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Abstract In this paper, the authors obtain the Dunkl analogy of classical L” Hardy
inequality for p > N + 2+ with sharp constant (w)p7 where 27 is the degree of weight
function associated with Dunkl operators, and L? Hardy inequalities with distant function
in some G-invariant domains. Moreover they prove two Hardy-Rellich type inequalities for
Dunkl operators.
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1 Introduction

The classical Hardy inequality

_ p
Vul|Pdx > u : ﬂdgc 1.1
|
RN R

p N |z|P

holds for u € C§°(RY) when 1 < p < N and for u € C°(RY\{0}) when N < p < oo,
It has extensive applications in analysis, partial differential equation and physical research.
In [11], Hardy firstly proved this inequality in the case of one dimension. Since then, many
researchers devoted themselves to it and made great progress, not only in Fuclidean spaces,
there are counterparts in Riemannian manifolds and Carnot groups, see [2, 5, 7-8, 12-16] and
the references therein.

If RY is replaced by a bounded convex domain €, the following sharp inequality holds for
1 <p<oo,

/ |VulPdz > (p;l)P mdac, (1.2)
Q D o oF

where §(x) := dist(z, Q) (see [18]). Mazya proved in [19] that (1.2) can be characterized in
terms of p-capacity. When 2 is non-convex, the problem is more complicated. For domains such
that —AJ is nonnegative in the distributional sense, some results were obtained by Barbatis,
Filippas and Tertikas in [4]. Tt is equivalent between non-negativity of —Ad in the distributional
sense and the mean-convexity of the domain when the boundary is smooth enough, see [9-10,
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17, 20]. Ancona [1] obtained some results in planar simply connected domains by using Koebe
one-quarter theorem; some other Hardy inequalities for special domains see [8].
The Rellich inequality

2(N _ 4)2 2
/ |Aul?dz > w/ de (1.3)
RN 6 R

1 ~ |z

N2(N—4)2
16
is sharp when N > 5. In [22], Tertikas and Zographopoulos obtained a Hardy-Rellich type

N2 2
/ |Aul?dz > —/ [Vl dz, (1.4)
RN 4 Jgv |zf?

where N > 5, the constant NT2 is also sharp.

is a generalization of Hardy inequality, which holds for u € C§°(RY) and the constant

inequality which reads as

In the setting of Dunkl operators, the author in [23] proved a sharp analogical inequality of
(1.1) for Dunkl operators

N + 27y —2\2 |u|?
Vul2duy, > (7) / 9 qu, 1.5
/RN| wul~dpg > 9 o |22 e (1.5)
and the following inequality for 1 < p < Jf_t;?,
N + 2y —2py — p\P u|P
[ i > (Y [, (1.6)
RN P RN |T[P

however the sharpness of the constant for p # 2 in (1.6) is not known. They also obtained an
analogical inequality of (1.3) for Dunkl Laplacian

[ ot OO [
v = 16 v |2t

2 2
where the constant (Y27 (1]g+27_4) is sharp.

The plan of this paper is as follows: We introduce some definitions and basic facts of Dunkl

operators in the second section. Then, in section three, we obtain some LP Hardy inequalities
associated with distant function for Dunkl operators by choosing specific vector fields, especially
a Hardy inequality on a non-convex domain 2 = B(0, R)¢, which leads to classical LP Hardy
inequality associated with Dunkl operators for p > N + 2v. In the last section, we obtain
two Hardy-Rellich type inequalities for Dunkl operators by the method of spherical h-harmonic
decomposition.

2 Preliminaries

Dunkl theory is a generalization of Fourier analysis and special function theory about root
system. It generalizes Bessel functions on flat symmetric spaces, also Macdonald polynomials
on affine buildings. Moreover, Dunkl theory has extensive applications in algebra (double affine
Hecke algebras), probability theory (Feller processes with jump) and mathematical physics
(quantum many body problems, Calogero-Moser-Sutherland molds).
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In this section, we will introduce some fundamental concepts and notations of Dunkl oper-
ators, see also [6, 21] for more details.

