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Abstract Recently, some concepts such as Hom-algebras, Hom-Lie algebras, Hom-Lie

admissible algebras, Hom-coalgebras are studied and some classical properties of algebras

and some geometric objects are extended on them. In this paper by recalling the concept

of Hom-ρ-commutative algebras, the authurs intend to develop some of the most classical

results in Riemannian geometry such as metric, connection, torsion tensor, curvature tensor

on it and also they discuss about differential operators and get some results of differential

calculus by using them. The notions of symplectic structures and Poisson structures are

included and an example of ρ-Poisson bracket is given.
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1 Introduction

One branch of differential geometry is Riemannian geometry that studies Riemannian man-

ifolds (a smooth manifold with a Riemannian metric) (see [26] for more details). Riemannian

geometry was first brought up by Bernhard Riemann in the nineteenth century. The concept of

linear connection is one of the main concepts of the Riemannian geometry, which arose by the

idea of parallel transport along a path in a Riemannian manifold at the end of 19th century (see

[10, 27]). There is no direct and quick way to companion between distance points of a curve

space, however the connection permits to contrast what is happening at these points. Earlier, in

the 1910’s, Albert Einstein discovered that the Riemannian geometry is substantial to general

relativity theory. It is also the foundational revelation for gauge theories. This division into

two branches has led to many representations tending to either the specific (e.g. presented in

tensor notation assuming a coordinate frame and zero torsion) or the abstract (e.g. using the

language of fiber bundles). By worth of its applications, the Riemannian geometry stands at

the nucleus of modern mathematics.

Differential calculus is a branch of mathematics concerned with the determination, properties

and applications of derivatives and differentials in study of functions. The development of

differential calculus is closely dealing with the concept of integral calculus. In this approach,

the differential calculus on the manifold is deduced from the properties of the manifold and it

involves functions on the manifold, differential operators, differential forms and derivatives. If

we denote by d the exterior derivative on differential forms, then the operator d satisfies d2 = 0

that is an important property of this calculus.

Definition of a multiplication over a vector space was the original notion of Hom-algebra

structure, where the structure is twisted by a homomorphism. The structure of Hom-Lie
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algebra appeared first as a generalization of Lie algebra in [13] by Hartwig et al. Physics

and deformations of Lie algebras, in particular Lie algebra of vector fields were the stimulants

to study Hom-Lie structures. Lie algebras are special cases of Hom-Lie algebras in which φ is

the identity map. Also, q-deformations of the Witt and the Virasoro algebras have the structure

of a Hom-Lie algebra. Later Hom-Lie algebras were extended to Hom-associative algebras by

Makhlouf and Silverstrov in [18] and to quasi-Hom Lie and quasi-Lie algebras by Larsson and

Silvestrov in [14–15]. Other interesting Hom-algebraic structures, such as Leibniz and Hom-

Lie admissible algebras, Hom-Lie superalgebras, Hom-alternative algebras, Hom-Hopf algebras,

Hom-coalgebras were studied in [2, 3, 12, 17, 19–20, 25, 28].

Non-commutative geometry is a branch of mathematics concerned with a geometric ap-

proach to non-commutative algebras and with the construction of spaces that are presented

by non-commutative algebras of functions. Extension of the concept of differential forms on

manifolds plays the basic role in non-commutative geometry (see [9, 11, 16, 23] for instance).

Important examples of non-commutative geometry are ρ-commutative algebras. They have a

great ability to generalize geometric objects. Accordingly, Riemannian geometry and its objects

such as metric, connection, curvature, torsion, differential form and also differential calculus

and application to hyperplane are discussed on ρ-commutative algebra by Bongaarts, Ciupala

and Ngakeu in [6–8, 21]. In this paper we recall and study Hom-ρ-commutative algebra and

develop some of the most classical results in Riemannian geometry and differential calculus on

it.

This paper is arranged as follows. In Section 2, we recall some necessary background

knowledge including ρ-commutative and Hom-ρ-commutative algebras, Hom-associative and

Hom-ρ-commutative Lie algebras. In Section 3, we define p-forms and wedge product on Hom-

ρ-algebras and the reader will get some important properties of ρ-tensor products, this section

further develops the foundational topics for Riemannian manifolds, metric, connection, torsion

tensor and curvature tensor are included. Also, we check some examples, properties and lem-

mas to obtain important results. Section 4 has been assigned to discuss about representations,

cochain, Hom-cochain and some results will be derived of differential calculus. Also, symplectic

structures and Poisson brackets are studied in this section.

2 Hom-ρ-Commutative Algebra

In this section, we summarize some definitions concerning ρ-commutative and Hom-ρ-

commutative algebras and related results.

Let A be an associative and unital algebra over a field k (k = R or k = C), grading

by an abelian group (G,+), i.e., the vector space A has a G-grading A = ⊕
a∈G

Aa such that

AaAb ⊂ Aa+b. A map ρ : G×G → k⋆ is called a two-cycle if the following conditions hold

ρ(a, b) = ρ(b, a)−1, a, b ∈ G, (2.1)

ρ(a+ b, c) = ρ(a, c)ρ(b, c), a, b, c ∈ G. (2.2)

The above conditions say that ρ(a, b) 6= 0, ρ(0, b) = 1 and ρ(c, c) = ±1 for all a, b, c ∈ A, c 6= 0.

The ρ-commutator of two homogeneous elements f and g of A is

[f, g]ρ = fg − ρ(|f |, |g|)gf, (2.3)

where |f | is the G-degree of a (non-zero) homogeneous element f ∈ A and the set of homoge-

neous elements in A is denoted by Hg(A).
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A ρ-commutative algebra is a G-graded algebra A with a given two-cycle ρ such that fg =

ρ(|f |, |g|)gf for all homogeneous elements f and g in A (i.e., [f, g]ρ = 0).

In the following, we have some preliminary definitions from [1, 5].

Definition 2.1 A Hom-ρ-algebra is a quadruple (A, ·, ρ, φ) consisting of a G-graded vector

space A, i.e., A =
⊕
a∈G

Aa, an even bilinear map · : A × A → A, i.e., Aa · Ab ⊆ Aa+b for all

a, b ∈ G, a two-cycle ρ : G × G → k∗ and an even linear map φ : A → A. In addition, if

f · g = ρ(|f |, |g|)g · f , for any f, g ∈ Hg(A), we have a Hom-ρ-commutative algebra.

A Hom-ρ-algebra (A, ·, ρ, φ) is called a Hom-associative ρ-algebra if

φ(f)(g · h) = (f · g)φ(h).

Moreover if fg = ρ(|f |, |g|)gf , (A, ·, ρ, φ) is called Hom-associative ρ-commutative algebra.

A Hom-ρ-algebra (A, ·, ρ, φ) is said to be multiplicative if φ is a morphism for ·, regular if φ

is an automorphism for ·, and involutive if φ2 = IdA (see [1, 5]).

Example 2.1 The quaternion algebra H is a Z2 ×Z2 ×Z2-graded algebra in the following

sense. Associate the “Triple degree” to the standard basis elements of H,

ε = (0, 0, 0), i = (0, 1, 1), j = (1, 0, 1), k = (1, 1, 0),

where ε denotes the unit and the following multiplication conditions are imposed

i) i2 = j2 = k2 = −1,

ii) ij = k, ji = −k, jk = i, kj = −i, ki = j, ki = j, ik = −j.

Also the two-cocycle ρ is defined by ρ(a, b) = (−1)〈a,b〉, where 〈a, b〉 is the usual scalar product

of 3-vectors. Indeed 〈i, j〉 = 1 and similarly for k, so that i, j and k, ρ-commute with each

other. But 〈i, i〉 = 〈j, j〉 = 〈k, k〉 = 2, so that i, j and k commute with themselves. Thus,

quaternion algebra H is a ρ-commutative algebra. If we set linear map φH(i) = ai, φH(j) =

bj, φH(k) = ck, a, b, c ∈ C, then we have a Hom-ρ-commutative quaternion algebra. But, H is

a Hom-associative ρ-commutative algebra if a = b = c.

