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Abstract This paper characterizes the limits of a large system of interacting particles

distributed on the real line. The interaction occurring among neighbors involves two kinds

of independent actions with different rates. This system is a generalization of the voter

process, of which each particle is of type A or a. Under suitable scaling, the local pro-

portion functions of A particles converge to continuous functions which solve a class of

stochastic partial differential equations driven by Fisher-Wright white noise. To obtain the

convergence, the tightness of these functions is derived from the moment estimate method.
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1 Introduction

This paper studies the dynamics of a large system of interacting particles distributed on the

real line. In our model, the particles are placed at grids ρ−1
Z, where the parameter ρ denotes

the numbers of grids in a unit interval. Each grid is occupied by one and only one particle, and

each particle is of type A or a. Each particle interacts with its neighbors in a certain way that

will be specified later; here we say two particles x and y are neighbors (denoted by x ∼ y) if

their distance is less than a given bound D. Our model can be regarded as a generalization of

the voter process studied in [11].

The central problem in this paper is how to characterize the limit behavior of the system

when the grids are more and more dense, say, ρ → ∞. To be more specified, let ρn be a

sequence tending to infinity, and Dn be the corresponding bounds for neighborhood. Define the

local proportion of type A around a grid x ∈ ρ−1
n Z at time t as un(t, x) = N−1

n

∑
y∼x

ξnt (y), where

Nn ≈ 2Dnρn is the number of neighbors of the particle at x, and ξnt (x) indicates the type of

the particle at (t, x) (1 for A and 0 for a). We extend un(t, x) to the entire space R
+ × R by

linear interpolation. Our goal is to investigate the convergence of un as n tends to infinity, and

to characterize the limit if it exists.

The dynamics of un depends on the interacting manner of the particle system. In our model,

each particle interacts with its neighbors independently according to a Poisson process. We

further assume that the interaction (i.e., two-scale interaction) involves two types of independent

actions: The regular one-to-one interaction with higher-rate Hn and the rare interaction with
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lower-rate Ln. In the first type, the particle chooses one neighbor randomly and duplicates

its type. In contrast, the other type of action is much more flexible: We assume that the

particle at grid x and time t updates its type to i ∈ {A, a} with probability pi(un(t, x)) and

with rate Fi(un(t, x)), where pi : [0, 1] → [0, 1] and Fi : [0, 1] → [0,+∞) are given bounded

and measurable functions; in this case, Ln(t, x) = FA(un(t, x)) + Fa(un(t, x)). In other words,

the rare interaction can be state-dependent (see [6, Theorem I.3.9]), which endows the model

with the ability to capture various features in specific applications. For example, the voter

process studied in [11] is associated with the setting that pA(u) = u, Fa ≡ 0, and FA is

a positive constant. When applying to population genetics, it can model various effects in

gene frequency diffusion, such as mutation (e.g., pi and Fi are all constants), selection (e.g.,

pA(u) = u, pa(u) = 1 − u, and FA > Fa if A is advantaged), Allee’s effect (e.g., pA(u) = u,

pa(u) = (1 − u), and FA(u) = u, Fa(u) = (1 − u)), and so on (see [4, 14, 17]); all these effects

can be overlaid.

The main result of this paper is to obtain the convergence of un in a proper way. Define

the λ-norm ‖f‖λ := sup
x

|f(x)eλ|x|| and the following topological vector space of continuous

functions

C :=
{
f ∈ C(R, [0,∞)) | lim

x→∞
f(x)eλ|x| = 0, ∀λ < 0

}

with norm ‖ · ‖λ, where λ < 0.

Theorem 1.1 Let ρn = n,Dn = n− 1
2 , Hn = 2n, and un(0, ·) converges to f0 in C as

n → ∞. Then un converges in distribution to a C -valued continuous process u which satisfies

the following equation with initial condition u(0, x) = f0 :

∂tu =
1

3
∂2xu+ (1− u)pA(u)FA(u)− u pa(u)Fa(u) + 2

√
u(1− u)Ẇ , (1.1)

where Ẇ is a space-time white noise.

Remark 1.1 The higher-rate interaction contributes to the second-order term (i.e., 1
3∂

2
xu)

by random walk with generator (see [5])

∆n(f)(x) :=
Hn

Nn

∑

y∼x

(f(y)− f(x)),

and the noise term (i.e., 2
√
u(1− u)Ẇ ) by Fisher-Wright model (see [2, 4, 17]), while the

lower-rate interaction generates the other terms on the right-hand side of (1.1) (we call them

the “reaction terms” in what follows) through the increment on local proportion in unit time

and space.

Remark 1.2 This conclusion is able to be carried over to a case on ring if measures,

functions and noise are periodic. However, the corresponding result for high-dimension case

does not come true. Because super Brownian motion in higher dimensions exists as singular

measure-valued process rather than a density value process in one dimension case which can be

expressed as in Theorem 1.1 (see [12, Theorem III.4.2]).

