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1 Introduction

The biholomorphic equivalence classification of bounded domains is one of the central prob-

lems in the study of several complex variables. The Riemann mapping theorem resolves the

problem about the biholomorphic equivalence classification of the simply connected bounded

domains in C∞. At the beginning of 20th century, Poincaré pointed out that the unit ball and

the polydisc are not biholomorphically equivalent in Cn (n > 1), which indicates that Riemann

mapping theorem fails to hold in higher dimensional case. In 1936, Cartan gave the whole con-

clusion about the biholomorphic equivalence classification of the bounded symmetric domains

in Cn, i.e., any bounded symmetric domain is the topological product of irreducible bounded

symmetric domains, and irreducible bounded symmetric domains consist of domains of four

classical types and two exceptional ones. However, the biholomorphic equivalence classification

of general bounded domains has not been resolved. It is an important research direction of

several complex variables.

In 1930, Bergman introduced the concept of representative coordinates and representative

domain when he studied the biholomorphic equivalence classification of bounded domains in

C
n (see [5]). Let G be a bounded domain in C

n. K(z, w) denotes the Bergman kernel function

of G, and (Tjk(z, z)) denotes the Bergman metric matrix of G. For any fixed w0 ∈ G and any
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z ∈ G, ϕw0 maps z to ϕw0(z):

ϕw0(z) =
∂

∂w
log

K(z, w)

K(w,w)

∣∣∣
w=w0

(Tjk(w0, w0))
−1,

then ϕw0 is called the representative mapping, and ϕw0(z) is the representative coordinates of

z. If ϕw0(G) is a domain, ϕw0(G) is called the representative domain of G. Since domains

which are biholomorphically equivalent have identical representative domain, the representa-

tive domain can be used as the representative element of biholomorphically equivalence class

of domains. Moreover, two domains must not be biholomorphically equivalent if their repre-

sentative domains are not identical. Therefore, the representative domain could be the tool

for studying the biholomorphic equivalence classification of bounded domains. In 1966, when

Lu was studying that bounded domain with complete Bergman metric of negative constant

holomorphic sectional curvature is biholomorphically equivalent to the unit ball, he needed to

define the representative mapping globally on the bounded domain. About the above defini-

tion of representative mapping, he pointed out that ϕw0 is well defined on a sufficiently small

neighborhood U(w0) of w0 and at the point where K(z, w) 6= 0 for any z ∈ G. However,

defining representative mapping globally on a general bounded domain depends on that the

Bergman kernel function of this domain is zero-free (see [15]). The Bergman kernel functions

of some specific domains do not have zeros, such as unit ball, polydisc and bounded symmetric

domains, but there is no definite conclusion as to whether the Bergman kernel functions of

general bounded domains have zeros or not. Therefore, Lu raised an open question of whether

the Bergman kernel functions of general bounded domains are zero-free. In 1969, Skwarczyński

formally called the question raised by Lu as Lu Qi-Keng conjecture, i.e., the Bergman kernel

function of a general bounded domain is zero-free. Moreover, he proved Lu Qi-Keng conjecture

does not hold with counterexample: The Bergman kernel function of an annulus has zeros in

the complex plane {z ∈ C : r < |z| < 1, 0 < r < e−2} (see [21]). It shows that the bounded

domains on which Bergman kernel functions have zeros exist.

Although Lu Qi-Keng conjecture fails, the problem of determining whether the Bergman

kernel function of a bounded domain has zeros is of great significance to discuss the properties

of Bergman kernel functions, the properties of bounded domains, the biholomorphic equivalence

classification of bounded domains and so on. Therefore, this research has received extensive

attention in the area of several complex variables, and the problem about studying whether

the Bergman kernel function of a domain has zeros or not is called the Lu Qi-Keng problem.

Since Skwarczyński, many scholars have studied Lu Qi-Keng problem and achieved fruitful

results. In 1966, Rosenthal proved that the Bergman kernel function of an annulus in the

complex plane has zeros, moreover there exists k (k > 2) connected domain whose Bergman

kernel function has zeros in C (see [20]). In the same year, Bell showed that the Bergman

kernel function of every bounded, homogeneous, complete circular domain is zero-free (see [4]).

In 1976, Suita and Yamada proved that the Bergman kernel function of non-simply connected

finite Riemann surface has zeros, and obtained a general conclusion, i.e., the Bergman kernel

function of bounded, multiple connected, planar domain with smooth boundary has zeros (see

[22]). In 1981, Greene and Krantz proved that the sufficiently small smooth perturbations of
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the ball has zero-free Bergman kernel function (see [14]). In 1986, Boas gave a specific example

to show that the Bergman kernel function of a bounded, strongly pseudo-convex, contractible

domain with C∞ regular boundary has zeros (see [6]). In 1996, Boas proved that the bounded

holomorphic domains whose Bergman kernel functions have no zeros, form a nowhere dense set

in the topological space composed of all bounded holomorphic domains (see [7]). This conclusion

indicates that it is a normal situation for the Bergman kernel function of a holomorphic domain

to have zeros. In 1999, Boas, Fu and Straube further proved that the Bergman kernel function

of the following domain {z ∈ C2 : |z1| + |z2|
2
p < 1} has zeros when p > 2, and gave concrete

examples that the Bergman kernel functions of strongly convex domains have zeros in [9]. In

2000, Boas obtained a more general conclusion that the Bergman kernel function of the domain

defined as

{z = (z1, z2, · · · , zn) ∈ C
n : |z1|+ |z2|

2
p2 + · · ·+ |zn|

2
pn < 1}

has zeros when p2 + p3 + · · · + pn > 2 (see [8]). In 1998, Pflug and Youssfi proved that the

