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1 Introduction

The class number of algebraic number field is a classical topic being studied in a long history

in number theory. Gauss proposed the following profound conjectures

Conjecture 1.1 There are infinitely many real quadratic fields with class number one.

Conjecture 1.2 There are only 9 imaginary quadratic fields Q(
√
D) with class number

one, here D = −1,−2,−3,−7,−11,−19,−43,−67 and −163.

Conjecture 1.2 has been verified by Baker and Stark respectively in 1967. But Conjecture

1.1 is still an open problem so far. It seems that the case of real quadratic field is quite different

to that of imaginary quadratic field. Due to this reason partly, some scholars think about the

divisibility of class numbers of quadratic fields. Komatsu [5] gives an infinite family of pairs of

quadratic fields Q(
√
D) and Q(

√
mD) with m,D ∈ Z whose class numbers are multiple of 3. In

[2], Iizuka, Konomi and Nakano construct an infinite family of pairs of quadratic fields Q(
√
D)

and Q(
√
mD + n) with D ∈ Q,m, n ∈ Z whose class numbers are both divisible by 3 or 5 or 7.

Recently Iizuka [1] proposes the following conjecture and proves that this conjecture holds for

imaginary quadratic fields when p = 3, n = 1.

Conjecture 1.3 (see [1]) For any prime number p and any positive integer n, there is an

infinite family of n+ 1 successive real (or imaginary) quadratic fields

Q(
√
D),Q(

√
D + 1), · · · ,Q(

√
D + n)
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with D ∈ Z whose class numbers are divisible by p.

Inspired by these results, one can consider such problem: For a given positive integer n,

does there exist an infinite family of pairs of real (imaginary) quadratic fields Q(
√
D) and

Q(
√
D + n) with D ∈ Z whose class numbers are both divisible by 3?

From now on we call the real (resp. imaginary) case for the case of pairs of real (resp.

imaginary) quadratic fields for short. In this paper, we give the positive answer for the problem

above, More concretely, we have

Theorem 1.1 For arbitrary positive integer n, there exist infinity many pairs of quadratic

fields Q(
√
D), Q(

√
D + n) with some D ∈ Z such that their class numbers can be divided by 3

for the real case and imaginary case, respectively.

We note that our main result is for any positive number. In particular, taking n = 1 in the

imaginary case, it is the case studied by Iizuka.

Notation Throughout this paper, Z,Q,Fp denote the ring of rational integers, the field

of rational numbers and the finite field of order p, respectively. For a prime number p and an

integer a, vp(a) denotes the greatest exponent m such that pm | a, i.e., p-adic valuation. For a

algebraic number field K, Kp denotes its completion with respect to its nonzero prime ideal p.

We denote the class group of K and the class number of K by ClK and h(K), respectively.

2 The Local-Global Principle for xm − d

In this section, we would like discuss the reducibility of polynomial xm − d which will play

a key role in our paper. At first, we recall a fact in algebraic number theory.

Theorem 2.1 (see [3]) Let L/K be a finite extension of number fields and OL, OK denote

their rings of integers respectively. Suppose that p is a nonzero prime ideal of OK and q1, · · · , qg
are all the distinct prime ideals of OL that lie above p. Take α ∈ L such that L = K(α), and let

f(T ) be an irreducible polynomial over K with f(α) = 0. Factor f(x) into the product f =
h
∏

i=1

fi

of irreducible polynomials with coefficients in Kp. Then, we have g = h. By changing the order

of f1, · · · , fg, we obtain isomorphisms of fields over Kp,

Kp[T ]/((fi(T ))) ∼= Lqi
, T → α, 1 ≤ i ≤ g.

Next theorem is an immediate consequence of Chebotarev’s density theorem. Since we

cannot find the proof in any literature, we give one for the sake of completeness.

Theorem 2.2 Let L/K be a cyclic extension of number fields, then there are infinitely

many places of K which do not split in L.

Proof Denote G = Gal(L/K) and n = [L : K]. Let q be a nonzero prime of OL and

p = OK ∩ q. Indeed, there are only finitely many ramified nonzero prime ideals. Since we only

focus on the existence of infinitely many places of K which do not split in L, we get rid of these
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finitely many prime ideals. From now on, we can assume that p is unramified in L. Denote

P = {nonzero prime ideals of OK which is unramified in L}. Then we have a fact that p does

not split in L if and only if Gq = G, where Gq is the decomposition group of q. Since G is

cyclic, we choose a generator σ of G. Let S =
{

p ∈ P |
(L/K

p

)

= σ
}

, where
(L/K

·
)

is the Artin

symbol. Thus for each p ∈ S, p does not split in L. By density theorem, δ(S) = 1
n , where δ(S)

is the Dirichlet density of S. This means S consists of infinitely many elements.

