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1 Introduction

Let Ω be a bounded domain in R
d with smooth boundary Γ = Γ1∪Γ0 such that Γ1∩Γ0 = ∅

and mes(Γ1) > 0. Let H0 = L2(Ω), H1 = H1
0 (Ω), L = L2

loc(0,+∞;L2(Γ1)) and H−1 = H−1(Ω)

denotes the dual of H1.

Let U = (u(1), · · · , u(N))
T
. Consider the following coupled system of wave equations with

Dirichlet boundary controls:




U ′′ −∆U +AU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ0,

U = DH on (0,+∞)× Γ1

(1.1)

with the initial condition

t = 0 : U = Û0, U ′ = Û1 in Ω, (1.2)

where “ ′” stands for the time derivative; ∆ =
d∑

k=1

∂2

∂x2
k

is the Laplacian operator; the coupling

matrix A = (aij) is of order N and the boundary control matrix D = (dpq) is a full column-rank

matrix of order N ×M (M ≤ N), both with constant elements; H = (h(1), · · · , h(M))T denotes

the boundary controls.

From the approximate boundary null controllability of system (1.1) introduced by Li and

Rao in [5–6], we have the following definition.

Definition 1.1 System (1.1) is approximately boundary null controllable at the time T > 0,

if for any given initial data (Û0, Û1) ∈ (H0)
N × (H−1)

N , there exists a sequence {Hn} of
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boundary controls in LM with compact support in [0, T ], such that the corresponding sequence

{Un} of solutions to problem (1.1)–(1.2) satisfies

(Un, U
′
n) → (0, 0) in C0

loc([T,+∞); (H0)
N × (H−1)

N ) as n → +∞. (1.3)

Let Φ = (φ(1), · · · , φ(N))
T
. The adjoint system of system (1.1) is given by

{
Φ′′ −∆Φ+ATΦ = 0 in (0,+∞)× Ω,

Φ = 0 on (0,+∞)× Γ
(1.4)

with the initial data

t = 0 : Φ = Φ0, Φ′ = Φ1 in Ω. (1.5)

Definition 1.2 (see [8–9]) The adjoint system (1.4) is D-observable on the interval [0, T ],

if the following partial Neumann observation

D∂νΦ ≡ 0 on [0, T ]× Γ1, (1.6)

∂ν being the outward normal derivative, implies that (Φ0,Φ1) = (0, 0), then Φ ≡ 0.

The relationship between the approximate boundary null controllability of system (1.1) and

the D-observability of the adjoint system (1.4) was also given by Li and Rao in [5–6] as follows.

Theorem 1.1 System (1.1) is approximately null controllable at the time T > 0 if and only

if the adjoint system (1.4) is D-observable on the interval [0, T ].

The necessity of Kalman’s rank condition to the D-observability of the adjoint system (1.4),

proved by Li and Rao in [5–6], can be written as the following theorem.

Theorem 1.2 If the adjoint system (1.4) is D-observable, then we necessarily have the

following Kalman’s rank condition:

rank(D,AD, · · · , AN−1D) = N. (1.7)

Kalman’s rank condition (1.7) is not sufficient for the approximate boundary null control-

lability of system (1.1) in general. Otherwise, noting that Kalman’s rank condition (1.7) is

independent of the control (and observation) time T > 0, if system (1.1) is approximately null

controllable at the time T > 0, then the approximate boundary null controllability can be real-

ized almost immediately, which contradicts the finite speed of wave propagation. However, in

some special cases, Kalman’s rank condition (1.7) is sufficient for the approximate boundary null

controllability of system (1.1) on a finite time interval [0, T ], when T > 0 is large enough (see

[5–6, 9]). This paper as a continuation of [9] is to investigate the sufficiency of Kalman’s rank

condition (1.7) for diagonalizable systems on an annular domain Ω = {x : a < |x| < 1} ⊂ R
d

with Γ0 = {x : |x| = a} and Γ1 = {x : |x| = 1}, where a is a positive constant with a < 1.

In Section 2, we will investigate the eigenfunctions and eigenvalues of −∆ on the annular

domain Ω = {x : a < |x| < 1} based on the coordinate transformation, and give some properties

of the eigenvalues. The uniqueness result for non-harmonic series on this annular domain will

be established in Section 3. The sufficiency of Kalman’s rank condition (1.7) for diagonalizable

systems on an annular domain will be given in Section 4 by a way similar to the one-space-

dimensional case and to [9].
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2 Preliminaries

In this section, we will give the eigenfunctions and eigenvalues of −∆ on an annular domain

Ω = {x : a < |x| < 1} with 0 < a < 1, which will be used in Section 4 to show the sufficiency of

Kalman’s rank condition (1.7) to the D-observability for T > 0 large enough for diagonalizable

systems. For this purpose, we consider the eigenvalue problem
{
−∆e(x) = µ2e(x) in Ω,

e(x) = 0 on Γ
(2.1)

in spherical coordinates.