If a finite set R C RY \ {0} such that RNaR = {—a,a} and 0,(R) = R for all @ € R, then
we call R a root system. Denote o, as the reflection on the hyperplane which is orthogonal to
the root «, written as

(o, 2)

al =1 —2
e )

We write G as the group generated by all the reflections o, for a € R, it is a finite group. Let
k: R — [0,00) be a G-invariant function, i.e., k(a) = k(va) for all v € G and all o € R, simply
written as ko = k(a). R can be denoted as R = Ry U(—R4), when o € Ry, then —a € —R,,
and Ry is called a positive subsystem. We fix a positive subsystem Ry in a root system R.
Without loss of generality, we assume that |«|? = 2 for all « € R.

Definition 2.1 Fori=1,---,N, the Dunkl operators on C*(RY) is defined as follows
(Uax)
T; koo .
u(x) D ke ——
aERyL

By this definition, we can see that even if the decomposition of R is not unique, the different
choices of positive subsystems make no difference in the definitions due to the G-invariance of

N
k. Denote by Vi = (T1,---,Ty) the Dunkl gradient, Ay = Y T? the Dunkl-Laplacian.

=1
Especially, for & = 0 we have Vo = V and Ag = A. The Dunkl-Laplacian can be written in
terms of the usual gradient and Laplacian as follows:

Agu(z) = )+2 >k [ oc) ~u(@) — u(aax)]

(o, 2)?

aERL

The weight function naturally associated to Dunkl operators is

[T e a)Pe.

aERy

This is a homogeneous function of degree 2+, where

= > ka.

aERy

We will work in spaces LP(uy ), where duy, = wida is the weighted measure. About this weighted
measure we have the formula of integration by parts

/ T;(w)vduy, = —/ uTy(v)dpug.
RN RN

If at least one of the functions u, v is G-invariant, the following Leibniz rule
Ti(uv) = uTyv + vTiu

holds. In general, we have

T;(wv)(z) = v(z)Tu(x) + uw(x)Tiv(x) — Z koo (u(z) = w(oa2))(v(z) = v(oax))'

(o, )

aERL
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3 LP Hardy Inequalities

In this section we prove a general Hardy inequality with remainder terms for Dunkl operators
in G-invariant domains, then we get the Dunkl analogy of Hardy inequality (1.1) for p > N +2~.
Firstly, we review some basic facts of distant function.

Lemma 3.1 (see [3]) Let Q@ C RY be an open set such that 92 # 0. The following
propositions hold true.

(i) The function 6(x) is differentiable at a point x € Q if and only if there exists a unique
point N(x) =y € 0Q such that 6(x) = |x —y|. If §(x) is differentiable, then Vi(x) = ﬁ and
Vol =1.

(ii) Denote X(Q2) as the set of points where §(x) is not differentiable. If Q is bounded with
C?1 boundary, then |X(Q2)| = 0.

(iii) Assume that S is convex. Then Ad < 0 in the sense of distributions, i.e.,
[ s@apaar <0, pecE@, g0
Q

For Q Cc RV if forall z € Q, g € G, we have gz € , then Q is called a G-invariant domain.

Lemma 3.2 If Q C RY is G-invariant, g € G, x € Q\ (), then
(Véog)(z)=(goVd)(x). (3.1)

Proof From the proof of Theorem 5.2 in [23], the function 6(z) is G-invariant. For any
x € Q, we have y = N(z) € 99, §(z) = |z — y| and

6(gz) = d(z) = |z —y| = |g(z — y)| = |gz — gyl.

Due to the uniqueness of N(z), we get that N(gz) = gy. Therefore

_gz—gy _glz—y) _ .
R P AR FET R

Remark 3.1 If F = hiz+ hoV), where hy, hy are G-invariant functions, then by Lemma
3.2, we have that («, F(o,2)) = —{«, F).