Remark 1.3 The coefficients are a little different from those in [11], which results from the

choice of parameters.
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(1.1) can be given rigorous meaning in terms of an integral equation as explained in [16,

Chapter 3]. Our theorem gives existence of solutions to the associate martingale problem (see

[13]), while uniqueness in law also holds in a general condition, due to the following result from

[13].

Lemma 1.1 If pi and Fi with i ∈ {A, a} are Lipschitz continuous, the solution to the

martingale problem associated with (1.1) is unique.

The proof strategy of Theorem 1.1 is adopted from [11], and the key idea is to show that the

model satisfies a martingale problem that approximates the martingale problem for the limiting

processes. Tightness is proved through estimating moments of small increments for the local

proportion and arguing as in the Kolmogorov tightness criterion; to this end, we establish an

approximate Green’s function representation (2.12) for the local proportion un(t, x), which is

analogous to the one for the solution to (1.1) but with certain error terms. The introduction

of probabilities pA(u) and pa(u) not only generalizes the model, but also helps us simplify the

proof of Green’s function representation, comparing to that for the voter process in [11].

It is worth noting that various properties of solutions to SPDEs like (1.1) have been studied

in the literature; for instance, the compact support property for solutions was discovered by [9];

as a stochastic version of reaction-diffusion equations, random traveling waves were introduced

and investigated in [10, 15], and further analysis of the traveling speed was carried out in [7–8],

etc.

The rest of the paper is all devoted to the proof of Theorem 1.1. After figuring out the

dynamics of ξnt (x), we decompose each term in the expansion of a functional of ξnt (x) into the

sum of a fluctuation term and an average term in Subsection 2.1. Green’s function representa-

tion is derived in Subsection 2.2, and tightness of un is proved in Subsection 2.3. The limit is

characterized in Subsection 2.4, which concludes the proof.

2 Proof of Theorem 1.1

Let us introduce three independent Poisson processes associated with x, y ∈ ρ−1
n Z, i.e.,

Pt(x, y) with rate Hn/Nn, PA
t (x) with rate FA(ut−(x)), and P a

t (x) with rate Fa(ut−(x)),

characterizing the events of x interviewing y, x updating its type to A, and x updating its type

to a, respectively.

In what follows, we simply write

∑

x

:=
∑

x∈ρ
−1
n Z

and
∑

y∼x

:=
∑

y∈{y|y∼x}

.

For f, g : ρ−1
n Z → R and v a measure on ρ−1

n Z, we denote

〈〈f, g〉〉 := ρ−1
n

∑

x

f(x)g(x) and 〈〈v, f〉〉 :=

ˆ

fdv.

Moreover, we denote eλ(x) := eλ|x|.

According to the setting of our model, the process ξnt (x) satisfies

ξnt (x) = ξn0 (x) +
∑

y∼x

ˆ t

0

(ξns−(y)− ξns−(x))dPs(x, y)
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+

ˆ t

0

(1− ξns−(x))pA

(
∑
y∼x

ξns−(y)

Nn

)
dPA

s (x)

−

ˆ t

0

ξns−(x)pa

(
∑
y∼x

ξns−(y)

Nn

)
dP a

s (x).

Take a test function φ : [0,∞) × ρ−1
n Z → R with t → φt(x) being continuously differentiable

and satisfying
ˆ T

0

〈〈|φs|+ φ2s + |∂sφs|, 1〉〉ds <∞.

Define the measure valued process

vnt := ρ−1
n

∑

x

δ(· − ξnt (x)),

and then using the integration by parts, for t ≤ T , we have

〈〈vt, φt〉〉 − 〈〈v0, φ0〉〉 −

ˆ t

0

〈〈vs, ∂sφs〉〉ds

= ρ−1
n

∑

x

∑

y∼x

ˆ t

0

(ξns−(y)− ξns−(x))φs(x)dPs(x, y)

+ ρ−1
n

∑

x

ˆ t

0

(1 − ξns−(x))pA

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)dP

A

s (x)

− ρ−1
n

∑

x

ˆ t

0

ξns−(x)pa

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)dP

a

s (x).