Definition 2.2 A Hom-ρ-Lie algebra is a G-graded vector space A together with a bilinear

map [·, ·]ρ : A × A → A, a two-cycle ρ and a linear map φ : A → A satisfying the following

relations

• [Ag, Ag′ ]ρ ⊂ Ag+g′ ,

• [f, g]ρ = −ρ(|f |, |g|)[g, f ]ρ,

• ρ(|h|, |f |)[φ(f), [g, h]ρ]ρ + ρ(|g|, |h|)[φ(h), [f, g]ρ]ρ + ρ(|f |, |g|)[φ(g), [h, f ]ρ]ρ = 0.

The second condition is called ρ-antisymmetry and the third condition is called ρ-Jacobi identity.

Proposition 2.1 (see [29]) The multiplex (A, ·, ρ, φ, [·, ·]ρ) consisting of a Hom-associative

ρ-algebra (A, ·, ρ, φ) and ρ-commutator [f, g]ρ = fg−ρ(|f |, |g|)gf is a Hom-ρ-Lie algebra, called

Hom-ρ-commutative Lie algebra.

A Hom-ρ-Lie algebra (A, ρ, φ, [·, ·]ρ) is called multiplicative if φ[f, g]ρ = [φ(f), φ(g)]ρ, regular

if φ is an automorphism and involutive if φ is an involution, that is φ2 = IdA (see [1]).

Definition 2.3 (see [5]) Let (A, ·, ρ, φ) be a Hom-ρ-algebra. A ρ-derivation of degree |X |

on A is a linear map X : A → A such that

X(f · g) = X(f) · g + ρ(|X |, |f |)f ·X(g). (2.4)
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If ρ-DerA is denoted the space of all ρ-derivations of A, then for X ∈ Hg(ρ-DerA) and

Y ∈ Hg(ρ-DerA), the ρ-commutator of X,Y , defined by [X,Y ]ρ = X ◦ Y − ρ(|X |, |Y |)Y ◦X ,

is a ρ-derivation. Furthermore, when A is Hom-ρ-commutative, ρ-DerA is also a A-bimodule

with actions ⊲ and ⊳ defined by

(f ⊲X) · g = f(X · g), X ⊳ f = ρ(|X |, |f |)f ⊲X, (2.5)

respectively. In fact any G-graded left module M over a Hom-ρ-commutative algebra A is a

A-bimodule with

f ⊲ (X ⊳ g) = (f ⊲X)⊳ g, f, g ∈ A, X ∈ M. (2.6)

Moreover, ρ-DerA equipped with the ρ-commutator is a ρ-Lie algebra.

We will simply denote the left action f ⊲X as fX and ρ(|X |, |Y |) by ρ(X,Y ).

3 p-Forms, ρ-Tensor Product

In this section, at first we define the p-forms and the wedge product, next we turn to a

brief discussion of the concept of tensor products to develop Riemannian geometry on Hom-ρ-

commutative algebras, then we concentrate on metrics to introduce the notion of linear connec-

tion and define the torsion and curvature associated to the connection. Later, we survey some

properties and give to the reader some main points. Symbols Hg(Ω1(A)) and Hg(ρ-DerA)

apply respectively for homogeneous elements of Ω1(A) and ρ-DerA.

Definition 3.1 A p-form on Hom-ρ-algebra A is a p-linear map αp : ×p(ρ-DerA) → A,

p-linear in sense of left A-modules

• αp(fX1, · · · , Xp) = fαp(X1, · · · , Xp),

• αp(X1, · · · , Xjf,Xj+1, · · · , Xp) = αp(X1, · · · , Xj, fXj+1, · · · , Xp),

• αp(X1, · · · , Xj, Xj+1, · · · , Xp) = −ρ(Xj , Xj+1)αp(X1, · · · , Xj+1, Xj , · · · , Xp),

where j = 1, · · · , p− 1, Xk ∈ Hg(ρ-DerA), k = 1, · · · , p, f ∈ A and Xf is the right A-action

on ρ-DerA defined by (2.5). Let Ωp(A) denote the set of p-forms. Then Ωp(A) is a G-graded

A-bimodule with

(αpf)(X1, · · · , Xp) = αp(X1, · · · , Xp)f,

fαp = ρ(f, αp)αpf,

|αp| = |αp(X1, · · · , Xp)| − (|X1|+ · · ·+ |Xp|).

Then we have the exterior algebra Ω(A) =
⊕
p≥0

Ωp(A) with Ω0(A) = A.

Definition 3.2 The wedge product ∧ in Ω(A) is the map

∧ : Ωp(A) × Ωq(A) → Ωp+q(A),

defined by

(α ∧ β)(X1, · · · , Xp, · · · , Xp+q)

=
∑

σ∈Sp,q

sign(σ)× ρ
( p+q∑

j=p+1

Xσ(j), α
)
ρ(Xσ(k), Xσ(l))

× α(Xσ(1), · · · , Xσ(p))β(Xσ(p+1), · · · , Xσ(p+q))

for α ∈ Hg(Ωp(A)) and β ∈ Hg(Ωq(A)), where Sp,q is the set of permutations σ ∈ Sp+q such

that σ(1) < σ(2) < · · · < σ(p) and σ(p+1) < σ(k+2) < · · · < σ(p+ q), l < k and σ(l) > σ(k).
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ρ-Tensor Product: Let (A, ·, ρ, φ) be a Hom-ρ-commutative algebra and (ρ-DerA, [·, ·]ρ, ρ,

φA) be a Hom-ρ-Lie algebra, where ρ-DerA is the set of all ρ-derivations on Hom-ρ-commutative

algebra A.

For α1, · · · , αp ∈ Hg(Ω1(A)), we make a p-linear homogeneous map s of G-degree |s| =
p∑

i=1

|αi| as s = α1 ⊗ρ · · · ⊗ρ αp and define it by

α1 ⊗ρ · · · ⊗ρ αp(X1, · · · , Xp) : =

p∏

i=1

αi(Xi)

p−1∏

k=1

ρ
( p∑

j=k+1

Xj, αk

)
,

where X1, · · · , Xp ∈ Hg(ρ-DerA), that satisfy the following relations

s(fX1, X2, · · · , Xp) = fs(X1, X2, · · · , Xp),

s(X1, · · · , Xi ⊳ f,Xi+1, · · · , Xp) = s(X1, · · · , Xi, fXi+1, · · · , Xp).

Let T⊗p
ρ denote the linear space generated by elements s = α1⊗ρ · · ·⊗ραp. T

⊗p
ρ is a A-bimodule

with the following actions

(α1 ⊗ρ · · · ⊗ρ αp)f = α1 ⊗ρ · · · ⊗ρ (αpf),

f(α1 ⊗ρ · · · ⊗ρ αp) = (fα1)⊗ρ · · · ⊗ρ αp = ρ
(
f,

p∑

i=1

αi

)
α1 ⊗ρ · · · ⊗ρ (αpf).

We have the ρ-tensor algebra T⊗ =
⊕
p≥0

T⊗p
ρ with T⊗0

ρ = A and natural algebra structure ⊗ρ,

which is defined on homogeneous elements in T⊗ by

Tp ⊗ρ Tq(X1, X2, · · · , Xp, Xp+1, · · · , Xp+q)

= Tp(X1, X2, · · · , Xp)Tq(Xp+1, · · · , Xp+q)× ρ
( q∑

j=1

Xp+j , Tp

)
,

∀Tp ∈ T⊗p
ρ , Tq ∈ T⊗q

ρ , X1, · · · , Xp+q ∈ Hg(ρ-DerA). Also, Tp⊗ρ Tq has the degree |Tp⊗ρ Tq| =

|Tp| + |Tq|. Notice that T⊗p
ρ coincides with the space of all ρ-p-linear maps on ×pρ-DerA, if

Ω1(A) and ρ-DerφA are finitely generated. In this case, T ∈ T⊗p
ρ is called covariant ρ-tensor.

Definition 3.3 A covariant 2-tensor g ∈ T⊗2

ρ is called non-degenerate tensor if

∀α ∈ Hg(Ω1(A)), ∃Xα ∈ ρ-DerA : g(Y,Xα) = α(Y ), ∀Y ∈ ρ-DerA.

