃)),Π(τk(ỹ))) ≤ 2ǫ0
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for any 0 ≤ k ≤ n− 1. Thus we have

duτk(x̃)(Π(τ
k(z̃)),Π(τk(ỹ))) ≤ 2C0ǫ0

for any 0 ≤ k ≤ n− 1, which means

B̃n(x̃, ǫ0) ∩ W̃u(ỹ, δ) ⊂ Bu
n(ỹ, 2C0ǫ0).

Noticing that

Bu
n(ỹ, 2C0ǫ0) ⊂ τ−nBu(τn(ỹ), 2C0ǫ0),

where Bu(x̃, ρ) := {ỹ ∈ W̃u(x̃) : dux̃(Π(x̃),Π(ỹ)) < ρ}, we can find z̃j , 1 ≤ j ≤ N such that

Bu(τn(ỹ), 2C0ǫ0) ⊂
N⋃

j=1

Bu(τn(z̃j), ǫ),

where N = D
(
2C0

ǫ0
ǫ

)dimEu

for some D > 1. So we have

B̃n(x̃, ǫ0) ∩ W̃u(ỹ, δ) ⊂
N⋃

j=1

Bu
n(z̃j , ǫ).

Thus

run(B̃n(x̃, ǫ0), ǫ) ≤ N.

By (5.1) we have

lim
n→∞

1

n
Hu(Wn−1

0 |Un−1
0 )

= lim
n→∞

1

n
max

U∈Un−1
0

sup
ỹ∈U

logN(U ∩ W̃u(ỹ, δ),Wn−1
0 )

= lim
n→∞

1

n
run(B̃n(x̃, ǫ0), ǫ)

≤ lim
n→∞

1

n
logD

(
2C0

ǫ0

ǫ

)dimEu

= 0,

which implies that hu(W|U) = 0, because of the arbitrariness of W , we know that hu(f |U) = 0.

As in the proof of [19, Theorem 1.3], we have that W̃u(ỹ, δ) ∩ Φ(x̃, ǫ) contains at most one

point due to the expansion of f along Wu. Then following the line of the proof of [19, Theorem

1.3], we have

h∗u(f, ǫ) = 0

for ǫ > 0 small enough. Now we complete the proof of Theorem 5.1.

6 Variational Principles for Local Unstable Entropy and Unstable

Pressure

In this section, we prove Theorem A, then variational principles for local unstable entropy

and unstable pressure are obtained. First of all, we give two propositions as follows.
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Proposition 6.1 For any µ ∈ M(f), ζ ∈ Pu(Mf ) ∪Qu(Mf ), and U , V ∈ CMf with small

enough diameter, we have

Hu
µ̃ (V|ζ) ≤ Hu

µ̃ (U|ζ) +Hu(V|U).

Proof Let V = {V1, V2, · · · , Vm} and β ∈ P(Mf ) such that β ≥ U . Let B ∈ β. For

each ỹ ∈ B, there exists Iỹ ⊂ {1, 2, · · · ,m} with minimal cardinality no more than Nu(V|β)

such that
⋃

j∈Iỹ

Vi ⊃ B ∩ ζ(ỹ). Thus we can choose ỹ1, ỹ2, · · · , ỹs ∈ B such that for each ỹ ∈ B,

Iỹ = Iỹj
for some 1 ≤ i ≤ s. Then as in the proof of Proposition 4.1, we can contruct a partition

γB of B, then a partition γ =
⋃

B∈β

γB of Mf . According to the construct of γ, we know that

N(γ|β ∨ ζ) ≤ Nu(V|β),

where

N(γ|β ∨ ζ) = max
B∈β

sup
ỹ∈B

N(B ∩ ζ(ỹ), γ).

Then we have

Hµ̃(γ|ζ) ≤ Hµ̃(β|ζ) +Hµ̃(γ|β ∨ ζ)

= Hµ̃(β|ζ) +

∫

Mf

H
µ
β∨ζ

x̃

(γ)dµ̃

≤ Hµ̃(β|ζ) + logNu(γ|β ∨ ζ)

≤ Hµ̃(β|ζ) + logNu(V|U).

Thus

Hu
µ̃ (V|ζ) ≤ Hµ̃(γ|ζ)

≤ Hµ̃(β|ζ) +Hu(V|U).

Since β ≥ U is arbitrary, we complete the proof.

Proposition 6.2 For any µ ∈ M(f), ζ ∈ Pu(Mf ) ∪ Qu(Mf ), U ∈ CMf with sufficiently

small diameter, we have

hu
µ(f |ζ) ≤ hu

µ(f,U|ζ) + hu(f |U).

Proof Proposition 6.2 can be obtained from Proposition 6.1 easily, so we omit the proof.

Proof of Theorem A We divide the proof into two cases.

Case 1 For η ∈ Pu(Mf ).

Let U ∈ CMf with diam(U) ≪ ǫ0. By Corollary 3.1, we know that

hu,+
µ (f,U|ζ) = hu

µ(f |ζ) = hu
µ(f). (6.1)

By Lemmas 3.13–3.14, we have

hu
µ(U|η) = lim

n→∞

1

n
hu,+
µ (fn,Un−1

0 |η) = lim
n→∞

1

n
nhu

µ(f |η) = hu
µ(f |η). (6.2)
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Then by (6.1), (6.2) and Proposition 4.1, we know that

hu
µ(f) = hu

µ(f,U|ζ) ≤ hu
top(f,U).

By the variational principle for unstable entropy of f , we can obtain

hu
top(f) = sup

µ∈M(f)

hu
µ(f) ≤ hu

top(f,U).