Bergman kernel function of the minimal ball exists zeros when n ≥ 4 in Cn (see [19]). In

2000, Englǐs proved that the Bergman kernel function of a kind of Hartogs domain has zeros

(see [13]). In 2005, Edigarian and Zwonek got that the Bergman kernel function of symmetric

double-disc G2 is zero-free (see [12]), while Nikolov and Zwonek later proved that the Bergman

kernel function of symmetric polydisc Gn(n ≥ 3) has zeros (see [18]). In 2006, Chen studied

the Lu Qi-Keng problem on a pseudo-convex domain applying the asymptotic behavior of the

weighted Bergman kernel (see [10]). In 2009, Zhang and Yin discussed the conditions that the

Bergman kernel function of the generalized Thullen domain has zeros (see [28]). In 2012, Ahn

and Park presented the algorithmic procedure to determine the condition that the Bergman

kernel function is zero-free on a type of generalized Cartan-Hartogs domain (see [1]). In 2016,

Beberok investigated the Lu Qi-Keng problem of the intersection of two complex ellipsoids (see

[3]). We refer to [2, 11, 16, 23–24, 27] for more research results about Lu Qi-Keng problem.

In the study on Lu Qi-Keng problem, many research achievements show that the Bergman

kernel functions of bounded domains have zeros. In fact, if the Bergman kernel function of a

domain has zeros, these zeros are not isolated and form a lower dimensional manifolds. It is

significant for discussing the geometry properties of domains and the properties of Bergman

kernel functions to study the structure and topological properties of the zero-sets of the Bergman

kernel functions on bounded domains. The aim of this present paper is to study the Lu Qi-Keng

problem on the first type of Cartan-Hartogs domain, and discuss the topological properties of

the zero set when the Bergman kernel function of this type of domain has zeros. The form of

the first type of Cartan-Hartogs domain is as following (see [25]):

Ω = {(ξ, z) ∈ C×RI(m,n) : |ξ|2µ < NI(z, z), µ > 0},

where RI(m,n) denotes the first type of Cartan domain, NI(z, z) denotes the generic norm

of RI(m,n) in Jordan triple system. By constructing a biholomorphic invariant x on Ω × Ω,

we write the Bergman kernel function of Ω into the product of a polynomial F (x) and a non-

vanishing function. Then the research on the zero problem of the Bergman kernel function with
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multidimensional complex variable is transformed into the research on the zero problem of a

polynomial function with single complex variable. From the condition that F (x) has zeros in

the unit disc, we obtain that there exists µ0(m,n) > 0 such that the Bergman kernel function of

Ω has zeros when the parameter µ satisfies 0 < µ < µ0(m,n) for any m and n. Furthermore, we

show that the zero set of the Bergman kernel function of Ω is composed of some path-connected

branches, and a continuous curve is constructed to connect any two points in the non-zero set.

2 Preliminaries

In this section, we are going to outline some basic conclusions about Ω, and introduce a

type of special self-reciprocal polynomial.

Theorem 2.1 (see [26]) The transforms ψ(ξ, z) = (ψ1(ξ, z), ψ2(ξ, z)) constitute the holo-

morphic automorphism group of Ω, and the specific forms of ψ1 and ψ2 are as below:

{
ψ1(ξ, z) = e

√
−1θξNI(z0, z0)

1
2µNI(z, z0)

− 1
µ ,

ψ2(ξ, z) = φ(z), φ ∈ Aut(RI(m,n)),

where θ ∈ R, z0 ∈ RI(m,n), z0 = φ−1(0). Aut(Ω) denotes the holomorphic automorphism

group of Ω.

Now, we construct a complex value function x on Ω × Ω, and it is a invariant under the

holomorphic transformation of Ω× Ω.

Theorem 2.2 Let

x = x((ξ, z), (η, w)) = ξηNI(z, w)
− 1

µ

for any ((ξ, z), (η, w)) ∈ Ω× Ω. Then

x((ξ, z), (η, w)) = x(ψ(ξ, z), ψ(η, w)) for ∀ψ ∈ Aut(Ω),

and |x| < 1.

Proof For any z = (z11, z12, · · · , z1n, · · · , zm1, zm2, · · · , zmn) ∈ RI(m,n), the components

of z can be arranged into a matrix

Z =




z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zm1 zm2 · · · zmn


 ,

where z is corresponding to Z, and the first type of Cartan domain is represented as RI(m,n) :=

{Z ∈ Cmn : I−ZZt
> 0}. So the point in RI(m,n) is denoted by Z in the proof of the theorem.

For any ((ξ, Z), (η,W )) ∈ Ω × Ω, (ξ, Z) and (η,W ) are mapped to (ξ∗, Z∗) and (η∗,W ∗)

respectively by any ψ ∈ Aut(Ω). Applying Theorem 2.1, we have

ξ∗η∗ = ξηNI(Z0, Z0)
1
µNI(Z,Z0)

− 1
µNI(W,Z0)

− 1
µ ,

Z∗ = P (Z − Z0)(I − Z
t

0Z)
−1Q−1,



Zero Problems of the Bergman Kernel Function 269

W ∗ = P (W − Z0)(I − Z
t

0W )−1Q−1,

where Z0 = φ−1(0) (φ ∈ Aut(RI(m,n))), P
t
P = (I − Z0Z

t

0)
−1, Q

t
Q = (I − Z

t

0Z0)
−1.