A (homogeneous) metric g of degree |g| on a ρ-commutative algebra A is an homogeneous

symmetric and nondegenerate covariant 2-tensor on A.

Definition 3.4 Let (A, ·, ρ, φ) be a multiplicative Hom-ρ-commutative algebra and (ρ-DerA,

[·, ·]ρ, ρ, φA) be a Hom-ρ-Lie algebra, where ρ-DerA is the set of all ρ-derivations on A endowed

with a bilinear map g(·, ·) such that for any X,Y ∈ Hg(ρ-Der (A)) the following equations are

satisfied

(i) g(fX, Y ) = fg(X,Y ), ∀X,Y ∈ ρ-Der (A),

(ii) g(X,Y ) = ρ(X,Y )g(Y,X), ∀X,Y ∈ Hg(ρ-Der (A)),

(iii) g(X,Y ) = g(φA(X), φA(Y )), ∀X,Y ∈ ρ-Der (A),

(iv) the map g̃ : ρ-DerA → Ω1(A) defined by g̃(X)Y = g(Y,X) is a left A-module isomor-

phism.
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Then, we say that A admits a metric g(·, ·) (not necessary homogeneous). Also, homogeneous

metric g̃ satisfies g(X, fY ) = g(Xf, Y ) and g̃(aX) = ag̃(X), g̃(X ⊳ a) = g̃(X)aρ(a, g), a ∈

Hg(A).

Definition 3.5 A linear connection on ρ-DerA is a linear map

{
∇ : ρ-DerA → End(ρ-DerA),

X → ∇X ,

such that

∇aXY = a∇XY, a ∈ A, X, Y ∈ ρ-DerA,

∇X(aY ) = (X · a)Y + ρ(X, a)φ(a)∇XY, a ∈ Hg(A), X ∈ Hg(ρ-DerA).

Definition 3.6 Let T ∈ T⊗, X ∈ Hg(ρ-DerA) and ∇XT denote the covariant derivative

of T , which is a p-linear map. This map is defined on ρ-DerA by

ρ
(
X,

p∑

i=1

Xi

)
∇XT (X1, · · · , Xp) = φA(X) · T (X1, · · · , Xp)

−

p∑

i=1

ρ
(
X,

i−1∑

l=1

Xl

)
T (φA(X1), · · · ,∇XXi, · · · , φA(Xp)).

ρ-tensor T is said to be parallel or compatible with respect to a linear connection ∇ if ∇T = 0.

Connection ∇ is called compatible with metric g if

φA(X) · g(Y, Z) = g(∇XY, φA(Z)) + ρ(X,Y )g(φA(Y ),∇XZ), ∀X,Y, Z ∈ Hg(ρ-DerA).

The curvature of a linear connection ∇ is the map

{
R : ρ-DerA× ρ-DerA → End(ρ-DerA),

(X,Y ) → R(X,Y ) := RXY ,

defined by

R(X,Y )(Z) = ∇φA(X)∇Y Z − ρ(X,Y )∇φA(Y )∇XZ −∇[X,Y ]ρφA(Z).

Lemma 3.1 By the definition of curvature R, we get the following equalities

a) R(X,Y ) = −ρ(X,Y )R(Y,X),

b) R(aX, Y )Z = φ(a)R(X,Y )Z − ρ(X + a, Y )(φA(Y ) · a)∇XZ

+ ρ(X + a, Y )(Y · a)∇XφA(Z) + a∇φA(X)∇Y Z − φ(a)∇φA(X)∇Y Z,

c) R(X, aY )(Z) = ρ(X, a)φ(a)(R(X,Y )Z) + (φA(X) · a)∇Y Z

− (X · a)∇Y φA(Z)− ρ(X, a+ Y )a∇φA(Y )∇XZ

+ ρ(X, a+ Y )φ(a)∇φA(Y )∇XZ

− φ(a)∇[X,Y ]ρφA(Z) + ρ(X, a)φ(a)∇[X,Y ]ρφA(Z),

d) R(X,Y )(aZ) = ρ(X + Y, a)φ2(a)(R(X,Y )Z) + (φA(X) · Y · a)Z

− ρ(X,Y )(φA(Y ) ·X · a)Z + ρ(Y, a)(φA(X) · φ(a))∇Y Z
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− ρ(X,Y )ρ(X, a)(φA(Y ) · φ(a))∇XZ

− ρ(X,Y )ρ(Y,X + a)ρ(X, a)φ(a) ·X

− ρ(X,Y )ρ(Y,X + a)φ(X · a)∇φA(Y )Z

+ ρ(X,Y + a)φ(Y · a)∇φA(X)Z

− (X · Y · a)φA(Z) + ρ(X,Y )(Y ·X · a)φA(Z)

− ρ(X + Y, a)φ(a)∇[X,Y ]ρφA(Z) + ρ(X + Y, a)φ2(a)∇[X,Y ]ρφA(Z).

Proof For sake of the brevity, we proof the relation (b). By the definitin of curvature R,

we have

R(aX, Y )Z = ∇φA(aX)∇Y Z − ρ(X + a, Y )∇φA(Y )∇aXZ −∇[aX,Y ]ρφA(Z).

Now, by the properties of connection ∇ and the relation [aX, Y ]ρ = −ρ(X + a, Y )(Y · a)X +

φ(a)[X,Y ]ρ, we get

R(aX, Y )Z = a∇φA(X)∇Y Z − ρ(X + a, Y )(φA(Y ) · a)∇XZ

− ρ(X + a, Y )ρ(Y, a)φ(a)∇φA(Y )∇XZ

− (Y · a)∇XφA(Z)− φ(a)∇[X,Y ]ρφA(Z)

= φ(a)R(X,Y )Z − ρ(X + a, Y )(φA(Y ) · a)∇XZ

+ ρ(X + a, Y )(Y · a)∇XφA(Z) + a∇φA(X)∇Y Z − φ(a)∇φA(X)∇Y Z.

Also, the torsion of the connection ∇ is defined by

{
T∇ : ρ-DerA× ρ-DerA → ρ-DerA,

T∇(X,Y ) = ∇XY − ρ(X,Y )∇Y X − [X,Y ]ρ.

Connection ∇ is called torsion-free if

T∇ = 0, i.e., [X,Y ]ρ = ∇XY − ρ(X,Y )∇Y X, ∀X,Y ∈ Hg(ρ-DerA).

In the similar way of the curvature, it is easy to see that the torsion has the following properties

T (aX, Y ) = T (X,Y ) + a∇XY − φ(a)∇XY,

T (X, aY ) = ρ(X, a)φ(a)T (X,Y )− ρ(X, a+ Y )a∇Y X

+ ρ(X + a, Y )φ(a)∇Y X − ρ(X, a)φ(a)[X,Y ]ρ + φ(a)[X,Y ]ρ.

Theorem 3.1 There exists a unique linear connection on every Hom-ρ-commutative algebra

with homogeneous metric g, which is torsion-free and compatible with metric g. This connection

is called Levi-Civita connection associated to g.

Proof By the compatibility condition of the connection ∇ with the metric g, we can easily

show that the Koszul equation is given by

2ρ(Z, Y )g(φA(X),∇Y Z) = ρ(X,Z)φA(Z) · g(X,Y ) + ρ(X,Z)g(φA(Z), [X,Y ]ρ)

− φA(X) · g(Z, Y )− ρ(X,Z)g([Z,X ]ρ, φA(Y ))

+ ρ(Z, Y )ρ(X,Y + Z)φA(Y ) · g(Z,X)

+ ρ(Z, Y )ρ(X,Y + Z)g([Y, Z]ρ, φA(X)),
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where X,Y, Z ∈ Hg(ρ-DerA). So, the proof is clear.

Christoffel coefficients: Let us assume that A is generated as algebra by n homogeneous

coordinates x1, x2, · · · , xn and ρ-DerA is generated by ∂1, · · · , ∂n, where ∂i = ∂
∂xi

such that
∂

∂xi
(xj) = δij , |∂i| = −|xi|. Also, we assume that Ω1(A) = 〈dx1, · · · , dxn〉 such that |dxi| = |xi|.

Let (dxi) be the dual basis of (∂i) and set

g = dxm ⊗ dxngmn (summation).