Then we can investigate the irreducibility of the polynomials in the form of xm − d with

m ∈ Z+, d ∈ Q. At first we deal with a general case.

Theorem 2.3 Suppose that the polynomial f(x) = xm − d ∈ Q[x] is irreducible over the

cyclotomic field Q(ζm), d ∈ Q×. There are infinitely many prime places q of Q such that f(x)

is irreducible over Qq and over Fq.

Proof Let L be the splitting field of f(x) in C. Consider the finite extension L/Q(ζm).

Since f(x) is irreducible over Q(ζm), this is a cyclic extension of degree m. By Theorem 2.2,

there exists infinitely many prime places of Q(ζm) which do not split in L. We denote M the

set of all such prime places. For any q ∈ M , we factor f(x) into the product of irreducible

polynomials with coefficients in Q(ζm)q, i.e., f =
h
∏

i=1

fi. According to Theorem 2.1 and the

fact that q does not split in L, we know that h = 1, which means that f(x) is irreducible over

Q(ζm)q.

Let q be the prime place of Q which lies under q. It is immediate to know that Qq is a

subfield of Q(ζm)q. Since f(x) is irreducible over Q(ζm)q, then is also irreducible over Qq.

Set d = b
c , (b, c) = 1, b, c ∈ Z, c 6= 0. We choose q ∈ M such that q∩Q = (q) and (q, b, c) = 1.

We note that there are infinitely many non-zero prime ideals q satisfying this choice due to

the prime factorizations of b and c. If f(x) is reducible over Fq, so is cf(x). Then by Hensel’s

Lemma, cf(x) is also reducible over Zq[x] and then over Qq[x]. This means f(x) is reducible

over Qq, which leads a contradiction.

It may not be easy to determine whether a polynomial in the form of xm − d is irreducible

over Q(ζm) or not. However, when m is odd, we can just consider this problem over Q. Let us

recall a result in [7] which is needed in the proof of Lemma 2.2.

Lemma 2.1 (see [7]) If m is odd and the polynomial xm − d, d ∈ Q× has no root in Q,

then it has no root in Q(ζm).

Lemma 2.2 If m is odd and the polynomial xm − d, d ∈ Q× is irreducible over Q, then it

is also irreducible over Q(ζm).

Proof Let α = m
√
d ∈ R. Firstly we show that if 1 ≤ i < m, then αi 6∈ Q(ζm). Since xm−d

is irreducible over Q, then {1, α, α2, · · · , αm−1} is a basis of the field extension Q(α)/Q, and

hence they are linearly independent over Q. Thus αi 6∈ Q. For the polynomial xm − di, since

its unique real root
n
√
di = αi is not in Q, αi 6∈ Q(ζm) by Lemma 2.1.
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It is clear that the splitting field of xm−d is Q(ζm)(α). Assume that xm−d is reducible over

Q(ζm), then the degree of the minimal polynomial f(x) of α over Q(ζm) is less than m, namely,

deg f(x) = h. So f(x) can be written in the form of f(x) = (x− α)(x − ζi1mα) · · · (x − ζ
ih−1

m α),

1 ≤ ij < m, 1 ≤ j ≤ h − 1. Hence the constant term of f(x) is αhζi1m · · · ζih−1

m ∈ Q(ζm). This

means αh ∈ Q(ζm), which leads a contradiction. Therefore xm − d is irreducible over Q(ζm).

Combining Lemma 2.2 and Theorem 2.3, we get the following result.

Theorem 2.4 If m is odd and the polynomial f(x) = xm − d, d ∈ Q× is irreducible over

Q, then there are infinitely many places q of Q such that f(x) is irreducible over Qq and then

over Fq.

Now we can get an equivalent statement, which can be seen as a kind of local-global principle.

Theorem 2.5 Assume that m is odd and f(x) = xm − d, d ∈ Q×. Then f(x) is reducible

over Q if and only if f(x) is reducible over Fq except finitely many places q of Q.