Theorem 3.1 Let Q C RN be a G-invariant domain with |%(Q)| = 0. Then for all u €
C5° (), we have the inequality

e
2 > p— -
/QIVWI d,Uk_( 5 ) o dpu

S [ G- J vl o2

where p:=2 Y kor2s

Yo,z
aERy (o)

Proof If F satisfies that (a, F(c,2)) = —(a, F), then

/ (Vi F)lufPdjug = / F - Vi(lul")du
Q Q
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|u o)’

F-V(|JulP)d ko —F————— (o, F)dpg. 3.3

— [ Fe@rn - [ ¥ w0 pa. )

aER

Let x = 04y. Then

p\&% L) p (@ F(oay))
Y| —F———d al)- 3.4
L = [ futoan & 0n) (3.4)
Because of (o, F(o,y)) = —(a,F(y)), (ay00y) = —(,y), dug(oay) = wr(oay)d(cay) =
wi(y)|J|dy, where
1—a? —o 0 —ojog e -0y,
—o0 1—a3 —o03 - —Qa0,
J— ‘8(00&9) ‘ _ | —azaq —Q30o 1— a% . —a3ay |
a(y)
— Q1 — (e —QpQg e 1— o<,2Z

Straightforward calculation shows that J = —1.
Thus dug(06y) = duk(y), and we have

L = [ futonn S ). 5.5)

Putting (3.5) into (3.3), we get
/ (Vi - F)ul"dpy, = — / plul""*u(F - Vu)duy,
Q Q
—/p|u|p ? (F Viu) — Z Ko )<a F>)du;~C
o >

aER

p—2 <O‘7 >
=— | plu u(F - Viu)dpg +p ka/ w|Pdpg
[ ol - Ve +p 3 ko [ S

acRy Q
a, F)
—P Z / | P~ 20 - u(oqx)d
aERyL
_ » P
Sp(p 6_%/ |F|ﬁ|u|pduk+e—/ |Vku|pduk)
Q P Ja
1 1
+ 90 [Pl d = gp [ (o PP uloan)din, (36)
Q Q

we used Holder inequality and Young inequality in the last inequality above. Then,

p P 1
/ |Vl dp, > / (Ve F— (0= 1) #1FIPT — Zplo, F))uldp
Q Q

1
+ 519/ (p, F)lulP~2u - u(oax)dp. (3.7)
Q
Let F = —61, 9. Since § is G-invariant, V0 = V4, thus Vj, - F = — ‘i +(p-1) |V£\2. By

(3.7), we have

-1 -1 ulP
/|Vku|pd#k2 (p B ) [ ——du
Q Q

174 Pto—T or
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+€ip/9(—ak5+ (0, v8)) 1 il

wlP~2u - u(oax
_ﬂ/mmwdﬂk
Q

2eP op—1

-1 -1 p
Z(p _p-] )/ |ul [
€p Pt q 0P

1 p p |uf?
5 | (= o+ 50,98 = B v0)1) 55 (33)
The last inequality above is obtained by using Hélder inequality
{p, V) [{p, V5)| | 9)| v
/Q st ™™ u-u(og ff)duk< —amlul"du 5p 1 |u(oax )|pduk)
p, Vo)
' Al '|u|pduk
The p;,l - pﬁ_l%l takes the maximum value (%)p when € = (ﬁ)%l Also,

p
~Ad+ E(p, V) = A5 + (5 - 1)<p, vs),
we thus complete the proof of Theorem 3.1.

Remark 3.2 If the root system R satisfies span(R) C R¥N =1, Then the following inequality
holds for any u € C§°(RV 1 x R,),

— 1\P P
/ |Vku|pd,uk > (p_) / |u| dUk
RN-1xR, p RN-1xR h

Let Sy denote the symmetric group in N elements. A root system of Sy is given by
R={%(e;—¢;),1<i<j< N} and

(span(R))* = e1 + - +en =: 1,
see [3] for more details. Let the domain € = span(R) x n4, where 7, is the positive direction
of the straight line coinciding with 7. Then Q is G-invariant, 6(x) = dist(z, spanR) and

e1+ - +en Ui
Vo= ———— = —.
lex +---+en| VN

Fix Ry = {e; —e;,1 <i<j <N}, then —Ad = 0 and (p, VJ) = 0, by Theorem 3.1, we have
the following corollary.