Since

NI(Z,W ) = det(I − ZW
t
)

and

I − Z∗(W
∗
)t = (P

t
)−1(I − ZZ

t

0)
−1(I − ZW

t
)(I − Z0W

t
)−1P−1

for any Z,W ∈ RI(m,n), we obtain

x((ξ∗, Z∗), (η∗,W ∗)) = ξ∗η∗NI(Z
∗,W ∗)−

1
µ

= ξηNI(Z0, Z0)
1
µNI(Z,Z0)

− 1
µNI(Z0,W )−

1
µ

det(P
t
P )

1
µNI(Z,Z0)

1
µNI(Z,W )−

1
µNI(Z0,W )

1
µ

= ξηNI(Z,W )−
1
µ = x((ξ, Z), (η,W )),

i.e., x is a invariant under the holomorphic transformation of Ω× Ω.

We can prove

NI(Z,Z)NI(W,W ) ≤ |NI(Z,W )|2

for any ((ξ, Z), (η,W )) ∈ Ω× Ω using the conclusion in [17]. Then based on the inequality, we

obtain

|x|2 = |ξ|2|η|2|NI(Z,W )|− 2
µ

< (NI(Z,Z)NI(W,W )|NI(Z,W )|−2)
1
µ ≤ 1.

A special kind of self-reciprocal polynomial plays an important role in investigating the Lu

Qi-Keng problem on the first type of Cartan-Hartogs domain, here we give the definition of a

general self-reciprocal polynomial and discuss the properties of the special kind of self-reciprocal

polynomial.

Definition 2.1 Let fk(x) be a real coefficient polynomial of degree k. If fk(0) 6= 0 and

fk(x) = xkfk
(
1
x

)
, then fk(x) is called self-reciprocal polynomial of degree k.

Remark 2.1 fk(x) =
k∑

l=0

alx
l is a real coefficient self-reciprocal polynomial of degree k if

and only if its coefficients satisfy a0 6= 0 and al = ak−l (l = 0, 1, · · · , k).

Theorem 2.3 Let fk(x) be a real coefficient self-reciprocal polynomial of degree k. If x0

is a zero of fk(x), then
1
x0

is also its zero.

Proof From Definition 2.1, this theorem can be proved straightforwardly.

Lemma 2.1 Let

σr(α1, · · · , αl) =
∑

1≤j1<j2<···<jr≤l

αj1αj2 · · ·αjr (α1, α2, · · · , αl ∈ R),

then σr(α1, · · · , αl) > 0 (r = 1, 2, · · · , l) if and only if αj > 0, j = 1, · · · , l.
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Proof Since the sufficiency of the lemma is obvious, we need only to prove its necessity.

We can construct an equation of degree l with roots of −α1,−α2, · · · ,−αl:

(x + α1)(x+ α2) · · · (x+ αl) = 0. (2.1)

Expand the left side of (2.1), it is changed into the following form

xl + σ1(α1, · · · , αl)x
l−1 + · · ·+ σl−1(α1, · · · , αl)x+ σl(α1, · · · , αl) = 0.

Because αj (j = 1, · · · , l) are real numbers, and σr(α1, · · · , αl) > 0 (r = 1, 2, · · · , l), the roots

of (2.1) can not be 0 or positive real numbers, and they must be negative real numbers, i.e.,

αj > 0 (j = 1, · · · , l).

Theorem 2.4 Let

fk(x) =

k∑

l=0

ak,lx
l (k ∈ N)

be a polynomial of degree k with respect to x, where ak,l denotes the coefficient of the l-th order

term of the polynomial of degree k:

ak,l =
1

l!

k+1−l∑

j=1

(−1)k+1−l−jS(k + 1, j)
(k + 1− j)!j!

(k + 1− l− j)!
(l = 0, 1, · · · , k), (2.2)

S(k + 1, j) denotes the Stirling number of the second kind, i.e.,

S(k + 1, j) =
1

j!

j∑

r=1

(−1)j−r j!

(j − r)!r!
rk+1.

Set ak,l = 0 for l > k and l < 0, then fk(x) satisfies the following properties:

(1) ak,l = (k + 1− l)ak−1,l−1 + (l + 1)ak−1,l (k ≥ 1, 0 ≤ l ≤ k).

(2) fk(x) (k ∈ N) is a self-reciprocal polynomial, i.e., ak,l = ak,k−l (0 ≤ l ≤ k), and ak,0

= ak,k = 1.

(3) ak,l > 0 (0 ≤ l ≤ k).

(4) ak,l−1 < ak,l
(
k ≥ 2, l = 1, · · · ,

[
k
2

])
.

(5) When k is odd number, fk(x) = (x + 1)hk−1(x) (k ≥ 1), and hk−1(x) is also a self-

reciprocal polynomial with positive real coefficients.

(6) fk(x) = [(k − 1)2x2 + (3k − 2)x + 1]fk−2(x) + x(1 − x)[(2k − 3)x + 3]f ′
k−2(x) + (1 −

x)2x2f ′′
k−2(x) (k ≥ 2).

(7) fk(x) (k ≥ 2) has at least one zero in the unit disc.

Proof (1) According to (2.2) and the property of S(k + 1, j), for any fixed l, we have

ak,l =
1

l!

k+1−l∑

j=1

(−1)k+1−l−j [S(k, j − 1) + jS(k, j)]
(k + 1− j)!j!

(k + 1− j − l)!

=
1

l!

k−l∑

j=1

(−1)k−l−jS(k, j)
(k − j)!(j + 1)!

(k − j − l)!
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+
1

l!

k+1−l∑

j=1

(−1)k+1−l−jS(k, j)
(k + 1− j)!j!

(k + 1− j − l)!
j

=
1

l!

k−l∑

j=1

(−1)k−l−jS(k, j)
(k − j)!j!

(k − j − l)!

+
l

l!

k−l∑

j=1

(−1)k+1−l−jS(k, j)
(k − j)!j!