Remark 2.1 There do exist polynomials f(x) = xm − d with m being even such that f(x)

is irreducible over Q but is reducible over every Fq, where q runs through all prime places of

Q. For example, x4 + 1 and x10 − 5 are the cases.

3 A Construction of Quadratic Fields (Q(
√
D),Q(

√
D + n))

In this section, we discuss how we can construct a pair of fields (Q(
√
D),Q(

√
D + n))

whose class numbers can be divided by 3. Recall that Hilbert class field H of a number field

K is the maximal unramified abelian extension of K, and there is a canonical isomorphic

Gal(H/K) ∼= ClK . It is clear that the class number of K can be divided by 3 if and only if

there exists a cyclic unramified cubic extension of K. It is a hint for a construction. Kishi

and Miyake [4] give the following characterization of all quadratic fields which admits a cyclic

unramified cubic extension.

Theorem 3.1 (see [4]) Choose (u,w) ∈ Z× Z, and let g(Z) = Z3 − uwZ − u2. If

(1) d = 4uw3 − 27u2 is not a square in Z;

(2) u and w are relatively prime;

(3) g(Z) is irreducible over Q;

(4) one of the following conditions holds: (3.1)

(I) 3 ∤ w;

(II) 3 | w, uw 6≡ 3(mod 9), u ≡ w ± 1(mod 9);

(III) 3 | w, uw ≡ 3(mod 9), u ≡ w ± 1(mod 27);

then the normal closure of Q(θ), where θ is a root of g(Z), is a cyclic, cubic, unramified

extension of Q(
√
d); in particular, then K = Q(

√
d) has class number divisible by 3. Conversely,

every quadratic number field K with class number divisible by 3 and every unramified, cyclic,

cubic extension of K is given by a suitable choice of integers u and w.
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Remark 3.1 The condition (1) in (3.1) is critical. The reason why we develop the story of

irreducibility of xm − d in Section 2 is to serve for the condition (3) in (3.1).

To achieve our goals, a natural idea is to find integer pairs (u1, w1) and (u2, w2) such that

both of them satisfy all the conditions in (3.1), and

u2w
3
2 − 27u2

2 = a2(4u1w
3
1 − 27u2

1 + nb2) for some a, b ∈ Q \ {0}. (3.2)

If so, let D = 1
b2 (4u1w

3
1 − 27u2

1), then D + n = 1
a2 (4u2w

3
2 − 27u2

2). Thus by Theorem 3.1,

the class numbers of Q(
√
D) and Q(

√
D + n) are divisible by 3.

In order to find such integer pairs (u1, w1) and (u2, w2), we consider the integer pairs (x1, y1)

and (x2, y2) such that

4y32 − 27x2
2 = c2(4y31 − 27x2

1 + n) for some c ∈ Z \ {0}. (3.3)

If so, let u1 = x2
1, w1 = y1 and u2 =

x2

2

k3 , w2 = y2

k for some k ∈ Z \ {0}. Then we have











4u1w
3
1 − 27u2

1 = x2
1(4y

3
1 − 27x2

2),

4u2w
3
2 − 27u2

2 =
x2
2

k6
(4y32 − 27x2

2).
(3.4)

From (3.3)–(3.4), we get

4u2w
3
2 − 27u2

2 =
(x2ck

3

x1

)2

(4u1w
3
1 − 27u2

1 + nx2
1).

Thus we are back to the situation (3.2). Clearly we only need to find integer pairs (x1, y1)

and (x2, y2) satisfying equation (3.3). Furthermore, we mention that

Q(
√
D) = Q(

√

4u1w3
1 − 27u2

1 ) = Q(
√

4y31 − 27x2
1 ),

Q(
√
D + n) = Q(

√

4u2w3
2 − 27u2

2 ) = Q(
√

4y32 − 27x2
2 ).

3.1 First step

Now we start to construct some solutions for equation (3.3). Assume that there exist integer

pairs (x1, y1) and (x2, y2) satisfying equation (3.3) and let

y1 = t2, y2 = ky1, where t, k ∈ Z. (3.5)

It follows that

27(x2 + cx1)(x2 − cx1) = 4(k3 − c2)t6 − nc2. (3.6)

Put

k = n+ 4, c = 2k. (3.7)
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One can check that 4(k3 − c2) = nc2. Then we can simplify the right-hand side of (3.6)

27(x2 + cx1)(x2 − cx1) = 4(k3 − c2)t6 − nc2

= nc2(t6 − 1)

= nc2(t3 + 1)(t3 − 1).