Corollary 3.1 For R = {+£(e;—e;),1 <i<j< N}, ue C5(span(R) X ny4), the following
inequality holds

u(z) — u(zi;) P p—1\? |ul?
Vu +k ———(e; —ej)| dup > (—— ——dpg,
/Span(R)Xm Z ! } ( ) pan(R)xn4 op

T — s
1<i<j<N v J p
where k = ka = kg,Va,ﬁ S R, xij = ($1,"' 7xi—1,$j7xi+17"' 7xj—17$i7$j+1,"' ,ZZ?N).

Proof It is easy to prove vo o, 0v ™! = 0,4 for all v € G, as there is one conjugate class in
R, 50 ko = kg for all a, B € R, see also [6]. Straightforward computation shows o¢, ¢, (z) = Zj;.

By (3.8) in the proof of Theorem 3.1, it is easy to see that the following theorem holds.
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Theorem 3.2 If Q C RY satisfies |S(Q)| = 0, (p, V) > 0. The following inequality holds
for all u € C§° (),

P -2 |uf? -p Jul?
IViulPdpe > (p—1)(e P —e »1) | —dur — ¢ Apd——dpug, (3.9)
Q o o° Q gr—!

where € is a positive constant.

Remark 3.3 If a domain 2 satisfies that |[S(2)| = 0, (p, Vd) > 0 and A0 < 6 <p—1,
where 0 is a positive constant, i.e., then there is a positive constant C' = C(6, p) such that

P
/|V;€u|pduk ZC/ h{;—lduk.
Q Q

Corollary 3.2 Suppose that Q = B(0,7)¢, p > N + 2+, the following inequality holds for
all uw € C§°(Q),

p— N —2y\P |ul?
ViulPdup > ( —m8 — ——duy. 3.10
/ [ViulPdpg > ( » ) oo CHE (3.10)

Proof When 2 = B(0,7)°, then |3(Q)| =0, = || —r, VI = T Ard = Na2y-1 o %,

[z]
and

<P—1>(€"’—e‘#)§—e‘pAm:(p—l)(e—p_e—%) 1 N+2y-1

2
we note (p — N — 2y)e® — (p — 1)e 7T takes the maximum value (p_]\;%h)p when e =
p—1

(p—l\z;—%) "7 Note that (p, Vo) = 277' > 0, we complete the proof by Theorem 3.2.

Let r tend to zero, the following sharp inequality follows from Corollary 3.2.

Corollary 3.3 Suppose that p > N + 2v. The following inequality holds for all u €
Cie(RM\{0}),

— N —2y\P ulP
/RN [ViuPdpy > (%) [R ud,uk. (3.11)

N |l

Proof There only remains to prove the optimality of the constant (#)p . For any
€ > 0 we choose

T r<1,
Ue = p—N—2v—¢
T P , r>1.

We can write dug, = rV 2771w, (€)drdr(€), where v is the surface measure on the sphere SV.

Thus by directly computing, we have

lim

Jan [ViuelPdps (2= N - 27)17
e—0 I]RN “uze‘Lp de

p
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4 Hardy-Rellich Type Inequality

Spherical h-harmonics We will introduce some concepts and fundermental facts for
spherical h-harmonic theory, see [6] for more details. If a homogeneous polynomial p of degree
n that satisfies

App =0,

then we call it an h-harmonic polynomial of degree n. Spherical h-harmonics (or just h-
harmonics) of degree n are defined as the restrictions of h-harmonic polynomials of degree

SN_l

n to the unit sphere . Denote P,, the space of h-harmonics of degree n. Denote d(n) the

dimension of P,,, it is finite and given by following formula:

dn) = (") = ().

Moreover, the space L2(SN =1 wi(£)d€) can be decomposed as the orthogonal direct sum of
the spaces P, forn=0,1,2,---.

Let Y*, i =1,---,d(n) be an orthogonal basis of P,,. In spherical polar coordinates z = r¢
for r € [0,00) and ¢ € SV~1, we can write the Dunkl Laplacian as

9 N+2y-19 1

Ay = + = Ak,
T

T oor? r or
where Ay o is an analogue of the classical Laplace-Beltrami operator on the sphere, and it only

acts on the & variable. Then the spherical h-harmonics Y;" are eigenfunctions of Ay o, and its

eigenvalues are given by
Ap oY = —n(n+ N+ 2y —-2)Y" =\, Y,

The h-harmonic expansion of a function u € L?(juy) can be expressed as

co d(n)
u(rg) = > uni(r)Y;" (),
n=0 i=1
where
wnsr) = [ Y ©n(Oavte). (1)

and v is the surface measure on the sphere SV—1.