By symmetry, one can see that

ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(y)φs(y)dPs(x, y) = ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(x)φs(x)dPs(y, x),

so the previous formula can be written as

〈〈vt, φt〉〉 − 〈〈v0, φ0〉〉 −

ˆ t

0

〈〈vs, ∂sφs〉〉ds

= ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(y)(φs(x)− φs(y))dPs(x, y)

+ ρ−1
n

∑

x

ˆ t

0

(1 − ξns−(x))pA

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)dP

A

s (x)

− ρ−1
n

∑

x

ˆ t

0

ξns−(x)pa

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)dP

a

s (x)

+ ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(x)φs(x)(dPs(y, x)− dPs(x, y))

=: J1 + J2 + J3 + J4. (2.1)
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2.1 The Doob-Meyer decomposition

We need to decompose each of the four terms (2.1), denoted by J1, J2, J3 and J4, respectively,

into the sum of a fluctuation term and an average term. In the following argument, we will

omit superscript n without ambiguity and denote un(t, x) as ut(x). Define

D(f, δ)(x) := sup{|f(y)− f(x)| : |y − x| ≤ δ, y ∈ ρ−1
n Z}

for f : ρ−1
n Z → R, x ∈ ρ−1

n Z and δ > 0.

For J1, one computes that

J1 = ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(y)(φs(x) − φs(y))
(
dPs(x, y)−

Hn

Nn

ds
)

+ ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns (y)(φs(x) − φs(y))
Hn

Nn

ds

=: E
(1)
t (φ) +

ˆ t

0

〈〈vs,∆n(φs)〉〉ds, (2.2)

where E
(1)
t (φ) is a martingale with brackets process given by

d〈E(1)
n (φ)〉t = ρ−2

n

∑

x

∑

y∼x

ξnt (y)(φt(x)− φt(y))
2Hn

Nn

dt

≤ ρ−2
n

∑

y

ξnt (y)[D(φt, Dn)(y)]
2Hndt

= ρ−1
n Hn〈〈vt, [D(φt, Dn)]

2〉〉dt

≤ ρ−1
n Hn‖D(φt, Dn)‖

2
λ〈〈e−2λ, vt〉〉dt

≤ ρ−1
n Hn‖D(φt, Dn)‖

2
λ〈〈e−2λ, 1〉〉dt. (2.3)

Alternatively, we bound it by

d〈E(1)
n (φ)〉t ≤ ρ−2

n

∑

x

∑

y∼x

2ξnt (y)‖φt‖0[|φt(x)|+ |φt(y)|]
Hn

Nn

dt

= 2‖φt‖0ρ
−1
n Hn[〈〈|φt|, ut〉〉+ 〈〈vt, |φt|〉〉]dt

≤ 4‖φt‖0ρ
−1
n Hn〈〈|φt(x)|, 1〉〉dt. (2.4)

Hereafter, C denotes a generic positive constant that may change from line to line.

For J2, one has that

J2 = ρ−1
n

∑

x

ˆ t

0

(1− ξns−(x))pA

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)(dP

A

s (x) − FA(us)ds)

+ ρ−1
n

∑

x

ˆ t

0

(1− ξns (x))pA

(
∑
y∼x

ξns (y)

Nn

)
φs(x)FA(us)ds

=: E
(2)
t (φ) +

ˆ t

0

[〈〈1, FA(us)pA(us)φs〉〉 − 〈〈vs, FA(us)pA(us)φs〉〉]ds, (2.5)
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where E
(2)
t (φ) is a martingale with brackets process given by

d〈E(2)
n (φ)〉t = ρ−2

n

∑

x

(1− ξnt (x))p
2
A
(ut)φ

2
t (x)FA(ut)dt

= ρ−1
n [〈〈1, p2A(ut)FA(ut)φ

2
t 〉〉 − 〈〈vt, p

2
A(ut)FA(ut)φ

2
t 〉〉]dt

≤ C(pA, FA)ρ−1
n 〈〈1, φ2t 〉〉dt

≤ C(pA, FA)ρ−1
n ‖φt‖

2
λ〈〈e−2λ, 1〉〉dt. (2.6)

For J3, one obtains that

J3 = −ρ−1
n

∑

x

ˆ t

0

ξns−(x)pa

(
∑
y∼x

ξns−(y)

Nn

)
φs(x)(dP

a

s (x)− Fa(us−)ds)

− ρ−1
n

∑

x

ˆ t

0

ξns (x)pa

(
∑
y∼x

ξns (y)

Nn

)
φs(x)Fa(us)ds

=: E
(3)
t (φ) −

ˆ t

0

〈〈vs, pa(us)Fa(us)φs〉〉ds, (2.7)

where E
(3)
t (φ) is a martingale with brackets process given by

d〈E(3)
n (φ)〉t = ρ−2

n

∑

x

ξnt (x)p
2
a
(ut)φ

2
t (x)Fa(ut)dt = ρ−1

n 〈〈vt, φ
2
t p

2
a
(ut)Fa(ut)〉〉dt

≤ ρ−1
n C(pa, Fa)〈〈1, φ

2
t 〉〉dt ≤ ρ−1

n C(pa, Fa)‖φt‖
2
λ〈〈e−2λ, 1〉〉dt. (2.8)

For J4, one obtains that

J4 = ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(x)φs(x)(dPs(y, x)− dPs(x, y))