Let e(x) = R(r)Y (θ). Similarly to the spherical domain in [9], we get the corresponding

eigenvalue problems for Y (θ) and R(r), respectively.

For Y (θ), we have

−∆θY (θ) = m(m+ d− 2)Y (θ) on Sd−1, (2.2)

where m ∈ N and ∆θ is the Laplacian operator on the unit sphere Sd−1 with d ≥ 2 (see [1]).

For R(r), we have




d

dr
(rd−1R′(r)) −m(m+ d− 2)rd−3R(r) + µ2rd−1R(r) = 0, a < r < 1,

R(a) = 0, R(1) = 0.
(2.3)

Atkinson and Han introduced the eigenfunctions and eigenvalues of problem (2.2) in [1].

In what follows, N and N
+ denote the set of natural numbers and the set of positive integers,

respectively.

Lemma 2.1 (see [1]) Let ∆θ be the Laplacian operator on the unit sphere Sd−1 with d ≥ 2.

Then, we have

(i) for any given m ∈ N, {Ym,j}1≤j≤jm are the eigenfunctions of −∆θ, corresponding to the

eigenvalue m(m+ d− 2), i.e., we have

−∆θYm,j = m(m+ d− 2)Ym,j on Sd−1, (2.4)

where jm, the multiplicity of the eigenvalue m(m+ d− 2), is given by

jm =





1, when m = 0,

(2m+ d− 2)(m+ d− 3)!

m!(d− 2)!
, when m ∈ N

+;
(2.5)

(ii) {Ym,j}m∈N,1≤j≤jm are orthonormal in L2(Sd−1), i.e., we have

∫

Sd−1

Ym,jYm′,j′dΓ = δm,m′δj,j′ (2.6)

with m,m′ ∈ N, 1 ≤ j ≤ jm and 1 ≤ j′ ≤ jm′ , where δm,m′ stands for the Kronecker symbol ;

(iii) {Ym,j}m∈N,1≤j≤jm are complete in L2(Sd−1).

Next, we consider problem (2.3) as a Sturm-Liouville problem (2.7) below. Some properties

of the eigenfunctions of the Sturm-Liouville problem was introduced by Bagrov and Belov in

[2] as follows.
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Lemma 2.2 Consider the following Sturm-Liouville problem




d

dr
[φ(r)x′(r)]− q(r)x(r) + λρ(r)x(r) = 0, a < r < 1,

x(a) = 0, x(1) = 0.
(2.7)

Assume that φ′(r), q(r) and ρ(r) are continuous, and φ(r) > 0, ρ(r) > 0 and q(r) ≥ 0 on the

interval [a, 1]. Then, we have

(i) there exists a sequence of eigenvalues {λk}k∈N+ and the corresponding sequence of eigen-

functions {xk(r)}k∈N+ for Sturm-Liouville problem (2.7), and all eigenvalues can be ordered so

that

|λ1| ≤ |λ2| ≤ · · · ≤ |λk| ≤ · · · ; (2.8)

(ii) every eigenvalue corresponds to, up to a multiplier constant, only one eigenfunction;

(iii) the eigenfunctions of Sturm-Liouville problem (2.7) corresponding to different eigen-

values are pairwisely orthogonal on the interval (a, 1) with the weight function ρ(t), i.e., for

k, k′ ∈ N
+, we have

∫ 1

a

xk(r)xk′ (r)ρ(r)dr = 0, k 6= k′, (2.9)

where xk(r) and xk′ (r) are eigenfunctions of (2.7) corresponding to the eigenvalues λk and λk′

with λk 6= λk′ , respectively;

(iv) (Steklov’s expansion theorem) if a function f(r) is twice continuously differentiable

on [a, 1] and satisfies the boundary conditions in (2.7), it can be expanded in a series of the

eigenfunctions xk(r) of Sturm-Liouville problem (2.7) absolutely and uniformly converging on

[a, 1].

Remark 2.1 Lemma 2.2 is also valid when the interval [a, 1] is replaced by [r1, r2].

By [7–8], setting R(r) = r1−
d
2 x(r), for any fixed m ∈ N, problem (2.3) can be rewritten as





d

dr
[rx′

m(r)] − (m+ d
2 − 1)2

r
xm(r) + µ2rxm(r) = 0, a < r < 1,

xm(a) = 0, xm(1) = 0.

(2.10)

By Wu [8], we have the following lemma.