Theorem 4.1 Let N # 2. Then we have the inequality

N —2)?
/ 2| Apu)*dpy, > %/ |V eul*dpy, (4.2)
RN RN

where N := N + 2v, and the constant (ﬁf)z s sharp.

Proof Our goal is to find best constant C' satisfying

/N (2| Al — C/N IV, > 0.
R R
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Using spherical decomposition:

oo d(n)

| 2N ul2di. — e " N-1 ’ ﬁ ) 2N+1d
oAl =30 > Wl el ) PN,
RY n=0i=1"0 r r
oo d(n) +o0o —
N -1 A ~
/RN |Viul*dp = — Z Z/o (uﬁz + T’U’;zz =+ r—gun,i)un,ﬂ”N—ldr.
n=0 i=1

By integration by parts, we have

/RN (2| Al 2d g — C/RN IV

oo d(n)

289

+oo _ _
= E E / ([t 4 ZPNHL (N = 1)+ 20, + C’]|u;)i|2rN_1 +(CA, + /\i)ui)irN_S)dr.
0

n=0 i=1

Let
+oo _ o +oo _
Ini= / up ;PrN T dr — [(N = 1) + 2X, + C] / |y, ;PN dr
0 0
+o0 —_
+ (CAn + A2) / uiﬂ-rN_gdr.
0
By using the following two weighted Hardy inequalities,
+o0 _ N2 oo
/ |u/ [PV Hdr > —/ uw?rNtdr,
0 4 Jo

+o0 T 2 +oo
_ N —2 _
/ |u’|2rN_1d7“ 2 ( ) / uQT‘N_ng',
0 4 0

we get

-2

N — +oo — +o0 _
I,; > (— — (N —1)-2)\, — C’) / up | PrN e + (A2 + C’/\n)/ uz N 3dr
0 0

4

N —2)2 +oo - oo B
- (% —O- 2)\71) / |u;’i|2TN_1dT + /\n(/\n + C)/ ui,iTN_Bd’l”.
0 0

Let C < M — 2\,,. Then we have

4 0

_ [((N;2)2 _ C) (N;2)2 + /\n()\n +C— (N_TW)} /+OO ui)irﬁ_BdT > 0.
0

Because C' < M —2)\, and C,,4; = min {M -2\ } = M, we derive

(W2 )2y (o D220 o,

Thus (4.1) holds. Finally, we show the optimality of (ﬁf)z. For any € > 0,

L, r<1,
Ue = __N-2+e
T 2, r>1.
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Straightforward calculation shows

™. Jan 2P| Apuc?dpy (N —2)2
e—0 fRN |Vku€|2duk 4 ’

Theorem 4.2 Assume N > 5+ 2v. Then, for any u € C*(RY), we have the inequality
Viu|?
/ |Agul*dpg > —/ | |£|2| dpk, (4.5)

=72
where the constant NT s sharp.

Proof By integration by parts,

Viul? Aru-u -Viu
/ | k2| dﬂk:_/ kQ dk+2/ u kduk,
Ry |Z] Ry |7 v |zt
where

z - Viu
/ Uifdltk = —/ u- Vk( )d#k
RN ] RN |z|*

N —4 T 2
__ S 2N kau(oaz) ) du. 46
Lot (et vt 2 e D) 49)
Then
z - Viu N —4 u? u(oaz)u
/RN ER 2 Jow Ta QGZR: ry ol
Therefore
|V rul? / Agu - u / u? u(car)
——dug = ———dur — (N —4 ——dpy — 2 ka/ ——— 2 dug
Lo NP (V=) fo et =2 2 R T
Aru-u — u?
= 2 UG, - N4 [ L4
/RN S =) [
u—u(oax))u
OCER+
Let
+oo d(n)
=Y "> i (r)Y(E)
n=0 i=1
+o0 d(n)
u(oaz) = Z Z Un,i (1) Y;"(£),
n=0 i=1
where
1
war) = o [ ulr€or©dn(o),
wd gN—-1
- 1
tup,1(r) = — u(r - 00/(§))wi(§)dv(§),