= ρ−1
n

∑

x

∑

y∼x

ˆ t

0

ξns−(x)φs(x)
[(

dPs(y, x)−
Hn

Nn

ds
)
−
(
dPs(x, y)−

Hn

Nn

ds
)]

=: Zt(φ), (2.9)

where Zt(φ) is a martingale with brackets process given by

d〈Z(φ)〉t = ρ−2
n

∑

x

∑

y∼x

∑

x′

∑

y′∼x′

ξnt (x)φt(x)ξ
n
t (x

′)φt(x
′)2I(x = x′, y = y′)

Hn

Nn

dt

− ρ−2
n

∑

x

∑

y∼x

∑

x′

∑

y′∼x′

ξnt (x)φt(x)ξ
n
t (x

′)φt(x
′)2I(x = y′, y = x′)

Hn

Nn

dt

= 2ρ−2
n

∑

x

∑

y∼x

(ξnt (x)φt(x)
2 − ξnt (x)φt(x)ξ

n
t (y)φt(y))

Hn

Nn

dt

= 2ρ−1
n Hn

[
〈〈vt, φ

2
t 〉〉 −

〈〈
vt, φt

∑
y∼·

(ξnt φt)(y)

Nn

〉〉]
dt

≤ 4ρ−1
n Hn〈〈vt, φ

2
t 〉〉dt ≤ 4ρ−1

n Hn‖φt‖
2
λ〈〈e−2λ, 1〉〉dt. (2.10)

Combining (2.2), (2.5), (2.7) and (2.9), one gains that

〈〈vt, φt〉〉 = 〈〈v0, φ0〉〉+

ˆ t

0

〈〈vs, ∂sφs +∆n(φs)〉〉ds
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−

ˆ t

0

〈〈vs, [pa(us)Fa(us) + FA(us)pA(us)]φs〉〉ds

+

ˆ t

0

〈〈1, FA(us)pA(us)φs〉〉ds+

3∑

i=1

E
(i)
t (φ) + Zt(φ). (2.11)

2.2 Green’s function representation

For each z ∈ ρ−1
n Z, let ψz

t be the unique solution of

∂tψ
z
t = ∆n(ψ

z
t ), ψz

0(x) = ρnN
−1
n I(x ∼ z).

Linearly interpolating ψz
t and letting n→ ∞, one obtains that ψz

t (x) converges to p
(D2

nHnt

3 , x−

z
)
, where p(σ2, ·) is the density function of centered normal distribution with variance σ2.

Remark 2.1 A continuous-time random walk with generator ∆n is of variance
D2

n

3 .

2.2.1 Property of ψz

t

Set φs = ψx
t−s for s ≤ t and substitute it into (2.11), then the second term on the right-hand

side vanishes, and 〈〈vt, ψ
x
0 〉〉 = ut(x). So

ut(x) = 〈〈v0, ψ
x
t 〉〉 −

ˆ t

0

〈〈vs, [pa(us)Fa(us) + FA(us)pA(us)]ψ
x
t−s〉〉ds

+

ˆ t

0

〈〈1, FA(us)pA(us)ψ
x
t−s〉〉ds+

3∑

i=1

E
(i)
t (ψx

t−·) + Zt(ψ
x
t−·). (2.12)

Lemma 2.1 For T ≥ 0, p ≥ 2, λ > 0, we have

E(|E
(i)
t (ψz

t−·)|
p) ≤ Ĉn− p

16 eλp(z) for all t ≤ T,

where Ĉ = C(λ, p, T, pA, FA, pa, Fa), 1 ≤ i ≤ 3.

Proof From [11, Lemma 3(a)], the greatest jumps of the martingales E
(i)
t (φ) are bounded

by ρ−1
n sup

s≥0
‖ψz

s‖0 ≤ Cρ−1
n n

1
2 a.s., where C is a constant.

For i = 1, using Burkholder’s inequality, (2.3) and (2.4), we have

E(|E
(1)
t (ψz

t−·)|
p)

≤ C(p)(ρ−1
n Hn)

p

2

(ˆ t

(t−n
−

3
8 )+

‖ψz
t−s‖0〈〈ψ

z
t−s, 1〉〉ds

) p

2

+ C(p)(ρ−1
n Hn)

p

2 E

[( ˆ (t−n
−

3
8 )+

0

‖D(ψz
t−s, Dn)‖

2
λ〈〈e−2λ, vs〉〉ds

) p

2
]

+ C(p)ρ−p
n n

p

2 .