(k + 1− j − l)!
[(k + 1− l)− (k + 1− l − j)]

+ S(k, k + 1− l)(k + 1− l)2(k − l)!

= ak−1,l +
l

l!

k−l∑

j=1

(−1)k−l−jS(k, j)
(k − j)!j!

(k − j − l)!

+ (k + 1− l)
1

(l − 1)!

k+1−l∑

j=1

(−1)k+1−l−jS(k, j)
(k − j)!j!

(k + 1− j − l)!

= (l + 1)ak−1,l + (k + 1− l)ak−1,l−1.

Therefore, we obtain the recurrent formula about the coefficients of fk(x):

ak,l = (k + 1− l)ak−1,l−1 + (l + 1)ak−1,l (0 ≤ l ≤ j). (2.3)

About (2)–(4), these properties can be proved by applying (2.3) and mathematical induction.

(5) Because fk(x) is a self-reciprocal polynomial, i.e., ak,l = ak,k−l (0 ≤ l ≤ k), −1 must be

the zero of fk(x) for odd number k, and

fk(x) = (x+ 1)hk−1(x) (k ≥ 1).

We are going to prove that hk−1(x) is also a self-reciprocal polynomial with positive real coef-

ficients.

Put hk−1(x) :=
k−1∑
l=0

bk−1,lx
l, then

fk(x) = (x+ 1)
k−1∑

l=0

bk−1,lx
l =

k−1∑

l=0

(bk−1,lx
l+1 + bk−1,lx

l).

By comparing the above expression with fk(x) =
k∑

l=0

ak,lx
l, we obtain the relationship between

bk−1,l and ak,l as following:

bk−1,l =

k−l∑

r=1

(−1)r+1ak,l+r =

l∑

r=0

(−1)rak,l−r. (2.4)

From (2.4) and property (2) of fk(x), it follows that

bk−1,l =
k−l−1∑

r=0

(−1)rak,(k−l−1)−r = bk−1,k−1−l,

which means that hk−1(x) is a self-reciprocal polynomial.
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Next, we will show that the coefficients of hk−1(x) are all positive. As hk−1(x) is a self-

reciprocal polynomial, it suffices to prove bk−1,l > 0 for l > k−1
2 .

For ak,l+1 > ak,l+2 > · · · > ak,k (l > k−1
2 ), if l is odd, then

bk−1,l = (ak,l+1 − ak,l+2) + · · ·+ (ak,k−1 − ak,k) > 0;

if l is even, then

bk−1,l = (ak,l+1 − ak,l+2) + · · ·+ (ak,k−2 − ak,k−1) + ak,k > 0.

In conclusion, when k is odd number, hk−1(x) is a self-reciprocal polynomial with positive

real coefficients.

(6) To prove the property (6) of fk(x), we first need to verify

fk(x) = (kx+ 1)fk−1(x) + x(1 − x)f ′
k−1(x) (k ≥ 1). (2.5)

From fk(x) =
k∑

l=0

ak,lx
l, it is easy to know that fk−1(x) =

k−1∑
l=0

ak−1,lx
l, and f ′

k−1(x) =

k−1∑
l=0

lak−1,lx
l−1. Plugging these equations back into the right of (2.5), we get

(kx+ 1)fk−1(x) + x(1− x)f ′
k−1(x) =

k−1∑

l=0

(k − l)ak−1,lx
l+1 +

k−1∑

l=0

(1 + l)ak−1,lx
l

=

k∑

l=0

[(k + 1− l)ak−1,l−1 + (1 + l)ak−1,l]x
l

=
k∑

l=0

ak,lx
l = fk(x).

According to (2.5), if k ≥ 2, we have

fk−1(x) = [(k − 1)x+ 1]fk−2(x) + x(1− x)f ′
k−2(x). (2.6)

Differentiating the both sides of (2.6) with respect to x gives the following formula:

f ′
k−1(x) = (k − 1)fk−2(x) + [(k − 3)x+ 2]f ′

k−2(x) + (x− x2)f ′′
k−2(x). (2.7)

By substituting (2.6) and (2.7) back into (2.5), it follows that

fk(x) = [(k − 1)2x2 + (3k − 2)x+ 1]fk−2(x) + x(1 − x)[(2k − 3)x+ 3]f ′
k−2(x)

+ (1− x)2x2f ′′
k−2(x). (2.8)

(7) We first show that fk(x) has at least one zero in the unit disc for k = 2p (p ∈ Z+) by

negation.

If the assertion fails to hold, f2p(x) would have no zeros in the unit disc. As f2p(x) is a

self-reciprocal polynomial, according to Theorem 2.3, if x0 is a zero of f2p(x), then
1
x0

is also the

zero of f2p(x). Thereby, based on the hypothesis, f2p(x) has no zeros out of the unit disk either,
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which means that all of the zeros of f2p(x) are on the boundary of the unit disc. Moreover, the

reciprocal of every zero is just its conjugate zero. Set the zeros of f2p(x) as following:

e
√
−1θ1 , e−

√
−1θ1 , · · · , e

√
−1θp , e−

√
−1θp , θq ∈ R (q = 1, 2, · · · , p).

With the zeros of f2p(x), we can write f2p(x) as the product of 2p factors:

f2p(x) = (x− e
√
−1θ1)(x − e−

√
−1θ1)(x − e

√
−1θ2)(x− e−

√
−1θ2)

· · · (x− e
√
−1θp)(x− e−

√
−1θp)

= (x2 − 2 cos θ1x+ 1)(x2 − 2 cos θ2x+ 1) · · · (x2 − 2 cos θpx+ 1)

= xp
(
x+

1

x
− 2 cos θ1

)(
x+

1

x
− 2 cos θ2

)
· · ·

(
x+

1

x
− 2 cos θp

)

= xp(y + α1)(y + α2) · · · (y + αp),

where y = x+ 1
x
+ 2, αq = −2 cos θq − 2 and αq ≤ 0 (q = 1, 2, · · · , p).