Proposition 3.1 Assuming that [∂i, ∂j ] = 0 and ∇∂i
∂j =

∑
s

φA(∂s) ⊳Γ
s
ij , the ρ-Christoffel

coefficients Γt
ij of G-degree |Γt

ij | = xt − xi − xj of the Levi-Civita connection ∇ are as follows

Γt
ij =

1

2
ρ(g, xt − xi − xj)×

∑

k

g̃tk{−φA(∂k) · g̃ij + ρ(xi + xk, xj)φA(∂j) · g̃ki

+ ρ(xk, xi + xj)φA(∂i) · g̃jk}. (3.1)

Proof Setting X = ∂k, Y = ∂i and Z = ∂j in the Koszul formula, we get

2g
(
φA(∂k),

∑

s

φA(∂s ⊳ Γs
ij)

)

= ρ(∂k, ∂i + ∂j)φA(∂i) · g̃jk + ρ(∂k + ∂i, ∂j)φA(∂j) · g̃ki − φA(∂k) · g̃ij ,

thus

2
∑

s

ρ(∂s,Γ
s
ij)ρ(∂k,Γ

s
ij)Γ

s
ij g̃ks

= ρ(∂k, ∂i + ∂j)φA(∂i) · g̃jk + ρ(∂k + ∂i, ∂j)φA(∂j) · g̃ki − φA(∂k) · g̃ij .

Multiplying both sides of the above relation by g̃tk, we get

2
∑

s

ρ(−xt − xk,Γ
t
ij)ρ(g̃

tk,Γt
ij)Γ

t
ij

= ρ(xk, xi + xj)φA(∂i) · g̃jk + ρ(xk + xi, xj)φA(∂j) · g̃ki − φA(∂k) · g̃ij .

Since g = dxt ⊗ dxkgtk, so |g| = xt + xk + gtk and then −xt − xk = gtk − |g|. Therefore

2
∑

s

ρ(gtk,Γ
t
ij)ρ(−g,Γt

ij)ρ(−gtk,Γ
t
ij)Γ

t
ij

= ρ(xk, xi + xj)φA(∂i) · g̃jk

+ ρ(xk + xi, xj)φA(∂j) · g̃ki − φA(∂k) · g̃ij .

Thus, in the last step, the result will be obtained, that is

Γt
ij =

1

2
ρ(g,Γt

ij)
∑

k

g̃tk{ρ(xk, xi + xj)φA(∂i) · g̃jk + ρ(xk + xi, xj)φA(∂j) · g̃ki − φA(∂k) · g̃ij}.

Example 3.1 Extended-hyperplane A2
q = 〈1, x, y, x−1, y−1 : x ·y = qy ·x〉 is a Z×Z-graded

algebra. Considering the two-cycle

ρ(n, n′) = q

n∑

j,k=1

njn
′

kαjk

,
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where αjk = 1 if j < k, 0 if j = k and −1 if j > k, A2
q is a ρ-commutative algebra. In

this example, we intend to define morphisms φ and φA2
q
on the A2

q and ρ-DerAq
2, respectively,

to make Hom-ρ-commutative algebra and Hom-ρ-commutative Lie algebra, respectively. In

the next, by considering the metric g and its components that is defined in [21], we obtain

the ρ-Christoffel coefficients Γt
ij corresponding to φA2

q
by (3.1). If we define the linear map

φ : A2
q → A2

q by

φ(x) = ax, φ(y) = ay, φ(x−1) = bx−1, φ(y−1) = by−1, a, b ∈ k,

then we have the Hom-ρ-commutative algebra A2
q. Note that (A2

q , ·, ρ, φ) is a Hom-associative

ρ-commutative algebra if a = b. The set ρ-DerAq
2 of all φ-ρ-derivations on A

q
2 is a A2

q-bimodule

generated by ∂
∂x

and ∂
∂y

, and Ω1(A) is generated by dx, dy such that dxj

(
∂

∂xi

)
= ∂

∂xi
(xj) = δij ,∣∣ ∂

∂xi

∣∣ = −|xi| and |dxi| = |xi|, where x1 = x and x2 = y. We define the linear map φA2
q
:

ρ-DerA2
q → ρ-DerA2

q by

φA2
q

( ∂

∂x

)
= λ

∂

∂x
+ γ

∂

∂y
, φA2

q

( ∂

∂y

)
= (λ+ γ)

∂

∂y
,

where λ, γ ∈ k. All homogeneous metrics on ρ-DerA2
q were defined by [21],

g = g11dx⊗ρ dx+ g12dx⊗ρ dy + qg21dy ⊗ρ dx+ g22dy ⊗ρ dy.

Now, by using metric g, we try to find the following relation

g(X,Y ) = g(φA2
q
(X), φA2

q
(Y )), ∀X,Y ∈ Hg(ρ-DerA2

q).

Case 1 If X = ∂
∂x

and Y = ∂
∂x

, we have g
(

∂
∂x

, ∂
∂x

)
= g11. Also, we get

g
(
φA2

q

( ∂

∂x

)
, φA2

q

( ∂

∂x

))
= g

(
λ
∂

∂x
+ γ

∂

∂y
, λ

∂

∂x
+ γ

∂

∂y

)

= λ2g
( ∂

∂x
,
∂

∂x

)
+ λγg

( ∂

∂x
,
∂

∂y

)
+ γλg

( ∂

∂y
,
∂

∂x

)

+ γ2g
( ∂

∂y
,
∂

∂y

)
= λ2g11 + λγ(1 + q)g12 + γ2g22.

In this case, we find λ2 = 1, λγ = 0, γ2 = 0, so λ = ±1, γ = 0.

Case 2 If X = ∂
∂y

and Y = ∂
∂y

, we have





g
(
φA2

q

( ∂

∂y

)
, φA2

q

( ∂

∂y

))
= g

(
(λ+ γ)

∂

∂y
, (λ+ γ)

∂

∂y

)
= (λ+ γ)2g

( ∂

∂y
,
∂

∂y

)
= (λ+ γ)2g22,

g
( ∂

∂y
,
∂

∂y

)
= g22.

In this case, we find (λ+ γ)2 = 1.

Case 3 If X = ∂
∂x

and Y = ∂
∂y

, we get g( ∂
∂x

, ∂
∂y

) = g21 = qg12 and

g
(
φA2

q

( ∂

∂x

)
, φA2

q

( ∂

∂y

))
= g

(
λ
∂

∂x
+ γ

∂

∂y
, (λ+ γ)

∂

∂y

)
= λ(λ + γ)g

( ∂

∂x
,
∂

∂y

)

+ γ(λ+ γ)g
( ∂

∂y
,
∂

∂y

)
= qλ(λ + γ)g12 + γ(λ+ γ)g22.
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In this case, we find λ(λ + γ) = 1, γ(λ+ γ) = 0.

Case 4 If X = ∂
∂y

and Y = ∂
∂x

, we have





g
(
φA2

q

( ∂

∂y

)
, φA2

q

( ∂

∂x

))
= g

(
(λ + γ)

∂

∂y
, λ

∂

∂x
+ γ

∂

∂y

)
= λ(λ+ γ)g

( ∂

∂y
,
∂

∂x

)

+γ(λ+ γ)g
( ∂

∂y
,
∂

∂y

)
= λ(λ+ γ)g12 + γ(λ+ γ)g22,

g
( ∂

∂y
,
∂

∂x

)
= g12.

In this case, we also find λ(λ+ γ) = 1, γ(λ+ γ) = 0.

By the above cases, if γ = 0 and λ = ±1, we obtain

φA2
q

( ∂

∂x

)
= ±

∂

∂x
, φA2

q

( ∂

∂y

)
= ±

∂

∂y
.

Therefore φA2
q
can be written in the following two cases





φA2
q

( ∂

∂x

)
= −

∂

∂x
, φA2

q

( ∂

∂y

)
= −

∂

∂y
,

φA2
q

( ∂

∂x

)
=

∂

∂x
, φA2

q

( ∂

∂y

)
=

∂

∂y
.