By [11, Lemma 3(a,c)], one has

(ˆ t

(t−n
−

3
8 )+

‖ψz
t−s‖0〈〈ψ

z
t−s, 1〉〉ds

) p

2

≤ C(T )
( ˆ t

(t−n
−

3
8 )+

(t− s)−
2
3 〈〈1, ψz

t−s〉〉ds
) p

2

≤ C(p, T )n− p

16
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and

E

[(ˆ (t−n
−

3
8 )+

0

‖D(ψz
t−s, Dn)‖

2
λ〈〈e−2λ, vs〉〉ds

) p

2
]

≤ C(λ, p, T )
( ˆ (t−n

−
3
8 )+

0

‖D(ψz
t−s, Dn)‖

2
λds

) p

2

≤ C(λ, p, T )eλp(z)n
−p

4

(ˆ (t−n
−

3
8 )+

0

(t− s)−2ds
) p

2

≤ C(λ, p, T )n− p

16 eλp(z).

Finally,

E(|E
(1)
t (ψz

t−·)|
p) ≤ C(λ, p, T )eλp(z)ρ

− p

2
n ((Hnn

− 1
8 )

p

2 + (ρ−1
n n)

p

2 ). (2.13)

Similarly, for i = 2, 3, by (2.6), (2.8) and [11, Lemma 3(c)], we get

E(|E
(i)
t (ψz

t−·)|
p) ≤ Ĉρ

−p

2
n

[( ˆ t

0

‖ψz
t−s‖

2
λds

)
p

2 + (ρ−1
n n)

p

2

]

≤ Ĉρ
−p

2
n [(n

1
4 )

p

2 + (ρ−1
n n)

p

2 ]eλp(z). (2.14)

According to (2.13) and (2.14), one has

E(|E
(i)
t (ψz

t−·)|
p) ≤ Ĉn− p

16 eλp(z),

where 1 ≤ i ≤ 3. The proof is complete.

2.3 Tightness

Our objective is to prove the tightness of un. Define

ûn(t, x) := ut(x) − 〈〈v0, ψ
x
t 〉〉.

Lemma 2.2 For 0 ≤ s ≤ t ≤ T, y, z ∈ ρ−1
n Z, |t− s|, |y − z| ≤ 1, λ > 0, p ≥ 2, we have

E(|ût(z)− ûs(y)|
p) ≤ Ĉeλp(z)(|t− s|

p

24 + |z − y|
p

24 + n− p

12 ),

where Ĉ = C(λ, p, T, pA, FA, pa, Fa).

Proof Set

δ := (|z − y|
1
4 ∨ n− 1

2 ) ∧ t, δ := (|t− s|
1
4 ∨ n− 1

2 ) ∧ s.

From (2.12), we have

ût(x) = −

ˆ t

0

〈〈vs, (pa(us)Fa(us) + FA(us)pA(us))ψ
x
t−s〉〉ds

+

ˆ t

0

〈〈1, FA(us)pA(us)ψ
x
t−s〉〉ds+

3∑

i=1

E
(i)
t (ψx

t−·) + Zt(ψ
x
t−·).
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By Lemma 2.1 and using Hölder’s inequality, we estimate that

E(|ût(z)− ût(y)|
p)− Ĉn− p

16 eλp(z)

≤ C(p)E
∣∣∣
ˆ t

0

〈〈vs, (pa(us)Fa(us) + FA(us)pA(us))(ψ
z
t−s − ψy

t−s)〉〉ds
∣∣∣
p

+ C(p)E
∣∣∣
ˆ t

0

〈〈1, FA(us)pA(us)(ψ
z
t−s − ψy

t−s)〉〉ds
∣∣∣
p

+ C(p)E|Zt(ψ
z
t−· − ψy

t−·)|
p

=: T1 + T2 + T3.

For the term T1, using [11, Lemma 3(c, e)] one has that

T1 ≤ Ĉ
(
E

∣∣∣
ˆ t−δ

0

〈〈vs, (ψ
z
t−s − ψy

t−s)〉〉ds
∣∣∣
p

+ E

∣∣∣
ˆ t

t−δ

〈〈vs, (ψ
z
t−s − ψy

t−s)〉〉ds
∣∣∣
p)

≤ Ĉ
[(ˆ t−δ

0

〈〈1, |ψz
t−s − ψy

t−s|〉〉ds
)p

+
( ˆ t

t−δ

〈〈1, |ψz
t−s − ψy

t−s|〉〉ds
)p]

≤ Ĉ
[(ˆ t−δ

0

〈〈1, e−λ〉〉ds
)p(

sup
s∈(δ,t]

‖ψz
s − ψy

s‖λ

)p

+
(ˆ t

t−δ

‖ψz
t−s‖λ〈〈1, e−λ〉〉ds

)p]

≤ Ĉ
[(

sup
s∈(δ,t]

‖ψz
s − ψy

s‖λ

)p

+ eλp(z)
(ˆ t

t−δ

|t− s|−
2
3 ds

)p]

≤ Ĉeλp(z)(|z − y|
p

2 δ−p + n− p

2 δ−
3p

4 ) + Ĉeλp(z)δ
p

3 .