Lemma 2.3 For any fixed m ∈ N, let

xm,k(r) = [Nm+ d
2−1(µm,k)Jm+ d

2−1(µm,kr)− Jm+ d
2−1(µm,k)Nm+ d

2−1(µm,kr)],

k ∈ N
+, (2.11)

where Jm+ d
2−1(r) and Nm+ d

2−1(r) are the
(
m+ d

2−1
)
-th Bessel function and Neumann function,

respectively, and µm,k is the k-th positive root of

Nm+d
2−1(µ)Jm+ d

2−1(µa)− Jm+ d
2−1(µ)Nm+ d

2−1(µa) = 0. (2.12)

We have

(i) µ2
m,k (k ∈ N

+) are all the eigenvalues of problem (2.10);

(ii) xm,k(r) is the eigenfunction of problem (2.10), corresponding to the eigenvalue µ2
m,k.
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By Lemma 2.2(iii) and Lemma 2.3, for

Rm,k(r) = r1−
d
2 xm,k(r), (2.13)

we have the following proposition.

Proposition 2.1 (i) For any given m ∈ N, {Rm,k(r)}k∈N+ is a sequence of orthogonal

functions with the weight rd−1 in L2(a, 1).

(ii) (see [5]) If d = 2 and m ∈ N
+, or if d ≥ 3 and m ∈ N, we have

∫ 1

a

rd−1R2
m,k(r)dr ≥ 2(1− a)

π2µ2
m,k

, k ∈ N
+; (2.14)

while, for d = 2 and m = 0, we have

∫ 1

a

rd−1R2
0,k(r)dr ≥ 2

π2µ2
0,k

(
1− J2

0 (µ0,1) +N2
0 (µ0,1)

J2
0 (µ0,1a) +N2

0 (µ0,1a)

)
, k ∈ N

+. (2.15)

Proof (i) Since (2.10) is a Sturm-Liouville problem (2.7) with ρ(r) = r, by Lemma 2.2(iii),

for any fixed m ∈ N, we have

∫ 1

a

xm,k(r)xm,k′ (r)rdr = 0, k 6= k′,

where k, k′ ∈ N
+. Then, noting (2.13), for any fixed m ∈ N, we have

∫ 1

a

Rm,k(r)Rm,k′ (r)rd−1dr =

∫ 1

a

xm,k(r)xm,k′ (r)rdr = 0, k, k′ ∈ N
+, k 6= k′.

Namely, for any given m ∈ N, {Rm,k(r)}k∈N+ is a sequence of orthogonal functions with the

weight rd−1 in L2(a, 1).

(ii) By [4, Lemma 4(iv)], a direct computation gives (2.14) and (2.15).

Remark 2.2 (i) Let

cm,k =
(∫ 1

a

rd−1R2
m,k(r)dr

)− 1
2

. (2.16)

Then, for any given m ∈ N, {cm,kRm,k(r)}k∈N+ is a sequence of orthonormal functions with

the weight rd−1 in L2(a, 1).

(ii) Furthermore, let

c0 =

√
2

2
max

{(
1− J2

0 (µ0,1) +N2
0 (µ0,1)

J2
0 (µ0,1a) +N2

0 (µ0,1a)

)− 1
2

, (1− a)−
1
2

}
. (2.17)

Then, by Proposition 2.1(ii), we have

|cm,k| ≤ c0πµm,k. (2.18)

The inequality (2.18) will be useful to guarantee the convergence of the infinite series given

in Section 4. We now give the eigenfunctions and eigenvalues of −∆ on Ω = {x : a < |x| < 1}
as follows.
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Lemma 2.4 Let Ω = {x : a < |x| < 1} with 0 < a < 1, and

em,k,j(x) = cm,kRm,k(r)Ym,j(θ), m ∈ N; k ∈ N
+; 1 ≤ j ≤ jm, (2.19)

in which Rm,k(r) is given by (2.13), cm,k is given by (2.16), and Ym,j(θ) is given by Lemma

2.1(ii). We have

(i) for any given m ∈ N and k ∈ N
+, em,k,j(x) (1 ≤ j ≤ jm) are all the eigenfunctions of

−∆, corresponding to the eigenvalue µ2
m,k;

(ii) {em,k,j(x)}m∈N;k∈N+;1≤j≤jm is an orthonormal sequence in L2(Ω);

(iii) ∂νem,k,j(x)|Γ1 = −2π−1cm,kYm,j(θ), where ∂ν denotes the outward normal derivative

on the boundary.

Proof (i) By the above discussion, it is easy to get (i).