In order to ensure this equality holds, we can put

nck(p− 1)

lp
(t3 + 1) = 3(x2 + cx1),

clp

k(p− 1)
(t3 − 1) = 9(x2 − cx1),

here p is a prime number and l is a positive integer. We will explain why these two integers are

introduced. Solving this equation by regarding x1 and x2 as variables, we get

x1 =
1

18lkp(p− 1)
[3nk2(p− 1)2(t3 + 1)− l2p2(t3 − 1)],

x2 =
c

18lkp(p− 1)
[3nk2(p− 1)2(t3 + 1) + l2p2(t3 − 1)].

(3.8)

It is clear that (3.3) holds if we set (x1, y1) and (x2, y2) as in (3.5) and (3.8). We note that we

can ensure x1, x2 are integers by choosing proper integer t. This will be discussed in Theorem

3.2.

Now regarding 4y31 − 27x2
1 as a polynomial in t, i.e., let

f(t) = 4y31 − 27x2
1 = [(2 + 3

√
3α)t3 + 3

√
3β][(2 − 3

√
3α)t3 − 3

√
3β],

where

α =
3nk2(p− 1)2 − l2p2

18lk(p− 1)p
,

β =
3nk2(p− 1)2 + l2p2

18lk(p− 1)p
.

It is clear that the leading coefficient of f(t) is 4 − 27α2. Since α ∈ Q, 4 − 27α2 6= 0. It is

clear that there exist infinitely many integers t0 such that f(t0) > 0 (resp. f(t0) < 0) when

4− 27α2 > 0 (resp. 4− 27α2 < 0). Based on this fact, we always can choose proper t to ensure

that both quadratic fields Q(
√

f(t)) and Q(
√

f(t) + n) are real or imaginary. For the imaginary

case, we should require 4 − 27α2 < 0. It is easy to be achieved by choosing l > (4
√
3 + 3n)k.

Now we consider the real case. We realize that 4 − 27α2 > 0 if and only if |α| < 2
3
√
3
. It is

equivalent to |3nk2(p−1)2−l2p2|
lk(p−1)p < 4

√
3
(

recall that 18α = 3nk2(p−1)2−l2p2

lk(p−1)p

)

. The following lemma

asserts that the condition 4 − 27α2 > 0 can be achieved as well. This is the reason why we

introduce the integer l above.

Lemma 3.1 Let n, k, p be positive integers such that p > 3[
√
3nk]. Then there exists integer

l such that
|3nk2(p−1)2−l2p2|

lk(p−1)p < 4
√
3.
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Proof Let l = [
√
3nk], and d =

√
3nk − [

√
3nk]. Note that 0 ≤ d < 1. We have

| 3nk2(p− 1)2 − l2p2 |
lk(p− 1)p

=
| (l + d)2(p− 1)2 − l2p2 |

lk(p− 1)p

=
| (2l + d)d(p− 1)2 − (2p− 1)l2 |

lk(p− 1)p

<
(2l + d)d

lk

p− 1

p
+

(2p− 1)l

k(p− 1)p

<
(2l + 1)

lk

p− 1

p
+

2p− 1

p− 1

l

pk

<
3

k
+ 3

l

3lk
(by 0 <

2p− 1

p− 1
< 3 and p > 3l)

<
4

k

< 4
√
3.

3.2 Second step

Set (x1, y1) and (x2, y2) as in (3.5) and (3.8). Let u1 = x2
1, w1 = y1, u2 =

x2

2

k3 and w2 = y2

k .

Here we mention that w1 = w2 = t2. Consider the polynomials

F1(Z) = Z3 − u1wZ − u2
1, F2(Z) = Z3 − u2wZ − u2

2,

respectively. We will show that (u1, w) and (u2, w) satisfy all the conditions in Theorem 3.1

under a suitable choice of t. If so, let

D = 4y31 − 27x2
1 =

1

x2
1

(4u1w
3
1 − 27u2

1),

then

D + n =
4y32 − 27x2

2

c2
=

k6

x2
2c

2
(4u2w

3
2 − 27u2

2).

Thus we get two quadratic fields Q(
√
D) and Q(

√
D + n) whose class numbers are divisible by

3.