Similarly, for the term T2, one obtains

T2 ≤ Ĉ
(∣∣∣
ˆ t−δ

0

〈〈1, (ψz
t−s − ψy

t−s)〉〉ds
∣∣∣
p

+
∣∣∣
ˆ t

t−δ

〈〈1, (ψz
t−s − ψy

t−s)〉〉ds
∣∣∣
p)

≤ Ĉ
((ˆ t−δ

0

〈〈1, |ψz
t−s − ψy

t−s|〉〉ds
)p

+
( ˆ t

t−δ

〈〈1, |ψz
t−s − ψy

t−s|〉〉ds
)p)

≤ Ĉeλp(z)(|z − y|
p

2 δ−p + n−p

2 δ−
3p

4 ) + Ĉeλp(z)δ
p

3 .

For the term T3, use [11, Lemma 3(c, e)] and (2.10), we find

T3 ≤ C(p)(ρ−1
n Hn)

p

2

(
E

( ˆ t−δ

0

〈〈vs, (ψ
z
t−s − ψy

t−s)
2〉〉ds

) p

2

+ E

( ˆ t

t−δ

〈〈vs, (ψ
z
t−s − ψy

t−s)
2〉〉ds

) p

2
)

≤ C(p)(ρ−1
n Hn)

p

2

((ˆ t−δ

0

〈〈1, (ψz
t−s − ψy

t−s)
2〉〉ds

) p

2

+
(ˆ t

t−δ

〈〈1, (ψz
t−s − ψy

t−s)
2〉〉ds

) p

2
)

≤ C(p)(ρ−1
n Hn)

p

2

((ˆ t−δ

0

〈〈1, e−2λ〉〉ds
) p

2
(

sup
s∈(δ,t]

‖ψz
s − ψy

s‖λ

)p

+
(ˆ t

t−δ

‖ψz
t−s + ψy

t−s‖0〈〈1, ψ
z
t−s + ψy

t−s〉〉ds
) p

2
)

≤ C(λ, p, T )(ρ−1
n Hn)

p

2

((
sup

s∈(δ,t]

‖ψz
s − ψy

s‖λ

)p

+
( ˆ t

t−δ

|t− s|−
2
3ds

) p

2
)

≤ Ĉeλp(z)(|z − y|
p

2 δ−p + n− p

2 δ−
3p

4 ) + Ĉeλp(z)δ
p

6 .
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Combining the estimates for T1, T2 and T3 and noticing the definition of δ, we have

E(|ût(z)− ût(y)|
p) ≤ Ĉeλp(z)(n

− p

16 + |z − y|
p

2 δ−p + n− p

2 δ−
3p

4 + δ
p

3 + δ
p

6 )

≤ Ĉeλp(z)(|z − y|
p

24 + n− p

12 ). (2.15)

Also using Lemma 2.1, (2.10) and Hölder’s inequality, we can similarly estimate that

E(|ût(y)− ûs(y)|)
p − Ĉn− p

16 eλp(y)

≤ C(p)E
( ˆ t

s

〈〈vr, (pa(ur)Fa(ur) + FA(ur)pA(ur))ψ
y
t−r〉〉dr

)p

+ C(p)E
( ˆ s

0

〈〈vr, (pa(ur)Fa(ur) + FA(ur)pA(ur))|ψ
y
t−r − ψy

s−r|〉〉dr
)p

+ C(p)E
( ˆ t

s

〈〈1, FA(ur)pA(ur)ψ
y
t−r〉〉dr

)p

+ C(p)E
( ˆ s

0

〈〈1, FA(ur)pA(ur)|ψ
y
t−r − ψy

s−r|〉〉dr
)p

+ C(p)(ρ−1
n Hn)

p

2E

( ˆ t

s

〈〈vr , (ψ
y
t−r)

2〉〉dr
) p

2

+ C(p)(ρ−1
n Hn)

p

2E

( ˆ s

0

〈〈vr, (ψ
y
t−r − ψy

s−r)
2〉〉dr

) p

2

=: T4 + T5 + T6 + T7 + T8 + T9.

For terms T4 and T6, we use [11, Lemma 3(a)] and get

T4 + T6 ≤ Ĉ
(ˆ t

s

〈〈1, ψy
t−r〉〉dr

)p

≤ Ĉ|t− s|p.