(ii) Let m,m′ ∈ N, k, k′ ∈ N
+, 1 ≤ j ≤ jm and 1 ≤ j′ ≤ jm′ . By Lemma 2.1(ii)–(iii) and

Proposition 2.1, we have

∫

Ω

em,k,j(x)em′,k′,j′ (x)dx

=

∫ 1

a

∫

Sd−1

cm,kRm,k(r)cm′,k′Rm′,k′(r)Ym,jYm′,j′r
d−1drdΓ

= cm,kcm′,k′

∫ 1

a

Rm,k(r)Rm′,k′(r)rd−1dr

∫

Sd−1

Ym,jYm′,j′dΓ

= δm,m′δk,k′δj,j′ ,

then we get (ii).

(iii) Since

dRm,k(r)

dr
=
(
1− d

2

)
r−

d
2 [Nm+ d

2−1(µm,k)Jm+ d
2−1(µm,kr) − Jm+d

2−1(µm,k)Nm+ d
2−1(µm,kr)]

+ r1−
d
2 µm,k[Nm+ d

2−1(µm,k)J
′

m+ d
2−1

(µm,kr) − Jm+ d
2−1(µm,k)N

′

m+ d
2−1

(µm,kr)],

by the boundary condition in (2.10), we have

dRm,k(r)

dr

∣∣∣
r=1

= µm,k[Nm+ d
2−1(µm,k)J

′

m+ d
2−1

(µm,k)− Jm+ d
2−1(µm,k)N

′

m+ d
2−1

(µm,k)]

= − 2

π
, (2.20)

in which we used the fact that Jσ(x)N
′
σ(x)−Nσ(x)J

′
σ(x) =

2
πx

(see [2]). By (2.20), we have

∂νem,k,j(x)|Γ1 = cm,k

dRm,k(r)

dr

∣∣∣
r=1

Ym,j(θ) = −2π−1cm,kYm,j(θ). (2.21)

Now, we introduce some properties of the eigenvalues µ2
m,k of −∆ on Ω = {x : a < |x| < 1}.

Let ασ,k denote the k-th zero point of the cross-product of the σ-th order Bessel function and

Neumann function:

fσ(x) = Nσ(Kx)Jσ(x)− Jσ(Kx)Nσ(x), (2.22)
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where K is a positive constant with K > 1. The property of ασ,k is given in [3–4]. By (2.12)

and taking K = a−1, we get a · µm,k = ασ,k with σ = m+ d
2 − 1. Then, we have the following

peroposition.

Proposition 2.2 Let µm,k be the k-th positive root of (2.12) with m ∈ N and k ∈ N
+.

(i) For d = 2, we have

µm,k+1 − µm,k >
π

2− a
, m ∈ N

+; k ≥ 2;

while, for any fixed d > 2, we have

µm,k+1 − µm,k >
π

2− a
, m ∈ N; k ≥ 2.

(ii) For any fixed d ≥ 2, when k → +∞, we have

µm,k =
kπ

1− a
+Om

(1
k

)
, m ∈ N.

(iii) For any fixed d ≥ 2, we have

µm+1,k − µm,k > 0, m ∈ N; k ∈ N
+.

(iv) For any fixed d ≥ 2, we have

2m+ d− 2

2
< µm,k <

πk

1− a
+

π(2m+ d− 2)

4
.

3 A Uniquess Result

Let Z∗ denote the set of all nonzero integers. We now give the following uniqueness result

introduced by Zu, Li and Rao in [9], which will be useful for proving the sufficiency of Kalman’s

rank condition (1.7) on the annular domain Ω = {x : a < |x| < 1}.

Lemma 3.1 Assume that

· · · < β
(1)
m,−1 < · · · < β

(s)
m,−1 < β

(1)
m,1 < · · · < β

(s)
m,1 < β

(1)
m,2 < · · · (3.1)

for any fixed m ∈ N. Assume furthermore that for any given m ∈ N, there exist positive

constants γm, cm and τm such that

β
(l)
m,k+1 − β

(l)
m,k ≥ sγm (3.2)

and

cm
|k|τm ≤ β

(l+1)
m,k − β

(l)
m,k ≤ γm (3.3)

for all 1 ≤ l ≤ s and all k ∈ Z
∗ with |k| large enough.