In the above expression of f2p(x), we put

Gp(y) := (y + α1)(y + α2) · · · (y + αp) =

p∑

r=0

σp−r(α1, · · · , αp)y
r, (2.9)

where

σ0 = 1,

σp−r(α1, · · · , αp) =
∑

1≤q1<q2<···<qp−r≤p

αq1αq2 · · ·αqp−r
(0 ≤ r ≤ p− 1). (2.10)

However, according to the property of fk(x) and Lemma 2.1, it can be inferred that αq > 0 (q =

1, 2, · · · , p) by showing that σp−r(α1, · · · , αp) > 0 (0 ≤ r ≤ p− 1).

In fact, because f2p(x) = xpGp(y) and y = x+ 1
x
+ 2, we have

f2(p−1)(x) = xp−1Gp−1(y),

f ′
2(p−1)(x) = (p− 1)xp−2Gp−1(y) + xp−3(x2 − 1)G′

p−1(y),

f ′′
2(p−1)(x) = (p− 1)(p− 2)xp−3Gp−1(y) + [(2p− 2)x2 + 4− 2p]xp−4G′

p−1(y)

+ (x2 − 1)2xp−5G′′
p−1(y).

By substituting f2p(x), f2(p−1)(x), f
′
2(p−1)(x) and f

′′
2(p−1)(x) into (2.8), it follows that

xpGp(y) = xp−1Gp−1(y)[p
2x2 + (2p2 + 2p)x+ p2]

+ xp−2G′
p−1(y)[(1 − 2p)x4 − 2x3 + (4p+ 2)x2 − 2x+ (1− 2p)]

+ xp−3G′′
p−1(y)(x

6 − 2x5 − x4 + 4x3 − x2 − 2x+ 1).

Dividing both sides of the above equation by xp, and substituting y for x+ 1
x
+2, we obtain

Gp(y) = Gp−1(y)(p
2y + 2p)

+G′
p−1(y)[(1− 2p)y2 + (8p− 6)y + 8] +G′′

p−1(y)(y
3 − 8y2 + 16y).
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Furthermore, by calculating the r-order derivative of Gp(y), we acquire

G(r)
p (0) = 8(2r + 1)G

(r+1)
p−1 (0) + r[p− (r − 1)]2G

(r−1)
p−1 (0)

+ 2[(p− r)(4r + 1) + 2r]G
(r)
p−1(0) (0 ≤ r ≤ p) (2.11)

with setting G
(−1)
p−1 (y) = 0.

From f2(x) = x2+4x+1, it follows that G1(y) = y+2, G1(0) = 2 and G′
1(0) = 1. According

to (2.11), we have
G(r)

p
(0)

r! > 0 (0 ≤ r ≤ p) by recurrence method. From (2.9) and (2.10), it

follows that
G

(r)
p (0)

r!
= σp−r(α1, · · · , αp) > 0 (0 ≤ r ≤ p− 1).

Finally, we obtain αq > 0 (q = 1, 2, · · · , p) from Lemma 2.1. But this conclusion is contrary

to αq = −2 cos θq − 2 ≤ 0 (q = 1, 2, · · · , p). Therefore, the zeros of f2p(x) are not all on the

boundary of the unit disc. Based on Theorem 2.3, f2p(x) has at least one zero in the unit disk.

For k = 2p+ 1 (p ∈ Z+), according to the property (5) of fk(x): f2p+1(x) = (x+ 1)h2p(x),

because h2p(x) is also a self-reciprocal polynomial, we can prove that h2p(x) has at least one

zero in the unit disc by the same method.

Consequently, we infer that fk(x) (k ≥ 2) has at least one zero in the unit disc.

3 Lu Qi-Keng Problem on Ω

In this section, we discuss that the Bergman kernel function of Ω has zeros in Ω× Ω if the

parameter µ of Ω satisfies certain condition, and obtain the following conclusion.

Theorem 3.1 Let the Bergman kernel function of Ω be

K((ξ, z), (η, w)) = F (x)[µmnπmn+1NI(z, w)
m+n+ 1

µ (1− x)mn+2]−1, (3.1)

where

x = ξηNI(z, w)
− 1

µ ,

F (x) =

mn+1∑

j=1

j∑

k=1

(−1)k(−k)
m−1∏
l=0

n−1∏
q=0

[−k + (n+ l − q)µ]

(j + 1)B(k + 1, j − k + 1)
(1− x)mn+1−j , (3.2)

and B(α, β) denotes the Beta function (see [26, 28]). Then for any m and n, there exists

µ0(m,n) > 0 such that K((ξ, z), (η, w)) has zeros in Ω× Ω when 0 < µ < µ0(m,n).