Also, we know that ρ-DerAq
2 with ρ-commutator [X,Y ] = XY − ρ(X,Y )Y X and the linear

map φA2
q
is a Hom-ρ-commutative Lie algebra. But, note that for the elements of the basis of

ρ-DerAq
2, we have

[ ∂

∂x
,
∂

∂y

]
ρ
=

∂

∂x

∂

∂y
− ρ

( ∂

∂x
,
∂

∂y

) ∂

∂y

∂

∂x
. (3.2)

On the other hand, since
[

∂
∂x

, ∂
∂y

]
ρ
∈ ρ-DerA2

q, then we can write

[ ∂

∂x
,
∂

∂y

]
ρ
= p

∂

∂x
+ q

∂

∂y
,

where p, q ∈ A, so
[

∂
∂x

, ∂
∂y

]
ρ
(x) = p and

[
∂
∂x

, ∂
∂y

]
ρ
(y) = q. But, (3.2) gives us

[
∂
∂x

, ∂
∂y

]
ρ
(x) =[

∂
∂x

, ∂
∂y

]
ρ
(y) = 0.

Let us set g̃mk := ρ(∂m, ∂k)gmk = ρ(xm, xk)gmk and continue with g11 = x−2, g12 =

x−1y−1, g22 = y−2. In this case, g is a homogeneous metric on A2
q (of degree (0, 0)) if and only

if

D =
1− q2

q2
x−2y−2

is invertible, in other words if and only if q 6= 0, 1,−1. So, by the definition of g̃, we have

(g̃mk) =

(
x−2 qx−1y−1

x−1y−1 y−2

)

and

(g̃mk) = (g̃mk)
−1 =

1

1− q2

(
x2 −qxy

−xy y2

)
.

Here, it seems that, we are ready to find the ρ-Christoffel coefficients Γt
ij corresponding to each

φA2
q
. So, we need to consider the following cases:
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If φA2
q

(
∂
∂x

)
= − ∂

∂x
, φA2

q

(
∂
∂y

)
= − ∂

∂y
, we have

Γ1
11 = x−1, Γ2

22 = y−1, Γ1
12 = Γ1

21 = Γ2
12 = Γ2

21 = Γ2
11 = Γ1

22 = 0.

If φA2
q

(
∂
∂x

)
= ∂

∂x
, φA2

q

(
∂
∂y

)
= ∂

∂y
, we can find the following ρ-Christoffel coefficients

Γ1
11 = −x−1, Γ2

22 = −y−1, Γ1
12 = Γ1

21 = Γ2
12 = Γ2

21 = Γ2
11 = Γ1

22 = 0.

Definition 3.7 Let (A, ·, ρ, φ) be a multiplicative Hom-ρ-commutative algebra and (ρ-DerA,

[·, ·]ρ, ρ, φA) be a multiplicative Hom-ρ-Lie algebra, where ρ-DerA is the set of all ρ-derivation

on Hom-ρ-commutative algebra A. For a Levi-Civita connection ∇, we define the covariant

derivation of R as follows

(∇ZR)(X,Y ) = ∇φ2

A
(Z)R(X,Y )(·) −R(∇ZX,φA(Y ))φA(·)

− ρ(Z,X)R(φA(X),∇ZY )φA(·)

− ρ(Z,X + Y )R(φA(X), φA(Y ))∇Z(·). (3.3)

Lemma 3.2 For X,Y, Z, V,W ∈ ρ-DerA, the curvature R satisfies the following equalities

(a) ρ(X,Y )RY ZX + ρ(Y, Z)RZXY + ρ(Z,X)RXY Z = 0 (Bianchi identity 1).

(b) Second Bianchi identity for a torsion-free connection

ρ(V,X)R(X,Y, V,W ) + ρ(Y, V )R(V,X, Y,W ) + ρ(X,Y )R(Y, V,X,W ) = 0.

(c) If ∇φA(X)φA(Y ) = φA(∇XY ), then

ρ(Y, Z)(∇ZR)(X,Y ) + ρ(X,Y )(∇Y R)(Z,X) + ρ(Z,X)(∇XR)(Y, Z) = 0,

where R(X,Y, V,W ) := g(RXY V,W ).

Proof (a) By the definition of curvature R, we can find the following relations

ρ(Y, Z)RZXY = ρ(Y, Z){∇φA(Z)∇XY − ρ(Z,X)∇φA(X)∇ZY −∇[Z,X]ρφA(Y )}

= ρ(Y, Z)∇φA(Z)∇XY − ρ(Y, Z)ρ(Z,X)ρ(Z, Y )∇φA(X)∇Y Z

− ρ(Y, Z)ρ(Z,X)∇φA(X)[Z, Y ]ρ − ρ(Y, Z)ρ(Z, Y )ρ(X,Y )∇φ(Y )[Z,X ]ρ

− ρ(Y, Z)[[Z,X ]ρ, φA(Y )]ρ, (3.4)

ρ(X,Y )RY ZX = ρ(X,Y ){∇φA(Y )∇ZX − ρ(Y, Z)∇φA(Z)∇Y X −∇[Y,Z]ρφA(X)}

= ρ(X,Y )∇φA(Y )∇ZX − ρ(X,Y )ρ(Y, Z)ρ(Y,X)∇φA(Z)∇XY

− ρ(X,Y )ρ(Y, Z)∇φA(Z)[Y,X ]ρ − ρ(X,Y )ρ(Y,X)ρ(Z,X)∇φA(X)[Y, Z]ρ

− ρ(X,Y )[[Y, Z]ρ, φA(X)]ρ (3.5)

and

ρ(Z,X)RXY Z = ρ(Z,X){∇φA(X)∇Y Z − ρ(X,Y )∇φA(Y )∇XZ −∇[X,Y ]ρφA(Z)}

= ρ(Z,X)∇φA(X)∇Y Z − ρ(Z,X)ρ(X,Y )ρ(X,Z)∇φA(Y )∇ZX

− ρ(Z,X)ρ(X,Y )∇φA(Y )[X,Z]ρ − ρ(Z,X)ρ(X,Z)ρ(Y, Z)∇φA(Z)[X,Y ]ρ

− ρ(Z,X)[[X,Y ]ρ, φA(Z)]ρ. (3.6)

Summing the relations (3.4)–(3.6), implies

ρ(X,Y )RY ZX + ρ(Y, Z)RZXY + ρ(Z,X)RXY Z = 0.
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The second Bianchi identity follows immediately from the first and the relation (c) follows from

a direct calculation by applying the relation ∇φA(X)φA(Y ) = φA(∇XY ).

Based on our knowledge of Riemannian geometry, the following properties hold for Rieman-

nian curvature tensor R(X,Y, Z,W ) :

(1) R is skew-symmetric in the first two and last two entries

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z).

(2) R is symmetric between the first two and last two entries

R(X,Y, Z,W ) = R(Z,W,X, Y ).

Also, in [21], Ngakeu presented that the curvature tensor R(X,Y, Z,W ) on ρ-commutative

algebras has the same properties of Riemannian geometry, that is

(i) R(X,Y, V,W ) = −ρ(X,Y )R(Y,X, V,W ) = −ρ(V,W )R(X,Y,W, V ),

(ii) R(X,Y, V,W ) = ρ(X + Y, V +W )R(V,W,X, Y ).

For the curvature tensor R(X,Y, V,W ) on Hom-ρ-commutative algebras, we can not have the

following properties

R(X,Y, V,W ) = ρ(X + Y, V +W )R(V,W,X, Y ),

R(X,Y, V,W ) = −ρ(X,Y )R(Y,X, V,W ) = −ρ(V,W )R(X,Y,W, V ).

4 Differential Calculus, Poisson Bracket

In this section, we recall the notions of representation, cochains and Hom-cochains on Hom-

ρ-Lie algebras. These notions are defined analogously of the classical case by Abdaoui et al. in

[1]. Then, we try to develop differential calculus by using them and recall the notion of Poisson

bracket on Hom-ρ-Lie algebras and investigate some examples (for the classical case see [22,

24]).