Assume finally that

∑

m∈N

∑

k∈Z∗

s∑

l=1

jm∑

j=1

a
(l)
m,k,je

iβ
(l)
m,k

tYm,j(θ) ≡ 0 on Sd−1 × [0, T ] (3.4)
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with

∑

m∈N

∑

k∈Z∗

s∑

l=1

jm∑

j=1

|a(l)m,k,j |2 < +∞ (3.5)

and T > 2πD+, where

D+ = sup
m∈N

D+
m < +∞, (3.6)

in which D+
m is the upper density of the sequence {β(l)

m,k}k∈Z∗;1≤l≤s. Then, we have

a
(l)
m,k,j = 0, m ∈ N; k ∈ Z

∗; 1 ≤ l ≤ s; 1 ≤ j ≤ jm. (3.7)

When Ω is an annular domain, by Proposition 2.2(i), for d > 2 and d = 2, the uniform

gap condition of sequence {µm,k}k∈N+ starts from k = 2 for any given m ∈ N and m ∈ N
+,

respectively, which is different from the case that Ω is a spherical domain. Hence, in order to

use Lemma 3.1, we should add condition (3.10) below and rearrange 2s elements of sequence

{β(l)
m,k}k∈Z∗;1≤l≤s to guarantee condition (3.1).

Corollary 3.1 Assume that

δ1 < δ2 < · · · < δs. (3.8)

For any fixed m ∈ N, we define

{
β
(l)
m,k =

√
µ2
m,k + ǫδl, l = 1, 2, · · · , s, k ≥ 1,

β
(l)
m,−k = −β

(s−l+1)
m,k , l = 1, 2, · · · , s, k ≥ 1,

(3.9)

where µm,k is the k-th positive root of (2.12) for any fixed m ∈ N. Then, for ǫ > 0 small enough

and

ǫ /∈
{µ2

m,2 − µ2
m,1

δl − δl′
,m ∈ N, 1 ≤ l, l′ ≤ s and l 6= l′

}
, (3.10)

the sequence {β(l)
m,k}k∈Z∗;1≤l≤s satisfies (3.1)–(3.3) and (3.6) for any given m ∈ N.

Proof For any given m ∈ N and k ∈ N
+, by the definition of µm,k and Proposition 2.2(ii),

we have

min{µm,k | m ∈ N, k ∈ N
+} = µ0,1. (3.11)

For d = 2, by Proposition 2.2(ii), we have

µ0,k+1 − µ0,k → π

1− a
as k → +∞.

Then there exists γ̃ > 0, such that for d = 2, we have

µ0,k+1 − µ0,k ≥ γ̃, k ≥ 2.

Let

γ0 = min
{ π

2− a
, γ̃
}
.
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For any fixed d ≥ 2, by Proposition 2.2(i), we have

µm,k+1 − µm,k ≥ γ0, k ≥ 2; m ∈ N. (3.12)

Let 0 < ǫ <
2µ0,1γ0

(δs−δ1)
. Similarly to the proof of that on a spherical domain, by (3.11)–(3.12), we

have β
(s)
m,k < β

(1)
m,k+1 for |k| ≥ 2. By (3.10), β

(l)
m,k (k = 1, 2; 1 ≤ l ≤ s) are distinct for any fixed

m ∈ N, we can rearrange them in an increasing order. The rearranged sequence, still denoted

by {β(l)
m,k}k∈Z∗;1≤l≤s, satisfies (3.1).

On the other hand, for any fixed m ∈ N, by Proposition 2.2(ii), a direct computation similar

to that on a spherical domain gives that

β
(l)
m,k+1 − β

(l)
m,k → π

1− a
as k → +∞

and

(β
(l+1)
m,k − β

(l)
m,k)k → (δl+1 − δl)(1− a)ǫ

2π
as k → +∞.

Then it is easy to see that the sequence {β(l)
m,k}m∈N;k∈Z∗;1≤l≤s satisfies (3.2)–(3.3) with

τm = 1; cm =
(1− a)ǫ

4π
min

1≤l≤s−1
{δl+1 − δl}; γm =

π

2s(1− a)
.

Next, we will prove that the sequence {β(l)
m,k}m∈N;k∈Z∗;1≤l≤s satisfies (3.6) in a way similar

to the proof of that on a spherical domain.

For any fixed m ∈ N and k ∈ N
+, if β

(l)
m,k < R < β

(l+1)
m,k for 1 ≤ l ≤ s− 1, then we have

N(β
(l)
m,k)

2β
(l+1)
m,k

<
N(R)

2R
<

N(β
(l)
m,k)

2β
(l)
m,k

; (3.13)

while, if β
(s)
m,k < R < β

(1)
m,k+1, then we have

N(β
(s)
m,k)

2β
(1)
m,k+1

<
N(R)

2R
<

N(β
(s)
m,k)

2β
(s)
m,k

. (3.14)

By Proposition 2.2(ii), for each m ∈ N, we have

lim
k→+∞

N(β
(l)
m,k)

2β
(l)
m,k

=
s(1− a)

π
, 1 ≤ l ≤ s, (3.15)

lim
k→+∞

N(β
(l)
m,k)

2β
(l+1)
m,k

=
s(1− a)

π
, 1 ≤ l ≤ s− 1 and lim

k→+∞

N(β
(s)
m,k)

2β
(1)
m,k+1

=
s(1− a)

π
. (3.16)

Thus, by (3.13)–(3.16), we get

D+
m = lim sup

R→+∞

N(R)

2R
=

s(1− a)

π
.