Proof In the expression of the Bergman kernel function of Ω, we have

[µmnπmn+1NI(z, w)
m+n+ 1

µ (1 − x)mn+2]−1 6= 0,

so K((ξ, z), (η, w)) has zeros in Ω×Ω if and only if F (x) has zeros in the unit disc. We will get

the condition that K((ξ, z), (η, w)) has zeros by studying the condition that F (x) has zeros in

the unit disc.
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In (3.2), the part containing µ can be rewritten as following:

(−k)
m−1∏

l=0

n−1∏

q=0

[−k + (n+ l − q)µ] = (−k)mn+1 +

mn∑

l=1

cl(−k)mn+1−lµl, (3.3)

where

mn∑

l=1

cl =
[m−1∏

l=0

n−1∏

q=0

(u + (n+ l − q))
]

u=1
− 1. (3.4)

By substituting (3.3) into F (x), F (x) can be expressed as below:

F (x) = fmn(x) + µgmn(x),

where

fmn(x) :=

mn+1∑

j=1

j∑

k=0

(−1)k(−k)mn+1

(j + 1)B(k + 1, j − k + 1)
(1 − x)mn+1−j

and

gmn(x) :=

mn+1∑

j=1

j∑

k=1

(−1)k
mn∑
l=1

cl(−k)mn+1−lµl−1

(j + 1)B(k + 1, j − k + 1)
(1− x)mn+1−j . (3.5)

By rearranging the expression of fmn(x), we get

fmn(x) =

mn∑

l=0

1

l!

mn+1−l∑

j=1

S(mn+ 1, j)(−1)mn+1−l−j (mn+ 1− j)!j!

(mn+ 1− j − l)!
xl,

so it is exactly a real coefficient polynomial of degree mn as the one defined in Theorem 2.4.

From Theorem 2.4(7), we have known that fmn(x) has at least one zero in the unit disc.

According to the relationship between F (x) and fmn(x), we will prove that for any m and n,

there exists µ0(m,n) > 0 such that F (x) has zeros in the unit disc when 0 < µ < µ0(m,n).

Let x0 be a zero of fmn(x) in the unit disc, because the zero of a non-constant holomorphic

function with a single complex variable is isolated, there exists 0 < ρ < 1 such that x0 is the

unique zero of fmn(x) in the closed disc D(x0, ρ) = {x ∈ C : |x− x0| ≤ ρ}.
According to (3.5), for 0 < µ < 1, we get

|gmn(x)||x−x0|=ρ ≤
mn+1∑

j=1

∣∣∣
j∑

k=1

(−1)k
mn∑
l=1

cl(−k)mn+1−lµl−1

(j + 1)B(k + 1, j − k + 1)
(1− x)mn+1−j

∣∣∣
|x−x0|=ρ

<
mn+1∑

j=1

2mn+1−j

j∑

k=1

mn∑
l=1

clj
mn

(j + 1)B(k + 1, j − k + 1)

<

mn+1∑

j=1

2mn+1−j2j
mn∑

l=1

clj
mn.
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It follows from (3.4) that

mn∑

l=1

cl <
(n+ 1)!

1!

(n+ 2)!

2!
· · · (n+m)!

m!
< [(n+m)!]m.

Therefore,

|gmn(x)||x−x0|=ρ < 2mn+1[(n+m)!]m
mn+1∑

j=1

jmn < [2(mn+ 1)]mn+1[(m+ n)!]m.

Taking µ0(m,n) = min
{
1,

min
|x−x0|=ρ

|fmn(x)|

[2(mn+1)]mn+1[(m+n)!]m

}
, when 0 < µ < µ0(m,n), we have

µ|gmn(x)||x−x0|=ρ < µ0|gmn(x)||x−x0|=ρ < min
|x−x0|=ρ

|fmn(x)| < |fmn(x)||x−x0|=ρ.

Thereby, F (x) = fmn(x) + µgmn(x) has one zero in D(x0, ρ) from Rouché theorem. Namely,

F (x) has at least one zero in the unit disc when µ satisfies the above condition.

Consequently, for any fixed m,n, when 0 < µ < µ0(m,n), the Bergman kernel function of

Ω has zeros in Ω× Ω.

4 The Topological Properties of the Zero Set of the Bergman Kernel

Function on Ω

According to Theorem 3.1, there exists µ0(m,n) > 0 such that F (x) as (3.2) has zeros in

the unit disc when 0 < µ < µ0(m,n), and the set of these zeros is denoted by

A = {λj ∈ D(0, 1) : F (λj) = 0, j = 1, 2, · · · ,M,M < mn} . (4.1)

Under the same condition, the Bergman kernel function of Ω has zeros in Ω× Ω. Put

Λj := {P = ((ξ, z), (η, w)) ∈ Ω× Ω : x(P ) = ξηNI(z, w)
− 1

µ = λj , λj ∈ A}, (4.2)

j = 1, 2, · · · ,M, M < mn, then the zero set of the Bergman kernel function of Ω is the union

of these sets.

We are going to discuss the topological properties of the zero set of the Bergman kernel

function on Ω, and give the main results and proofs about the connectivity of the zero set.

Theorem 4.1 If the Bergman kernel function of Ω has zeros, and the zero set is denoted

by Λ =
M⋃
j=1

Λj, where the form of Λj is as (4.2), then Λj (j = 1, 2, · · · ,M,M < mn) is a

path-connected subset.

Proof Without loss of generality, we may prove Λ1 is a path-connected subset. Set Q∗ =

((|λ1|
1
2 , 0), (λ1|λ1|−

1
2 , 0)), because |λ1| < 1 and x(Q∗) = λ1, it is easy to see that Q∗ is a

fixed point in Λ1. Let P = ((ξ, z), (η, w)) be any point in Λ1, by proving that there exists a

continuous curve to connect P and Q∗, we can obtain that any two points can be connected

with a continuous curve in Λ1, i.e., Λ1 is a path-connected subset.

According to Theorem 2.1, we select ψz0,θ ∈ Aut(Ω), where z0 = z and θ = − arg ξ, such

that

Ψ(P ) = (ψz,− arg ξ(ξ, z), ψz,− arg ξ(η, w)) = P ∗.
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Since x is an invariant under the action of holomorphic transformation Ψ of Ω×Ω, i.e., x(P ) =

x(P ∗) = λ1, it follows P
∗ ∈ Λ1, and

P ∗ = ((|ξ|NI(z, z)
− 1

2µ , 0), (λ1|ξ|−1NI(z, z)
1
2µ , w∗)).