Now the aim is to ensure the polynomials F (Z) andG(Z) are irreducible by choosing suitable

t. Recall

α =
3nk2(p− 1)2 − l2p2

18lk(p− 1)p
,

β =
3nk2(p− 1)2 + l2p2

18lk(p− 1)p
,

and let

f1(Z) = Z3 − β4,

f2(Z) = Z3 − 16

k2
α4.

We require that p is a prime number and is coprime to 6nkl. Then it is easy to check that

vp(β
4) = vp

(

16
k2α

4
)

= −4. So β4 /∈ Q3, 16
k2α

4 /∈ Q3, which means f1(Z) and f2(Z) are irreducible
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over Q. By Theorem 2.4, there exist two primes q1 and q2 (not necessary to be different) such

that f1(Z) is irreducible over Fq1 and f2(Z) is irreducible over Fq2 , respectively. Thus we get

the following lemma.

Lemma 3.2 If t ≡ 0(mod q1q2), then F1(Z) and F2(Z) are both irreducible over Q.

Proof Since w = t2 in the setting above and t ≡ 0(mod q1q2), it is clear that w ≡ 0(mod q1).

From (3.8), we can see that u1 ≡ 3nk2(p−1)2+l2p2

18lk(p−1)p (mod q1), then F1(Z) ≡ f1(Z)(mod q1), which

means F1(Z) is irreducible over Fq1 . Hence we know that F1(Z) is irreducible over Q. The

irreducibility of F2(Z) follows in a similar way.

Remark 3.2 In the proof of Lemma 3.2 above, we abuse the notation of congruence and

hence consider the congruence of a rational number m
n modulus prime p. Indeed if we restrict

n not having any p factor, 1
n can be viewed as the reciprocal (or inverse) of n modulus p and

it still makes sense under this restriction.

For convenience, recall that

k = n+ 4, y1 = t2, y2 = ky1,

x1 =
1

18lkp(p− 1)
[3nk2(p− 1)2(t3 + 1)− l2p2(t3 − 1)],

x2 =
c

18lkp(p− 1)
[3nk2(p− 1)2(t3 + 1) + l2p2(t3 − 1)],

u1 = x2
1, u2 =

x2
2

k3
,

w1 = w2 = t2,

D = 4y31 − 27x2
1 =

1

x2
1

(4u1w
3
1 − 27u2

1),

D + n =
4y32 − 27x2

2

c2
=

k6

x2
2c

2
(4u2w

3
2 − 27u2

2)

and denote g = 18k2(p− 1)(3nk2(p− 1)2 + l2p2)|(3nk2(p− 1)2 − l2p2)|. By Theorem 2.3, there

exist infinitely many primes q such that −3 is quadratic non-residue in Fq. Choose such a prime

number q0. Applying Theorem 3.1, we have

Theorem 3.2 Choose a prime number p such that p ≡ 1(mod 18nlk) and let

t ≡ 1(mod g),

t ≡ −1(mod p),

t ≡ 0(mod q0q1q2),

(3.9)

here q0 is prime to integers g, p, q2, q2. Then pairs (u1, w1) and (u2, w2) satisfy the conditions

of Theorem 3.1, so

Q(
√

4u1w3
1 − 27u2

1) = Q(
√
D),

Q(
√

4u2w3
2 − 27u2

2) = Q(
√
D + n)
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both admit an unramified cyclic cubic extension. In particular, their class numbers are both

divisible by 3.

Remark 3.3 We should ensure g, p, q0, q1, q2 are all coprime mutually. We claim that this

can be done. Firstly, once n is given, so k = n + 4 and then we can get l as in Lemma 3.1.

According to Dirichlet’s Prime Number theorem, we can choose a prime number p such that

• p ≡ 1(mod 18lnk) and

• p > 3[
√
3nk].

Then one can check that p ∤ g. Finally, since there exist infinitely many qi satisfying corre-

sponding property, i = 0, 1, 2, we can choose q0, q1, q2 in turn such that g, p, q0, q1, q2 are coprime

mutually. If so, by Chinese Remainder theorem, there exist infinitely many integers t satisfying

the congruence conditions (3.9).

Proof According to the congruence conditions (3.9), one can check that x1, x2 are integers,

and k2 | x2. At first we show x1, x2 are integers. Indeed, since p ∤ 18lk(p − 1), it suffices to

show that

p | 3nk2(p− 1)2(t3 + 1)± l2p2(t3 − 1),

18lk(p− 1) | 3nk2(p− 1)2(t3 + 1)± l2p2(t3 − 1).