Since

D+ = sup
m∈N

D+
m =

s(1− a)

π
,

the sequence {β(l)
m,k}k∈Z∗;1≤l≤s satisfies all the requirements of Lemma 3.1.
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4 The Sufficiency of Kalman’s Rank Condition on an Annular Domain

On the annular domain Ω = {x : a < |x| < 1}, we consider the following system:





U ′′ −∆U + ǫAU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ0,

U = DH on (0,+∞)× Γ1

(4.1)

with the initial condition

t = 0 : U = Û0, U ′ = Û1 in Ω. (4.2)

The adjoint system of (4.1) is given by

{
Φ′′ −∆Φ+ ǫATΦ = 0 in (0,+∞)× Ω,

Φ = 0 on (0,+∞)× Γ
(4.3)

with the initial data

t = 0 : Φ = Φ0, Φ′ = Φ1 in Ω. (4.4)

In this section, we will prove the sufficiency of Kalman’s rank condition (1.7) for T > 0 large

enough to the approximate boundary null controllability of system (4.1) on the annular domain

Ω. By Theorem 1.1, it is sufficient to prove the sufficiency of Kalman’s rank condition (1.7) to

the D-observability of the corresponding adjoint system (4.3) on Ω. The following necessary

and sufficient condition of Kalman’s rank condition (1.7) given by Li and Rao in [5–6] is very

useful to prove the sufficiency of Kalman’s rank condition (1.7) in this case.

Lemma 4.1 Assume that k ≥ 0 is an integer, A is a matrix of order N and D is a full

column-rank matrix of order N ×M with M ≤ N . Then Kalman’s rank condition

rank(D,AD, · · · , AN−1D) = N − k (4.5)

holds if and only if the largest dimension of invariant subspaces of AT , contained in Ker(DT ),

is equal to k.

Theorem 4.1 Let

Ω = {x : a < |x| < 1}

with 0 < a < 1 and let the sequence {β(l)
m,k}k∈Z∗;1≤l≤s be defined by (3.9). Assume that the

coupling matrix A is diagonalizable with the real eigenvalues given by

δ1 < δ2 < · · · < δs. (4.6)

Assume furthermore that ǫ > 0 is small enough and (3.10) holds so that for each m ∈ N, the

sequence {β(l)
m,k}k∈Z∗;1≤l≤s satisfies (3.1)–(3.3) and (3.6).

Then Kalman’s rank condition (1.7) is sufficient for the approximate boundary null control-

lability of system (4.1), provided that T > 2s(1− a).
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Proof By Theorem 1.1, it is sufficient to prove the sufficiency of Kalman’s rank condition

(1.7) to the D-observability of the corresponding adjoint system (4.3). The proof is similar to

that on a spherical domain in higher dimension case (see [9]). In this paper, we just give the

essential differences.

Let ω(l,µ) = (ω
(l,µ)
1 , · · · , ω(l,µ)

N )T be the eigenvectors of AT , corresponding to the eigenvalue

δl:

ATω(l,µ) = δlω
(l,µ), 1 ≤ l ≤ s; 1 ≤ µ ≤ µl (4.7)

with

s∑

l=1

µl = N and |ω(l,µ)| = 1. (4.8)

Furthermore, let

E
(l,µ)
m,k,j =

(
em,k,jω

(l,µ)

iβ
(l)
m,k

em,k,jω
(l,µ)

)
, m ∈ N; k ∈ Z

∗; 1 ≤ l ≤ s; 1 ≤ µ ≤ µl; 1 ≤ j ≤ jm,

in which we define em,−k,j = em,k,j for all m ∈ N, k ∈ N
+ and 1 ≤ j ≤ jm. Then, by [9,

Theorem 3], {E(l,µ)
m,k,j} forms a Riesz basis of (H1

0 (Ω))
N × (L2(Ω))N .

Thus, for any given initial data (Φ̂0, Φ̂1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , there exists {a(l,µ)m,k,j} such

that

(
Φ̂0

Φ̂1

)
=
∑

m∈N

∑

k∈Z∗

s∑

l=1

µl∑

µ=1

jm∑

j=1

a
(l,µ)
m,k,jE

(l,µ)
m,k,j

with

∑

m∈N

∑

k∈Z∗

s∑

l=1

µl∑

µ=1

jm∑

j=1

|a(l,µ)m,k,j |2 < +∞.