Furthermore, putting Q := Ψ−1(Q∗), we have Q ∈ Λ1 from x(Q∗) = x(Q) = λ1, and

Q = (ψ−1
z,− arg ξ(|λ1|

1
2 , 0), ψ−1

z,− arg ξ(λ1|λ1|−
1
2 , 0))

= ((|λ1|
1
2NI(z, z)

1
2µ e

√
−1 arg ξ, z), (λ1|λ1|−

1
2NI(z, z)

1
2µ e

√
−1 arg ξ, z)).

Because P and Q are respectively mapped to P ∗ and Q∗ by Ψ, we will show that P and Q

can be connected with a continuous curve by proving that P ∗ and Q∗ can be connected with

a continuous curve in Λ1. Then, a continuous curve can be constructed to connect Q and Q∗.

So there is a continuous curve to join P and Q∗ in Λ1.

Firstly, there exists

P̃ ∗ = ((|ξ|NI(z, z)
− 1

2µ , 0), (λ1|ξ|−1NI(z, z)
1
2µ , 0))

corresponding to P ∗ in Λ1. We can construct a continuous curve as following to connect P ∗

and P̃ ∗:

ϕ1(s) = {((|ξ|NI(z, z)
− 1

2µ , 0), (λ1|ξ|−1NI(z, z)
1
2µ , sw∗)), s ∈ [0, 1]}.

In fact,

|λ1|2µ|ξ|−2µNI(z, z) < det(I − w∗w∗t) < det(I − s2w∗w∗t) (s ∈ [0, 1]),

x(ϕ1(s)) = λ1,

so ϕ1(s) ⊂ Λ1, and ϕ1(0) = P̃ ∗, ϕ1(1) = P ∗.

Next, we construct a continuous curve

ϕ2(s) = {((s, 0), (λ1s−1, 0)), s ∈ [|λ1|
1
2 , |ξ|NI(z, z)

− 1
2µ ]},

and set |λ1| 12 < |ξ|NI(z, z)
− 1

2µ without loss of generality. Obviously, ϕ2(s) ⊂ Ω×Ω. It follows

from x(ϕ2(s)) = λ1 that ϕ2(s) ⊂ Λ1. Moreover, ϕ2(|λ1|
1
2 ) = Q∗ and ϕ2(|ξ|NI(z, z)

− 1
2µ ) = P̃ ∗.

So ϕ2(s) is a continuous curve to connect Q∗ and P̃ ∗.

Summarizing the above discussion, ϕ1 is a continuous curve connecting P ∗ and P̃ ∗, and

ϕ2 is a continuous curve connecting Q∗ and P̃ ∗, therefore there exists a continuous curve to

connect P ∗ and Q∗, which is denoted by ϕ. Obviously, we obtain that

Ψ−1(ϕ) = (ψ−1
z,− arg ξ, ψ

−1
z,− arg ξ)(ϕ)

is a continuous curve connecting P and Q, which is denoted by γ1.

Furthermore, we construct a continuous curve

γ2(s) = {((|λ1|
1
2NI(sz, sz)

1
2µ es

√
−1 arg ξ, sz),

(λ1|λ1|−
1
2NI(sz, sz)

1
2µ es

√
−1 arg ξ, sz)), s ∈ [0, 1]}.

We have

||λ1|
1
2NI(sz, sz)

1
2µ es

√
−1 arg ξ|2µ = |λ1|µNI(sz, sz) < NI(sz, sz),
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|λ1|λ1|−
1
2NI(sz, sz)

1
2µ es

√
−1 arg ξ|2µ = |λ1|λ1|−

1
2 |2µNI(sz, sz) < NI(sz, sz),

x(γ1(s)) = |λ1|
1
2NI(sz, sz)

1
2µ es

√
−1 arg ξ

· λ1|λ1|−
1
2NI(sz, sz)

1
2µ e−s

√
−1 arg ξNI(sz, sz)

− 1
µ

= λ1.

Moreover, γ2(0) = Q∗, γ2(1) = Q. Hence, γ2(s) ⊂ Λ1 and γ2(s) is a continuous curve connecting

Q and Q∗.

In conclusion, γ1 is a continuous curve connecting P and Q, and γ2 is a continuous curve

connecting Q and Q∗, so there exists a continuous curve connecting any point P and the fixed

point Q∗. So Λ1 is a path-connected subset. Using the same method, we can show that every

Λj (j = 2, · · · ,M,M < mn) is a path-connected subset of the zero set of the Bergman kernel

function on Ω.

Theorem 4.2 If the Bergman kernel function of Ω has zeros, let the zero set be Λ =
M⋃
j=1

Λj,

where the form of Λj is as (4.2), then for any P ∈ Λl and Q ∈ Λk (l 6= k), there is not a

continuous curve to connect P and Q in Λ.

Proof We will prove the theorem by negation.

For any P ∈ Λl and Q ∈ Λk (l 6= k), suppose that there is ϕ(s) (s ∈ [0, 1]) ⊂ Λ to connect

P and Q, ϕ(0) = P , ϕ(1) = Q, then x(ϕ(0)) = λl, x(ϕ(1)) = λk, and λl 6= λk. Because x(ϕ(s))

is uniformly continuous on [0, 1], for any s0 ∈ [0, 1] and for ε = 1
2 min{|λ′ − λ′′|, ∀λ′, λ′′ ∈ A},

where A is defined as (4.1), there exists δ > 0 such that

|x(ϕ(s)) − x(ϕ(s0))| < ε, s ∈ U(s0, δ) ∩ [0, 1].