Definition 4.1 (see [1]) Let (A, [·, ·]ρ, ρ, φ) be a Hom-ρ-Lie algebra. For any non-negative

integer k, a φk-ρ-derivation of degree |X | on A is a linear map X : A → A such that

X ◦ φ = φ ◦X, i.e., [X,φ]ρ = 0

and

X [f, g]ρ = [X(f), φk(g)]ρ + ρ(X, f)[φk(f), X(g)]ρ. (4.1)

We denote by ρ-Der φkA the space of all φk-ρ-derivations of A. It is easy to see that for

X ∈ ρ-Der φkA and Y ∈ ρ-Der φsA the ρ-commutator of X,Y , defined by [X,Y ]ρ = X ◦ Y −

ρ(X,Y )Y ◦X , is a φk+s-ρ-derivation and

ρ-Der φA =
⊕

k≥0

ρ-Der φkA

is a ρ-Lie algebra with above bracket.

Proposition 4.1 Let (A, [·, ·]ρ, ρ, φ) be a Hom-ρ-Lie algebra. The quadruple (ρ-DerφA,

[·, ·]ρ, ρ, φA) consisting of the space ρ-DerφA, two-cycle ρ, ρ-commutator [X,Y ]ρ = X ◦ Y −

ρ(X,Y )Y ◦ X and even linear map φA : ρ-DerφA → ρ-DerφA given by φA(X) = X ◦ φ is a

Hom-ρ-Lie algebra.
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Proof We know that the composition of functions is always associative, that is if h1, h2

and h3 are three functions with suitably chosen domains and codomains, then h1 ◦ (h2 ◦ h3) =

(h1 ◦ h2) ◦ h3. Let us use this to prove our proposition. So, we have

φA(Y ) ◦ (Z ◦X) = (φA(Y ) ◦ Z) ◦X = ((Y ◦ φ) ◦ Z) ◦X = (Y ◦ (φ ◦ Z)) ◦X

= Y ◦ ((φ ◦ Z) ◦X) = Y ◦ ((Z ◦ φ) ◦X) = Y ◦ (Z ◦ (φ ◦X))

= Y ◦ (Z ◦ (X ◦ φ)) = Y ◦ (Z ◦ φA(X)) = (Y ◦ Z) ◦ φA(X).

Now, by using the relation φA(Y ) ◦ (Z ◦X) = (Y ◦Z) ◦ φA(X) for X,Y, Z ∈ Hg(ρ-Der φA), we

study the Jacobi-identity. Direct calculations give us

ρ(Z,X)[φA(X), [Y, Z]ρ]ρ = ρ(Z,X)φA(X) ◦ (Y ◦ Z)− ρ(Z,X)ρ(X,Y + Z)(Y ◦ Z) ◦ φA(X)

− ρ(Z,X)ρ(Y, Z)φA(X) ◦ (Z ◦ Y )

+ ρ(Z,X)ρ(X,Y + Z)ρ(Y, Z)(Z ◦ Y ) ◦ φA(X),

ρ(X,Y )[φA(Y ), [Z,X ]ρ]ρ = ρ(X,Y )φA(Y ) ◦ (Z ◦X)− ρ(X,Y )ρ(Y,X + Z)(Z ◦X) ◦ φA(Y )

− ρ(X,Y )ρ(Z,X)φA(Y ) ◦ (X ◦ Z)

+ ρ(X,Y )ρ(Y,X + Z)ρ(Z,X)(X ◦ Z) ◦ φA(Y ),

ρ(Y, Z)[φA(Z), [X,Y ]ρ]ρ = ρ(Y, Z)φA(Z) ◦ (X ◦ Y )− ρ(Y, Z)ρ(Z, Y +X)(X ◦ Y ) ◦ φA(Z)

− ρ(Y, Z)ρ(X,Y )φA(Z) ◦ (Y ◦X)

+ ρ(Y, Z)ρ(Z, Y +X)ρ(X,Y )(Y ◦X) ◦ φA(Z).

In the end, summing three above equations implies the Jacobi identity.

Definition 4.2 (see [1]) Let V be a vector space. A linear map µ : A → End(V ) is called

a representation of the Hom-ρ-Lie algebra (A, [·, ·]ρ, ρ, φ) on V with respect to B ∈ End(V ) if

the following equality is satisfied

µ[f, g]ρ ◦B = µ(φ(f)) ◦ µ(g)− ρ(f, g)µ(φ(g)) ◦ µ(f).

Moreover, a representation (V, µ) is said to be graded if V =
⊕
a∈G

Va is a G-graded space such

that

µ(f)(Va) ⊆ V|f |+a

for all the homogeneous elements f ∈ A and a ∈ G.

Let V be a G-graded vector space and B : V → V be an even homomorphism.

Definition 4.3 (see [24]) A k-cochain on a Hom-ρ-Lie algebra (A, [·, ·]ρ, ρ, φ) is a ρ-skew-

symmetric and k-linear map α : A× · · · ×A → V of G-degree |α|, in the sense of

α(f1, · · · , fk) ⊂ V|f1|+···+|fk|+|α|,

where f1, · · · , fk ∈ Hg(A). We denote by Ck(A;V ) the set of k-cochains on A.

α ∈ Ck(A;V ) is called a k-Hom-cochain on A if for f1, · · · , fk ∈ Hg(A), the following

relation holds

B(α(f1, · · · , fk)) = α(φ(f1), · · · , φ(fk)).

Let Ck
φ(A, V ) denote the set of k-Hom-cochains on A. Then Ck

φ(A, V ) is a graded algebra with

C0
φ(A, V ) = V and we have

Cφ(A, V ) =
⊕

k≥0

Ck
φ(A, V ).
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In the next, let (A, [·, ·]ρ, ρ, φ) be a Hom-ρ-Lie algebra and (ρ-Der φA, [·, ·]ρ, ρ, φA) be Hom-

ρ-Lie algebra of all φk-ρ-derivations on Hom-ρ-Lie algebra A, where ρ-Der φA is equipped with

the representation µA on A (µA : ρ-Der φA → End(A)) with respect to B = IdA : A → A.

We intend to define some operators on the set of k-Hom-cochains

Ck
φA

(ρ-Der φA,A) = {α ∈ Ck(ρ-Der φA,A) : α ◦ φA = α}

on ρ-Der φA.

Now, we define the co-boundary operator dA : Ck
φA

(ρ-Der φA,A) → Ck+1
φA

(ρ-Der φA,A) by

dAf(X) = µA(φ
−1
A (X)) · f, f ∈ A

and

dAα(X1, · · · , Xk+1) =:

k+1∑

j=1

(−1)j−1ρ
( j−1∑

i=1

Xi, Xj

)
µA(φ

k−1
A (Xj)) · α(X1, · · · , X̂j , · · · , Xk+1)

+
∑

1≤j<l≤k+1

(−1)j+lρ
( j−1∑

i=1

Xi, Xj

)
ρ
( j−1∑

i=1

Xi, Xl

)

× ρ
( l−1∑

i=j+1

Xi, Xl

)
α([Xj , Xl]ρ, φA(X1), · · · , φ̂A(Xj), · · · ,

φ̂A(Xl), · · · , φA(Xk+1)) (4.2)

for k ≥ 1, α ∈ Ck
φA

(ρ-Der φA,A) and Xl ∈ Hg(ρ-Der φA), l ∈ {1, · · · , k + 1}, where X̂j means

that Xj is omitted. Note that |dAα| = |α| and d2A = 0 (the condition d2A = 0 does not follow

if the condition α ◦ φA = α is omitted, so it is necessary to define the differential operators on

k-Hom-cochains).

The inner and Lie derivations also are defined on CφA
(ρ-Der φA,A) by

iXα(X1, · · · , Xk−1) := ρ
( k−1∑

i=1

Xi, X
)
α(X,X1, · · · , Xk−1), iX(f) = 0,

LX = iX ◦ dA + dA ◦ iX ,

where Xl ∈ Hg(ρ-Der φA), l ∈ {1, · · · , k}. Note that |iX | = |LX | = |X |.

Remark 4.1 For the inner and Lie derivations iX and LX , we have iX◦iY +ρ(X,Y )iY ◦iX =

0 and d ◦ LX = LX ◦ d, where X,Y ∈ Hg(ρ-Der φA), But the property [LX , iY ] = i[X,Y ]

not necessarily holds. For instance, if we consider the extended-hyperplane A2
q introduced in

Example 3.1, if we set a = b = 1, then (A2
q , ·, ρ, φ = Id, [·, ·]ρ = 0) is a Hom-ρ-Lie algebra.