For terms T5 and T7, we use [11, Lemma 3(c, f)] and obtain

T5 + T7 ≤ Ĉ
(( ˆ s−δ

0

〈〈1, |ψy
t−r − ψy

s−r|〉〉dr
)p

+
(ˆ s

s−δ

〈〈1, |ψy
t−r − ψy

s−r|〉〉dr
)p)

≤ Ĉ
((

sup
r∈[0,s−δ)

‖ψy
t−r − ψy

s−r‖λ

)p

+
( ˆ s

s−δ

‖ψy
s−r‖λdr

)p)

≤ Ĉeλp(y)(|t− s|
p

2 δ
− 3p

2 + n− p

2 δ
− 3p

4 ) + Ĉeλp(y)δ
p

3 .

For term T8, using [11, Lemma 3(c)], we have

T8 ≤ Ĉ
(ˆ t

s

‖ψy
t−r‖0〈〈1, ψ

y
t−r〉〉dr

) p

2

≤ Ĉ
( ˆ t

s

(t− r)−
2
3 dr

) p

2

≤ Ĉ|t− s|
p

6 .

For term T9, we use [11, Lemma 3(c, f)] and obtain

T9 ≤ Ĉ
(( ˆ s−δ

0

〈〈1, (ψy
t−r − ψy

s−r)
2〉〉dr

) p

2

+
(ˆ s

s−δ

〈〈1, (ψy
t−r − ψy

s−r)
2〉〉dr

) p

2
)

≤ Ĉ
((

sup
r∈[0,s−δ)

‖ψy
t−r − ψy

s−r‖λ

)p

+
( ˆ s

s−δ

‖ψy
s−r + ψy

t−r‖0〈〈1, ψ
y
t−r + ψy

s−r〉〉dr
) p

2
)

≤ Ĉeλp(y)(|t− s|
p

2 δ
− 3p

2 + n− p

2 δ
− 3p

4 ) + Ĉeλp(y)δ
p

6 .
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Combining the estimates for Ti (4 ≤ i ≤ 9) and noticing the definition of δ, we have

E(|ût(y)− ûs(y)|)
p

≤ Ĉeλp(y)(n
− p

16 + |t− s|p + |t− s|
p

6 + |t− s|
p

2 δ
− 3p

2 + n−p

2 δ
− 3p

4 + δ
p

3 + δ
p

6 )

≤ Ĉeλp(y)(|t− s|
p

24 + n− p

12 )

≤ Ĉeλp(z)(|t− s|
p

24 + n− p

12 ). (2.16)

Put (2.15)–(2.16) together and get

E(|ût(z)− ûs(y)|
p) ≤ C(p)E(|ût(z)− ût(y)|

p) + C(p)E(|ût(y)− ûs(y)|
p)

≤ Ĉeλp(z)(|t− s|
p

24 + |z − y|
p

24 + n− p

12 ).

The proof is complete.

To get the tightness of un(·, ·), define ũn(t, x) := ûn(t, x) on the grid z ∈ ρ−1
n Z, t ∈ N/(nρn),

then linearly interpolate it first in x and then in t to obtain a continuous C valued process.

Using Lemma 2.2, it is easy to find that

E(|ũt(z)− ũs(y)|
p) ≤ Ĉeλp(z)(|t− s|

p

24 + |z − y|
p

24 ),

because that means to find an m such that
(

1
nρn

) p

m ≥
(

1
nρn

) p

24 +
(
1
n

) p

12 and
(

1
ρn

) p

m ≥
(

1
ρn

) p

24 +
(
1
n

) p

12 . If ρn = n, m should be 24.

The following result is taken from [11, Lemma 7].

Lemma 2.3 For any λ > 0, T <∞,

(i) P
(
sup
t≤T

‖ût(z)− ũt(z)‖−λ ≥ 7n− 1
4

)
→ 0 as n→ ∞,

(ii) sup
t≤T

‖〈〈v0, ψ
·
t〉〉 − P t

3
f0‖−λ → 0 as n→ ∞.

On any given compact subsetK ⊂ R
+×R, ũn(t, x) is uniformly bounded and equicontinuous

by using Kolmogorov’s continuity criterion (see [16, Corollary 1.2(ii)]) almost surely. Therefore,

we get the tightness of ũn(t, x) as continuous C -valued process. Then the tightness of un(t, x)

follows from the above lemma. Also, the continuity of all limit points follows.

2.4 Characterizing limit points

Taking a continuous function φ : R → R with compact support, we define

|E
(4)
t (φ)| := |〈〈vnt , φ〉〉 − 〈〈un(t), φ〉〉| = ρ−1

n N−1
n

∣∣∣
∑

x

∑

y∼x

(ξnt (x)− ξnt (y))φ(x)
∣∣∣

≤ ρ−1
n N−1

n

∑

x

∑

y∼x

ξnt (x)|φ(y) − φ(x)| ≤ 〈〈1,D(φ,Dn)〉〉, (2.17)

and get E
(
sup
t≤T

|E
(4)
t (φ)|

)
≤ 〈〈1,D(φ,Dn)〉〉. From the tightness of un(t), we can get the tightness

of (〈〈vnt , φ〉〉, t ≥ 0). This in turn implies the tightness of (vnt , t ≥ 0) as cadlag Radon measure