If s0 takes all the values in [0, 1], there is a set of open intervals {U(s0, δ), s0 ∈ [0, 1]} covering

[0, 1]. Moreover, there are following finite open intervals to cover [0, 1] in the set of open

intervals:

Uα(sα, δ0), α = 1, 2, · · · , q.

Without loss of generality, let s1 < s2 < · · · < sq. Every interval Uα(sα, δ0) satisfies

|x(ϕ(s)) − x(ϕ(sα))| < ε for any s ∈ U(sα, δ) ∩ [0, 1].

Because 0 ∈ U(s1, δ0), x(ϕ(0)) = λl and |x(ϕ(s1)) − x(ϕ(0))| < ε, we have x(ϕ(s1)) = λl.

Next, as any s ∈ U(s1, δ) ∩ [0, 1], |x(ϕ(s)) − x(ϕ(s1))| < ε, we acquire x(ϕ(s)) = λl for any

s ∈ U(s1, δ). Since any s ∈ U(s1, δ) ∩ U(s2, δ), |x(ϕ(s)) − x(ϕ(s2))| < ε, it is turned out that

x(ϕ(s2)) = λl. Moreover, any s ∈ U(s2, δ) ∩ [0, 1], |x(ϕ(s)) − x(ϕ(s2))| < ε, we can show that

x(ϕ(s)) = λl for any s ∈ U(s2, δ). Proceeding the derivation in a similar manner, it follows

that x(ϕ(1)) = λl, which is contrary to x(ϕ(1)) = λk.

Consequently, the hypothesis fails to hold, i.e., P and Q which belong to different subset Λl

and Λk respectively, can not be joined with a continuous curve in Λ.

According to Theorems 4.1–4.2, if the Bergman kernel function of Ω has zeros, the zero set

is composed ofM (M < mn) path-connected branches. It is easy to know that the complement

set of the zero set in Ω×Ω is connected. Furthermore, we can construct a continuous curve to

connect any two points in the non-zero set.
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Theorem 4.3 If the Bergman kernel function of Ω has zeros, let the zero set be Λ =
M⋃
j=1

Λj,

where the form of Λj is as (4.2), and Ω×Ω \Λ denote the complement set of Λ in Ω×Ω, then

for any P,Q ∈ Ω× Ω \ Λ, there exists a continuous curve to connect the two points.

Proof Let O = ((0, 0), (0, 0)). Since x(O) = 0 and 0 /∈ A, where A is defined as (4.1), we

have O ∈ Ω × Ω \ Λ. For any P = ((ξ, z), (η, w)) ∈ Ω × Ω \ Λ, if we show that P and O can

be joined with a continuous curve in Ω × Ω \ Λ, the continuous curve can be constructed to

connect P and another any point Q.

We are going to prove that there exists a continuous curve to connect P and O according

to the character of P in two cases:

(i) Let P = ((ξ, z), (η, w)) ∈ Ω× Ω \ Λ. If x(P ) = 0 /∈ A, then ξ = 0 or η = 0. Construct a

continuous curve

γ0(s) = {((sξ, sz), (sη, sw)), s ∈ [0, 1]}.

It is easy to verify that γ0(s) ⊂ Ω× Ω for ∀s ∈ [0, 1]. Moreover, x(γ0(s)) = 0, and γ0(0) = O,

γ0(1) = P . Thereby, γ0(s) is a continuous curve connecting P and O in Ω× Ω \ Λ.
(ii) Let P = ((ξ, z), (η, w)) ∈ Ω× Ω \ Λ, if x(P ) /∈ A and x(P ) 6= 0, then ξ 6= 0 and η 6= 0.

There is P̃ = ((0, z), (η, w)) corresponding to P in Ω× Ω \ Λ. We are going to first prove that

P and P̃ can be joined with a continuous curve in Ω× Ω \ Λ.
Construct a cluster of curves, which are disjoint curves with P and P̃ as endpoints:

γk(s) =
{((sa+

√
−1skb

a+
√
−1b

ξ, z
)
, (η, w)

)
, s ∈ [0, 1]

}
, k = 1, 2, · · · ,M,M + 1,

where a, b ∈ R, a 6= 0 and b 6= 0. Because

∣∣∣
sa+

√
−1skb

a+
√
−1b

ξ
∣∣∣
2µ

≤ |ξ|2µ < NI(z, z),

we have γk(s) ⊂ Ω× Ω, and γk(0) = P̃ , γk(1) = P . Moreover,

x(γk(s)) =
sa+

√
−1skb

a+
√
−1b

ξηNI(z, w)
− 1

µ = x(Q)
sa+

√
−1skb

a+
√
−1b

(s ∈ [0, 1]),

so x(γ1(s)), x(γ2(s)), · · · , x(γM+1(s)) are disjoint continuous curves connecting x(P ) and ori-

gin in C. Since A is a finite set containing M elements at most, there exists k0 such that

x(γk0(s))
⋂A = ∅. Namely, there exists at least one continuous curve γk0(s) to join P and P̃

in Ω× Ω \ Λ.
Next, from (i), γ0(s) = {((0, sz), (sη, sw)), s ∈ [0, 1]} is a continuous curve to join P̃

and O in Ω × Ω \ Λ. Hence, joining γk0(s) and γ0(s), we get a continuous curve to connect

P = ((ξ, z), (η, w)) (ξ 6= 0, η 6= 0) and O.

In the same way, for another Q ∈ Ω × Ω \ Λ, we also get a continuous curve to connect Q

and O. So by connecting P and Q with O, we construct a continuous curve to connect any two

points in Ω× Ω \ Λ.
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