Then the corresponding solution to problem (4.3)–(4.4) is given by

Φ =
∑

m∈N

∑

k∈Z∗

s∑

l=1

µl∑

µ=1

jm∑

j=1

a
(l,µ)
m,k,j

iβ
(l)
m,k

eiβ
(l)
m,k

tem,k,j(x)ω
(l,µ),

where em,k,j(x) are given by (2.19).

Using Lemma 2.4(iii), the observation (1.6) becomes

0 ≡
∑

m∈N

∑

k∈Z∗

s∑

l=1

DT

µl∑

µ=1

jm∑

j=1

2cm,ka
(l,µ)
m,k,j

iπβ
(l)
m,k

ω(l,µ)Ym,j(θ)e
iβ

(l)
m,k

t on [0, T ]× Γ1. (4.9)

Noting D = (dpq), we define

bl(m,k,j,q) =

N∑

p=1

µl∑

µ=1

2dpqcm,ka
(l,µ)
m,k,jω

(l,µ)
p

iπβ
(l)
m,k

,
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and µm,−k = µm,k for all m ∈ N and k ∈ N
+.

Then, for any fixed q with 1 ≤ q ≤ M , the observation (1.6) can be rewritten as

∑

m∈N

∑

k∈Z∗

s∑

l=1

jm∑

j=1

bl(m,k,j,q)Ym,j(θ)e
iβ

(l)
m,k

t ≡ 0 on [0, T ]× Γ1.

The difference from the proof of that on a spherical domain is the verification of

∑

m∈N

∑

k∈Z∗

s∑

l=1

jm∑

j=1

|bl(m,k,j,q)|2 < +∞

for any fixed q with 1 ≤ q ≤ M .

Using (2.18) and (4.8), we have

|bl(m,k,j,q)|2 =
∣∣∣

N∑

p=1

µl∑

µ=1

2cm,kdpqa
(l,µ)
m,k,jω

(l,µ)
p

iπβ
(l)
m,k

∣∣∣
2

≤ c20

(
N max

p,q
{|dpq|}max

p,l,µ
{|ω(l,µ)

p |}
)2∣∣∣

µl∑

µ=1

|a(l,µ)m,k,j ||µm,k|
|β(l)

m,k|

∣∣∣
2

≤ c20

(
N max

p,q
{|dpq|}

)2∣∣∣
µl∑

µ=1

|a(l,µ)m,k,j ||µm,k|
|β(l)

m,k|

∣∣∣
2

. (4.10)

In the present situation, by Proposition 2.2(iv), for any fixed l with 1 ≤ l ≤ s, we have
∣∣∣µm,k

β
(l)
m,k

∣∣∣ = µm,k√
µ2
m,k + ǫδl

→ 1 as m and |k| → +∞. (4.11)

Hence, there exists a positive constant c1 such that
∣∣∣µm,k

β
(l)
m,k

∣∣∣ ≤ c1, m ∈ N; k ∈ Z
∗. (4.12)

By (4.12) and Cauchy-Schwartz inequality, we have

∣∣∣
µl∑

µ=1

|a(l,µ)m,k,j ||µm,k|
|β(l)

m,k|

∣∣∣
2

≤ c21

∣∣∣
µl∑

µ=1

|a(l,µ)m,k,j |
∣∣∣
2

≤ c21µl

µl∑

µ=1

|a(l,µ)m,k,j |2. (4.13)

Let

C = Nc20

(
Nc1 max

p,q
{|dpq|}

)2
.

By (4.10) and (4.13), for q = 1, 2, · · · ,M , we have

∑

m∈N

∑

k∈Z∗

s∑

l=1

jm∑

j=1

|bl(m,k,j,q)|2 ≤ C
∑

m∈N

∑

k∈Z∗

s∑

l=1

µl∑

µ=1

jm∑

j=1

|a(l,µ)m,k,j |2 < +∞.

Applying Lemma 3.1 to each line of (4.9), we get

DT

µl∑

µ=1

2cm,ka
(l,µ)
m,k,j

iπβ
(l)
m,k

ω(l,µ) = 0, m ∈ N; k ∈ Z
∗; 1 ≤ j ≤ jm; 1 ≤ l ≤ s.
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By Lemma 4.1, it follows from Kalman’s rank condition (1.7) that Ker(DT ) does not contain

any non-trivial invariant subspace of AT , then we have

µl∑

µ=1

2cm,ka
(l,µ)
m,k,j

iπβ
(l)
m,k

ω(l,µ) = 0, m ∈ N; k ∈ Z
∗; 1 ≤ j ≤ jm; 1 ≤ l ≤ s.