valued process with the vague topology (see [1, Theorem 3.6.4]). 〈〈vnt , e−λ〉〉 ≤ 〈〈1, e−λ〉〉 ≤ C(λ)

assures the compact containment condition is satisfied, and then all limit points are continuous.
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Because of simultaneous convergence of subsequence of the pairs (un(t), v
n
t ), by Skorokhod’s

theorem (see [3, Theorem 2.1.8]), we can find random variables with the same distribution as ξnt ,

which converges almost surely. We can still label it as (un(t), v
n
t ) since our interest is to identify

the distribution of the limit. Since the limits are continuous, the almost sure convergence holds

not only in Skorokhod sense but also in uniform sense on compact sets. Thus, with probability

one, for any T <∞, λ > 0 and function φ with compact support, we have

sup
t≤T

‖un(t)− ut‖−λ → 0, sup
t≤T

∣∣∣
ˆ

φ(x)vnt (dx) −

ˆ

φ(x)vt(dx)
∣∣∣ → 0,

where vt(dx) = ut(x)dx for all t ≥ 0, from (2.17).

Taking a φ ∈ C3
c (R), and substituting it into (2.11), we have

Zt(φ) =

ˆ

φ(x)vnt (dx) −

ˆ

φ(x)vn0 (dx)−

ˆ t

0

ˆ

∆n(φ)(x)v
n
s (dx)ds

+

ˆ t

0

ˆ

(pa(us)Fa(us) + FA(us)pA(us))φ(x)v
n
s (dx)ds

−

ˆ t

0

ˆ

FA(us)pA(us)φ(x)dxds −

3∑

i=1

E
(i)
t (φ).

When n goes to infinity, we know that E
(i)
t (φ) (1 ≤ i ≤ 3) tend to zero almost surely for all t by

(2.3), (2.6) and (2.8), and also know ∆n(φ)(x) tends to 1
3∂

2
x uniformly by Taylor’s expansion.

Therefore, Zt(φ) tends to a continuous local martingale zt(φ), where

zt(φ) =

ˆ

φ(x)ut(x)dx −

ˆ

φ(x)u0(x)dx −

ˆ t

0

ˆ

1

3
us(x)∂

2
xφ(x)dxds

−

ˆ t

0

ˆ

((1 − us(x))FA(us(x))pA(us(x))

− us(x)pa(us(x))Fa(us(x)))φ(x)dxds. (2.18)

From (2.10), we know the following process

Z2
t (φ) − 2

ˆ t

0

ρ−1
n Hn

[
〈〈vs, φ

2〉〉 −
〈〈
vs, φ

∑
y∼·

(ξns φs)(y)

Nn

〉〉]
ds

= Z2
t (φ) − 2

ˆ t

0

ρ−1
n Hn〈〈vs, (1− us)φ

2〉〉ds

+ 2

ˆ t

0

ρ−1
n Hn

〈〈
vsφ,

∑
y∼·

(ξns φs)(y)

Nn

− usφ
〉〉
ds

= Z2
t (φ) − 2

ˆ t

0

ρ−1
n Hn〈〈vs, (1− us)φ

2〉〉ds+ E
(5)
t (φ)

is a martingale, where

E
(5)
t (φ) := 2

ˆ t

0

ρ−1
n Hn

〈〈
vsφ,

∑
y∼·

(ξns φs)(y)

Nn

− usφ
〉〉
ds.
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Fortunately, we have a bound

E
(5)
t (φ) ≤ 2

ˆ t

0

ρ−2
n Hn

∑

x

ξns (x)φ(x)

∑
y∼x

ξns (y)|φ(y) − φ(x)|

Nn

ds

≤ 2

ˆ t

0

ρ−1
n Hn〈〈vsφ, usD(φ,Dn)〉〉ds

≤ 2tρ−1
n Hn〈〈φ,D(φ,Dn)〉〉 → 0.

So

z2t (φ) − 4

ˆ t

0

ˆ

(1 − us(x))φ
2(x)us(x)dxds (2.19)

is a continuous local martingale. Since C3
c (R) is dense in C2

c (R), (2.18)–(2.19) hold for any

φ ∈ C2
c (R). Hence, the solution u(t, x) to the martingale problem associated with the following

SPDE

∂tu =
1

3
∂2xu+ (1 − u)pA(u)FA(u)− upa(u)Fa(u) + 2

√
u(1− u)Ẇ

comes.

Remark 2.2 Instead of taking φ ∈ C2
c (R) directly, we use φ ∈ C3

c (R). The reason is when

we conclude ∆n(φ)(x) tends to 1
3∂

2
x, Taylor’s expansion is required.
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