And it is easy to see that hu
top(f,U) ≤ hu

top(f), then we have

hu
top(f,U) = hu

top(f).

This ends the proof of Theorem A for η ∈ Pu(Mf ).

Case 2 For ξ ∈ Qu(Mf ).

Let U ∈ CMf . By Theorem 5.1 and Proposition 6.2, we have

hu
µ(f |ζ) = hu

µ(f,U|ζ).

By Corollary 3.1, we know that

hu
µ(f |ζ) = hu,+

µ (f,U|ζ).

By Proposition 5.3 and Theorem 5.1, we have

hu
top(f) ≤ hu

top(f,U),

and it is clear that for U ∈ Co
Mf , we have

hu
top(f) ≥ hu

top(f,U),

which completes the proof.

As an application of Theorem A, following the line of [19, Proposition 3.14], we have the

following proposition.

Proposition 6.3 For U ∈ Co
Mf , the local unstable entropy map µ 7→ h+

µ (f,U|η) is upper

semi-continuous for η ∈ Pu(Mf ).

Now we begin to discuss the variational principle for local pressure. Firstly, we need the

following lemma from [10], which is adapted in our paper. For V ∈ CMf , let α be the Borel

partition generated by V , let

P∗(V)

= {β ∈ P(Mf) : β ≥ V and each atom of β is the union of some atoms of α}.

Denote φ̃(x̃) := φ(Π(x̃)), it is clear that
∫
M

φdµ =
∫
Mf φ̃dµ̃.

Lemma 6.1 (see [10, Lemma 2.1]) Let U ∈ CMf and φ ∈ C(M), then we have

inf
V∈C

Mf ,V≥U

{ ∑

B∈V

sup
ỹ∈B∩W̃u(x̃,δ)

φ̃(ỹ)
}
= min

β∈P∗(U)

{ ∑

B∈β

sup
ỹ∈B∩W̃u(x̃,δ)

φ̃(ỹ)
}
.
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Now we begin to prove Theorem C. Firstly, we prove the following proposition.

Proposition 6.4 For any ζ ∈ Pu(Mf ) ∩ Qu(Mf ), we have

hu
µ(f,U|ζ) +

∫

M

φdµ ≤ Pu(f, φ,U).

Proof Let ζ ∈ Pu(Mf ) ∩Qu(Mf ), we have

hu
µ(f,U|ζ) +

∫

M

φdµ

= hu
µ(f,U|ζ) +

∫

Mf

φ̃dµ̃

= lim sup
n→∞

1

n
Hµ̃(U

n−1
0 |ζ) +

∫

Mf

φ̃dµ̃(x̃)

= lim sup
n→∞

1

n

∫

Mf

(
H

µ̃
ζ

x̃

(Un−1
0 ) +

∫

Mf

Snφ̃dµ̃
ζ
x̃

)
dµ(x̃), (6.3)

where Snφ̃ :=
n−1∑
i=0

φ̃(τ i(x̃)). Choose δ > 0 such that ζ(x̃) ⊂ W̃u(x̃, δ) for every x̃ ∈ Λ′ ⊂ Mf ,

where µ̃(Λ′) = 1. For any β ∈ P(Mf ), and any x̃ ∈ Λ′, denote {C : C = B ∩ ζ(x̃) for some B ∈

β} by βx̃. Then by Lemma 6.1, we know that there exists a β ∈ P∗(Un−1
0 ) such that

logPu(f, φ, x̃, δ, n,U) = log
( ∑

B∈β

sup
ỹ∈B∩W̃u(x̃,δ)

exp((Snφ̃)(ỹ))
)

≥ log
( ∑

C∈βx̃

sup
ỹ∈C

exp((Snφ̃)(ỹ))
)

≥
∑

C∈βx̃

µ̃
ζ
x̃
(C)

(
sup
ỹ∈C

(Snφ̃)(ỹ)− log µ̃ζ
x̃
(C)

)

= H
µ̃
ζ

x̃

(βx̃) +
∑

C∈βx̃

µ̃
ζ
x̃(C) sup

ỹ∈C

(Snφ̃)(ỹ)

≥ H
µ̃
ζ

x̃

(βx̃) +

∫

Mf

Snφ̃dµ̃
ζ
x̃

≥ H
µ̃
ζ

x̃

(Un−1
0 ) +

∫

Mf

Snφ̃dµ̃
ζ
x̃
. (6.4)

By (6.3) and (6.4), we know that

hu
µ(f,U|ζ) +

∫

M

φdµ =

∫

Mf

(
H

µ̃
ζ

x̃

(Un−1
0 ) +

∫

Mf

Snφ̃dµ̃
ζ
x̃

)
dµ(x̃)

≤ lim sup
n→∞

1

n

∫

Mf

logPu(f, φ, x̃, δ, n,U)dµ(x̃)

≤

∫

Mf

lim sup
n→∞

1

n
logPu(f, φ, x̃, δ, n,U)dµ(x̃)

=

∫

Mf

logPu(f, φ, δ,U)dµ(x̃)

≤ Pu(f, φ,U), (6.5)

where in the third inequality, Fatou’s lemma is applied. This completes the proof.
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Proof of Theorem C By Proposition 6.4, Theorem A and the principle for unstable

pressure for partially hyperbolic endomorphisms obtained in [17], we have

Pu(f, φ) = sup
{
hu
µ(f |ζ) +

∫

M

φdµ : µ ∈ M(f)
}

= sup
{
hu
µ(f,U|ζ) +

∫

M

φdµ : µ ∈ M(f)
}

≤ Pu(f, φ,U).

On the other hand, it is clear that when U ∈ Co
Mf , P

u(f, φ,U) ≤ Pu(f, φ), which completes the

proof.
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