Since {ω(l,µ)}1≤µ≤µl
are linearly independent, noting that by (2.16), cm,k 6= 0 for any given

m ∈ N and any given k ∈ N
+, we have

a
(l,µ)
m,k,j = 0, m ∈ N; k ∈ Z

∗; 1 ≤ l ≤ s; 1 ≤ µ ≤ µl; 1 ≤ j ≤ jm, (4.14)

namely, Φ ≡ 0. The proof is complete.

Example 4.1 Let δ1, δ2 be positive constants with δ1 < δ2, and k1, k2 be positive integers.

Consider the adjoint system (4.3) with A = diag(δ1, δ2) and D = (1,−1)T . We will show that

Kalman’s rank condition is not sufficient for the D-observability of adjoint system (4.3) at the

infinite horizon for ǫ ∈ N , where

N =
{µ2

m,k1
− µ2

m,k2

δ1 − δ2
,m ∈ N, 1 ≤ k1 < k2

}
.

For ǫ > 0 with ǫ ∈ N , there exist m and k1, k2 with 1 ≤ k1 < k2, such that

µ2
m,k1

+ ǫδ2 = µ2
m,k2

+ ǫδ1 = α2,

where α > 0. Let

Φ = eiαt
(Rm,k2(r)

R′
m,k2

(1)
Ym,1(θ),

Rm,k1(r)

R′
m,k1

(1)
Ym,1(θ)

)T
,

where Ym,1 is given in Lemma 2.1 with j = 1; Rm,k1(r) and Rm,k2(r) are given by (2.13) with

k = k1 and k = k2, respectively. Then by Lemma 2.4, Φ is a non-trivial solution of system (4.3)

and satisfies the observation.

Example 4.1 shows that Kalman’s rank condition (1.7) is not sufficient in general for the

approximate boundary null controllability of system (1.2) even at the infinite horizon. Hence,

it is essential to add condition (3.10) to guarantee the sufficiency of Kalman’s rank condition

(1.7).

We now indicate the relationship between the controllability time T and the rank of D.

Theorem 4.2 Let Ω = {x : a < |x| < 1} with 0 < a < 1. Assume that rank(D) = N − k

with 0 ≤ k ≤ N − 1 and the coupling matrix A is diagonalizable with the real eigenvalues given

by (4.6). Then, Kalman’s rank condition (1.7) is sufficient for the approximate boundary null

controllability of system (4.1) on the interval [0, T ], provided that T > 2(k+1)(1−a) and ǫ > 0

is small enough.

Proof The proof is same as that of Theorem 4 given by Zu, Li and Rao in [9].

Remark 4.1 Let Ω = {x : r1 < |x| < r2} with 0 < r1 < r2. Assume that the coupling

matrix A is diagonalizable with the real eigenvalues given by (4.6). Assume furthermore that
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ǫ > 0 is so small that for each m ∈ N, the sequence {β(l)
m,k}k∈Z∗;1≤l≤s defined by (3.9) satisfies

(3.1)–(3.3) and (3.6).

Then, Kalman’s rank condition (1.7) is sufficient for the approximate boundary null con-

trollability of system (4.1) on the interval [0, T ], provided that T > 2s(r2 − r1).

Proof When Ω = {x : a < |x| < 1} is changed to {x : r1 < |x| < r2}, a, µm,k and D+ are

replaced by r1
r2
,

µm,k

r2
and r2D

+, respectively. Thus, by Lemma 3.1, the controllability time T

is replaced by r2T , i.e., 2s(r2 − r1).

Similarly, we have the following remark.

Remark 4.2 Let Ω = {x : r1 < |x| < r2} with 0 < r1 < r2. Assume that rank(D) = N − k

with 0 ≤ k ≤ N − 1 and the coupling matrix A is diagonalizable with the real eigenvalues given

by (4.6). Assume furthermore that ǫ > 0 is small enough and condition (3.10) holds. Then,

Kalman’s rank condition (1.7) is sufficient for the approximate boundary null controllability of

system (4.1) on the interval [0, T ], provided that T > 2(k + 1)(r2 − r1).

Remark 4.3 The controllability time T given by Theorems 4.1 or 4.2 is not optimal.
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[7] Tikhonov, A. N. and Samarskĭı, A. A., Equations of Mathematical Physics, Dover Publications, Inc., New
York, 1990. Translated from the Russian by A. R. M. Robson and P. Basu, Reprint of the 1963 translation.

[8] Wu, C. S., Methods of Mathematical Physics, Peking University Press, Beijing, 2019 (in Chinese).

[9] Zu, C. X., Li T. T. and Rao, B. P., Sufficiency of Kalman’s rank condition for the approximate boundary
controllability at finite time on a spherical domain, Math. Methods Appl. Sci., 44, 2021, 13509–13525.