For φ = Id and k = 0, ∂
∂x

and ∂
∂y

are φ0-ρ-derivation. Let us set µA2
q
= ad and consider

φA2
q
( ∂
∂x

) = − ∂
∂x

and φA2
q
( ∂
∂y

) = − ∂
∂y

. Thus for X = ∂
∂x

, Y = ∂
∂y

, Z = ∂
∂x

, we have

[iX ◦ d+ d ◦ iX , iY ](α)(Z) = ([iX ◦ d, iY ] + [d ◦ iX , iY ])(α)(Z)

= (1− q)
[ ∂

∂x
, α

( ∂

∂y
,
∂

∂x

)]
+ 2

[ ∂

∂x
, α

( ∂

∂x
,
∂

∂y

)]

6= i[ ∂
∂x

, ∂
∂y

] = i[X,Y ] = 0.
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Definition 4.4 We say that Hom-ρ-Lie algebra (A, [·, ·]ρ, ρ, φ) satisfies in the Cartan iden-

tity if the following condition holds

[LX , iY ] = i[X,Y ].

In this case, one can easily show that

L[X,Y ]ρ = [LX , LY ]ρ.

Definition 4.5 Let Ω ∈ C2
φA

(ρ-Der φA,A) be called a symplectic structure on A if Ω is

non-degenerate and closed (dAΩ = 0).

Let us define Ω̃ : ρ-Der φA → C1
φA

(ρ-Der φA,A) by Ω̃(X) = Ω(·, φA(X)). Then the non-

degenerate property of Ω is equivalent to the assertion that Ω̃ is isomorphism (note that,

the definition of non degeneracy creates a one-to-one correspondence between ρ-Der φA and

C1
φA

(ρ-Der φA,A) and they have the same cardinality. Therefore, if they are even infinite di-

mensional, then this isometric is meaningful). It is remarkable that Ω is homogeneous if and

only if Ω̃ is homogeneous and we have |Ω| = |Ω̃|.

Definition 4.6 X ∈ ρ-Der φA is called a locally Hamiltonian φk-ρ-derivation if LφA(X)Ω =

0.

Lemma 4.1 Let (ρ-Der φA, [·, ·]ρ, ρ, φA) satisfy the Cartan identity. X ∈ ρ-Der φA is locally

Hamiltonian if and only if dA(iφA(X)Ω) = 0.

Proof By LφA(X) = dA◦iφA(X)+iφA(X)◦dA, the proof is clear. By the relation LφA[X,Y ]ρ =

[LφA(X), LφA(Y )]ρ, we can show that if X,Y ∈ ρ-Der φA are locally Hamiltonian, then [X,Y ]ρ
is also locally Hamiltonian.

Definition 4.7 For any f ∈ A, the vector X := Ω̃−1(dAf) is called the Hamiltonian φk-ρ-

derivation associated to f .

Let Xf denote the Hamiltonian φk-ρ-derivation associated to f , i.e., X = Xf . So Xf is of

G-degree |Xf | = |f | − |Ω| and

dAf = Ω(·, φA(Xf )) = −iφA(Xf )Ω.

In other words

Ω(φA(Xg), φA(Xf )) = µA(Xg) · f.

Note that, since Ω is a 2-Hom-cochain, we have

Ω(φA(X), φA(Y )) = Ω(X,Y ),

and so

Ω(Xg, Xf ) = µA(Xg) · f.

Let the following two relations exist between the maps φ and φA and µA(X) ∈ End(A),

µA(φA(Xf )) = µA(Xφ(f)), (4.3)

µA(φA(Xf )) · [g, h]ρ = [µA(Xf ) · g, φ(h)]ρ + ρ(Xf , g)[φ(g), µA(Xf ) · h]ρ. (4.4)
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Lemma 4.2 Let (ρ-Der φA, [·, ·]ρ, ρ, φA) satisfy the Cartan identity. If X,Y ∈ ρ-Der φA

are locally Hamiltonians φk-ρ-derivation and φs-ρ-derivation, respectively, then the following

relation holds

[X,Y ]ρ = XΩ(X,Y ) = −ρ(X,Y )XΩ(Y,X),

i.e., [X,Y ]ρ is the Hamiltonian φk+s-ρ-derivation associated to Ω(X,Y ).

Proof By the equality i[X,Y ]ρ = [LX , iY ]ρ and equivalently iφA[X,Y ]ρ = [LφA(X), iφA(Y )]ρ,

we have

iφA[X,Y ]ρΩ = [LφA(X), iφA(Y )]ρΩ = LφA(X)(iφA(Y )Ω)− ρ(X,Y )iφA(Y )(LφA(X)Ω).

Since X is a locally Hamiltonian φk-ρ-derivation, we get

iφA[X,Y ]ρΩ = [LφA(X), iφA(Y )]ρΩ = LφA(X)(iφA(Y )Ω).

In the next, by the Cartan identity and given that the φs-ρ-derivation Y is locally Hamiltonian,

we easily obtain the following relation

iφA[X,Y ]ρΩ = ρ(X,Y )dA(Ω(φA(Y ), φA(X)) = −dA(Ω(X,Y )),

and so

−iφA[X,Y ]ρΩ = dA(Ω(X,Y )).

Thus, the conclusion holds, that is

[X,Y ]ρ = XΩ(X,Y ) = −ρ(X,Y )XΩ(Y,X).

Definition 4.8 (see [4]) A Poisson Hom-ρ-algebra consists of a G-graded vector space A,

bilinear maps · : A × A → A and {·, ·}ρ : A × A → A of G-degree |{·, ·}ρ| = P , an even linear

map φ : A → A and a two-cycle ρ : G×G → k⋆ such that

(1) (A, ·, ρ, φ) is a Hom-associative ρ-algebra.

(2) (A, {·, ·}ρ, ρ, φ) is a Hom-ρ-Lie algebra, i.e.,

(i) |{f, g}ρ| = P + |f |+ |g|,

(ii) {f, g}ρ = −ρ(f, g){g, f}ρ,

(iii) ρ(h, f){φ(f), {g, h}ρ}ρ + ρ(g, h){φ(h), {f, g}ρ}ρ + ρ(f, g){φ(g), {h, f}ρ}ρ = 0.

(3) For all f, g, h ∈ A, {f · g, φ(h)}ρ = ρ(g, h+ P ){f, h}ρ · φ(g) + φ(f) · {g, h}ρ.

Furthermore, if fg = ρ(f, g)gf for all f, g ∈ Hg(A), then we have a Poisson Hom-ρ-

commutative algebra.

Equivalently, Poisson Hom-ρ-Lie algebra can be defined in the following expression.

Definition 4.9 A Poisson Hom-ρ-Lie algebra is a multiplex (A, [·, ·]ρ, {·, ·}ρ, ρ, φ) consisting

of a G-graded vector space A, bilinear maps [·, ·]ρ : A × A → A and {·, ·}ρ : A × A → A of

G-degree |{·, ·}ρ| = P , an even linear map φ : A → A and a two-cycle ρ : G×G → k⋆ satisfying

(1) (A, [·, ·]ρ, ρ, φ) is a Hom-ρ-Lie algebra.

(2) (A, {·, ·}ρ, ρ, φ) is a Hom-ρ-Lie algebra.

(3) For all f, g, h ∈ A, {[f, g]ρ, φ(h)}ρ = ρ(g, h+ P )[{f, h}ρ, φ(g)]ρ + [φ(f), {g, h}ρ]ρ.

Example 4.1 Let (A, ·, {·, ·}ρ, ρ, φ) be a Poisson Hom-ρ-algebra. We define the bracket

[·, ·] : A×A → A by [f, g] = f · g − ρ(f, g)g · f . In this case (A, [·, ·]ρ, ·, {·, ·}ρ, ρ, φ) is a Poisson

Hom-ρ-Lie algebra.
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It is enough to check that {[f, g]ρ, φ(h)}ρ = ρ(g, h + P )[{f, h}ρ, φ(g)]ρ + [φ(f), {g, h}ρ]ρ. For

this, we have

{[f, g]ρ, φ(h)}ρ = {f · g, φ(h)}ρ − ρ(f, g){g · f, φ(h)}ρ.