w§ SN -1
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where wf = [y, wp(§)dr(€) is the spherical measure. Note that wy,(¢)dv(€) is G-invariant,
by a change of variables 0, — £, we obtain

a0,1(7”) = uO,l(T)a
+o0 d(n)

u—u(oqr) = Z Z(unz(T) — Up (1)) Y (€).

n=1 i=1
From Parseval identity, we have

+oo d(n)

1 oo ~ N-5
/RN W(u — u(oaz))uduy =) Z/O (tn,i (1) = Un,i(r)) - un,ir™ —dr

n=1 i=1

=/’ L (= w0,0) — (u(o0) — To.1)] (2 — o 1)djak.
R

~ Ja]*
Also

1 ~
- [ (o) =) (u = o)
RN

1 3 1
< — )2 T ( _ 2
< (/RN |x|4(u(0ax) o, 1) dﬂk) (/RN |x|4(u uo,1) de)
1
:/ (u —uo)l)Qde.
R

v Jaft

1
2

Then we have
[ ot wloaoudin <2 [ - un)d (@)
—(u — u(oaz))u < —(u—u . .
SAEL P e e TR
By using spherical decomposition,
Vyul?
/ Vi 2' dpk
RN 7]

u- Apu — u? 1 2
< — ———dur — (N — 4)/ —dpr + 47/ (v —ug,1) dpg
/RN |z v [z[* v |f*

=

N-1 A ~
Z,i + . U;m + T_;Zun,i)TN_B + (N —4)- Ui,iTN_S} dr

Il
|
]
]
S—
+
3
=
N

oo d(n)

N3 / m“%ﬁj_g = Mt NP Ay YN / N w2 N,
2 |, i

n=1 i=1

So

2
/ |Aku|2duk—C’/ |Vku| duk
RN ry |zl

> Z Z - [(u" ; + Eu' i + ﬁu -)27"N_1 — Clul -|27"N_3 + A Cui? -rﬁ_f’}dr
- 0 n,t r mn,t 7,2 ", 7,1 n 7,1
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By integration by parts, we obtain

Ay =N—2\, —1-C,
B — {)\0()\0—2(N—4)+C), n =20,

since Ao = 0, one has By = 0.

Using the following weighted Hardy inequality

+o00 T 2 “+oo
_ N —9 _
/ Ju'[2rN 1dr > -2 1 ) / w?rN=3dr, (4.8)
0 0

+oo _ N _ A)\2 +oo _
/ Ju'[2rN =3dr > W-4)° 1 4) / uw?rN=5dr, (4.9)
0 0

and denoting

+o0 _ _ _
L= / [|u;:)i|2rN_1 + An|u;)i|2rN_3 + Bnui7irN_5]dr,
0

we have

N -2 2 +oo _ +o0 _
L,;> [An + -2r 1 ) ] / |u;ﬂ-|2rN_3dr + Bn/ u%_’irN%dr. (4.10)
0 0

For n =0,
—2
N +oo _
Ipq > (T — C) / |u6)1|27"N_3dr,
0

N2
so we get C' < =-.
For n > 1, take C = NT2, we get
+o0 _ “+oo _
L,;> —2)\n/ lul, 2rN 73dr + Bn/ u? N "5dr
0 ’ 0 '
— —2
N —4)? — N — oo
0

+00 —
=D, / u? rNPdr,
0

here

So
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When N > 5+ 2v, D; > 0,

—2
2NN
DQ = Z Oa
4
D, > Dy >0 (n=3,4,---), so (4.5) holds.
2
Next we prove the optimality of the constant NT. For any € > 0, take
1, r<l1,
Ue = +

N-—4+e
T 2, r>1.

By directly computing, it follows that

—2
g Ja By N7

Vitel? - .
e—0 f]RN| ‘1;‘2| d,uk 4
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