On the other hand, since (A, ·, {·, ·}ρ, ρ, φ) is a Poisson Hom-ρ-algebra, then

{f · g, φ(h)}ρ = ρ(g, h+ P ){f, h}ρ · φ(g) + φ(f) · {g, h}ρ

and

{g · f, φ(h)}ρ = ρ(f, h+ P ){g, h}ρ · φ(f) + φ(g) · {f, h}ρ.

Therefore

{[f, g]ρ, φ(h)}ρ = ρ(g, h+ P ){f, h}ρ · φ(g) + φ(f) · {g, h}ρ

− ρ(f, g){ρ(f, h+ P ){g, h}ρ · φ(f) + φ(g) · {f, h}ρ}

= ρ(g, h+ P )[{f, h}ρ, φ(g)]ρ + [φ(f), {g, h}ρ]ρ.

Theorem 4.1 Let (A, [·, ·]ρ, ρ, φ) be a Hom-ρ-Lie algebra and Ω be the homogeneous sym-

plectic structure. Defining the ρ-Poisson bracket {·, ·}ρ associated to Ω as

{f, g}ρ := −ρ(Ω, g)µA(Xf ) · g = −ρ(Ω, g)Ω(φA(Xf ), φA(Xg)), f, g ∈ Hg(A),

(A, [·, ·]ρ, {·, ·}ρ, φ) is a Poisson Hom-ρ-Lie algebra.

Proof Since Ω is a 2-Hom-cochain, we have

{f, g}ρ := −ρ(Ω, g)µA(Xf ) · g = −ρ(Ω, g)Ω(Xf , Xg), f, g ∈ Hg(A). (4.5)

At first, we show that (A, {·, ·}ρ, ρ, φ) is a Hom-ρ-Lie algebra. We have

|{f, g}ρ| = |{·, ·}ρ|+ |f |+ |g|.

On the other hand, we have

|Ω(Xf , Xg)| = |Ω|+ |Xf |+ |Xg| = P + |f |+ |g|.

By the definition of ρ-Poisson bracket, since |{f, g}ρ| = |Ω(Xf , Xg)|, we can find |{·, ·}ρ| = P =

−|Ω|.

Now, we investigate the following relation

{f, g}ρ = −ρ(f, g){g, f}ρ.

By the relation (4.5), we have

{f, g}ρ = −ρ(Ω, g)Ω(Xf , Xg) = ρ(Ω, g)ρ(Xf , Xg)Ω(Xg, Xf)

= ρ(Ω, g)ρ(f, g)ρ(f,−Ω)ρ(−Ω, g)Ω(Xg, Xf )

= ρ(f, g)ρ(Ω, f)Ω(Xg, Xf ) = −ρ(f, g){g, f}ρ.

Now, it is time to complete the proof by showing that the ρ-Hom-Jacobi identity holds. At

first, note that by Lemma 4.2, we have

Ω([Xf , Xg]ρ, φA(Xh)) = Ω(XΩ(Xf ,Xg), φA(Xh)) = −ρ(Xf +Xg, Xh)Ω(φA(Xh), XΩ(Xf ,Xg))
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= −ρ(Xf +Xg, Xh)µA(φA(Xh)) · Ω(Xf , Xg)

= −ρ(Xf +Xg, Xh)µA(φA(Xh))µA(Xf ) · g. (4.6)

Since Ω is a closed form, by (4.2), we have

0 = dAΩ(Xf , Xg, Xh) = µA(φA(Xf ))Ω(Xg, Xh)− ρ(Xf , Xg)µA(φA(Xg))Ω(Xf , Xh)

+ ρ(Xf +Xg, Xh)µA(φA(Xh))Ω(Xf , Xg)− Ω([Xf , Xg]ρ, φA(Xh))

+ ρ(Xg, Xh)Ω([Xf , Xh]ρ, φA(Xg))

− ρ(Xf , Xg +Xh)Ω([Xg, Xh]ρ, φA(Xf )).

This case will complete by invoking (4.6) and again (4.5), as

0 = dAΩ(Xf , Xg, Xh) = −2ρ(Xg, Xh)µA(φA(Xf ))µA(Xh) · g

+ 2ρ(Xf , Xg +Xh)µA(φA(Xg))µA(Xh) · f

− 2ρ(Xf +Xg, Xh)ρ(Xf , Xg)µA(φA(Xh))µA(Xg) · f.

By (4.5) again, this time vice versa, we obtain

0 = dAΩ(Xf , Xg, Xh) = ρ(g,Ω)ρ(h, 2Ω)ρ(f, h)ρ(h, f){φ(f), {g, h}ρ}ρ

+ ρ(f + g, h)ρ(g,Ω)ρ(h, 2Ω){φ(h), {f, g}ρ}ρ

+ ρ(f, g + h)ρ(g,Ω)ρ(h, 2Ω){φ(g), {h, f}ρ}ρ.

With this result, we can write

ρ(h, f){φ(f), {g, h}ρ}ρ + ρ(g, h){φ(h), {f, g}ρ}ρ + ρ(f, g){φ(g), {h, f}ρ}ρ = 0.

We continue with the checking of the following relation

{[f, g]ρ, φ(h)}ρ = ρ(g, h+ P )[{f, h}ρ, φ(g)]ρ + [φ(f), {h, g}ρ]ρ.

We have

{[f, g]ρ, φ(h)}ρ = −ρ(Ω, h)Ω(X[f,g]ρ , Xφ(h))

= ρ(Ω, h)ρ(f + g − Ω, h− Ω)Ω(Xφ(h), X[f,g]ρ).

Now, by using relation (4.5), we have

{[f, g]ρ, φ(h)}ρ = ρ(Ω, h)ρ(f + g − Ω, h− Ω)µA(Xφ(h)) · [f, g]ρ.

In the next, the relations (4.3)–(4.4) give us

{[f, g]ρ, φ(h)}ρ = ρ(f + g, h)ρ(f + g,−Ω)[µA(Xh) · f, φ(g)]ρ

+ ρ(f + g, h)ρ(f + g,−Ω)ρ(Xh, f)[φ(f), µA(Xh) · g]ρ

= ρ(g, h− Ω)[{f, h}ρ, φ(g)]ρ + [φ(f), {g, h}]ρ.

Lemma 4.2 implies the following corollary.

Corollary 4.1 We have

[Xf , Xg]ρ = XΩ(Xf ,Xg) = −ρ(g,Ω)X{f,g}ρ
.
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The above theorem is the key to construct Hamiltonian derivation and Poisson bracket on

the specific Hom-ρ-commutative algebras. To illustrate an application of this lemma, let us

state the following example.

Example 4.2 Let us go back to Example 3.1. In this example, for the extended hyperplane

A2
q and space ρ-DerA2

q , assuming that Ω = dy ∧ dx and |f | = (f1, f2), the Hamiltonian φ-ρ-

derivation associated to f ∈ A2
q has the following expression

Xf = q1−f1µA2
q

( ∂

∂y

)
· f

∂

∂x
− qf2µA2

q

( ∂

∂x

)
· f

∂

∂y
.

So, the Poisson bracket corresponding to φA2
q
gives as follows

{f, g}ρ = −ρ(Ω, g)µA2
q
(Xf ) · g = −ρ(x+ y, g)

{
q1−f1

(
µA2

q

( ∂

∂y

)
· f

)(
µA2

q

( ∂

∂x

)
· g

)

− qf2
(
µA2

q

( ∂

∂x

)
· f

)(
µA2

q

( ∂

∂y

)
· g

)}
.

Example 4.3 This example is intended to give us a Poisson structure on quaternion algebra

H (Example 2.1). Let us define the Poisson bracket {·, ·}ρ on H by the following structure

{i, i}ρ = 0, {j, j}ρ = 0, {k, k}ρ = 0, {i, j}ρ = −{j, i}ρ = k,

{k, i}ρ = −{i, k}ρ = j, {j, k}ρ = −{k, j}ρ = i.

So, (H, {·, ·}ρ, φH) is a Poisson Hom-ρ-commutative algebra.
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