Due to t ≡ −1(mod p), we have p | t3 + 1, then

p | 3nk2(p− 1)2(t3 + 1),

p | 3nk2(p− 1)2(t3 + 1)± l2p2(t3 − 1).

Since 18l | (p−1), we have 18lk(p−1) | 3nk2(p−1)2(t3+1). Because t ≡ 1(mod 18k(p−1)),

we have 18k(p− 1) | t3 − 1 and then 18lk(p− 1) | l2p2(t3 − 1). Now it is clear that

18lk(p− 1) | 3nk2(p− 1)2(t3 + 1)± l2p2(t3 − 1).

Now we turn to check that k2 | x2. Since a = 2k, it suffices to show that 9lp(p − 1)k2 |
3nk2(p− 1)2(t3 +1) and 9lp(p− 1)k2 | l2p2(t3 − 1). We realize that p | 3nk2(p− 1)2(t3 +1) and

p | l2p2(t3−1) have been proved already. Since 9l | (p−1), we get 9l(p−1)k2 | 3nk2(p−1)2(t3+1).

Because t ≡ 1(mod 9l(p− 1)k2), we have 9l(p− 1)k2 | l2p2(t3 − 1).

Moreover, we have

(t, 3nk2(p− 1)2 + l2p2) = 1,

(t, 3nk2(p− 1)2 − l2p2) = 1.

We clarify that the conditions (3.1) in Theorem 3.1 are satisfied in the settings of u1, u2, w1 and

w2 above. We note that (t, a) = 1. Then we have (w1, u1) = 1 and (w2, u2) = 1 immediately.

By the assumption t ≡ 0(mod q0q1q2), it implies that t ≡ 0(mod q1q2). By Lemma 3.2, we

know that F1(Z) and F2(Z) are both irreducible. It is clear that conditions (2) and (3) in (3.1)
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are fulfilled. Then we check that the condition (I) in (3.1) is satisfied. We recall t ≡ 1(mod g),

and it implies (3, t) = 1. Then 3 ∤ w1 and 3 ∤ w2 follow by w1 = w2 = t2.

It remains to show that condition (1) in Theorem 3.1 is satisfied as well, namely, 4u1w
3−27u2

1

and 4u2w
3 − 27u2

2 are not squares in Z. By the choice of q0, 4u1w
3 − 27u2

1 ≡ −27u2
1 6≡

m2(mod q0), here m can be any integer. This means 4u1w
3−27u2

1 is not a square. Similarly we

can show that 4u2w
3 − 27u2

2 is not a square as well. By Theorem 3.1, Q(
√
D) and Q(

√
D + n)

admit an unramified cyclic cubic extension, respectively.

4 The Proof of Theorem 1.1

To show that our construction can generate infinitely many pairs (Q(
√
D), Q(

√
D + n))

with their class numbers being divisible by 3, we recall a celebrated result on integral points by

Siegel [6]. Let MQ be the set of all standard absolute values on Q.

Theorem 4.1 (see [6]) Let S be a finite set such that {∞} ⊂ S ⊂ MQ and f(x) ∈ Q[x] be

a polynomial of degree d ≥ 3 with distinct roots in C. Then

♯{(x, y) ∈ RS × RS | y2 = f(x)} < ∞,

where RS is the ring of S-integers of Q, i.e., RS = {x ∈ Q | vp(x) ≥ 0 for all p ∈ MQ\S}.

Lemma 4.1 Suppose that f(x) ∈ Q[x] is a polynomial of degree d ≥ 3 with distinct roots

in C, and T ⊂ Z consists of infinitely many integers and put E = {Q(
√

f(t)) | t ∈ T }, then E

contains infinitely quadratic fields.

Proof We assume that f(x) ∈ Z[x]. Otherwise we choose an integer d such that d2f(x) ∈
Z[x] and consider the polynomial d2f(x) instead since Q(

√

f(t)) = Q(
√

d2f(t)). Because T

is a countable set, we can denote this ordered set by T = {ti | i ∈ I} with a countable set I.

Assume E is a finite set, then there exist finitely many primes p1, p2, · · · , pN (N ∈ Z+) such

that for any i ∈ I, we have

f(ti) =
(

N
∏

j=1

p
hij

j

)

a2i , hij ∈ {0, 1}, ai ∈ Z.

Furthermore, there exists a integer d =
N
∏

j=1

p
hij

j for a specific i such that there are infinitely

many i′ ∈ I,

f(ti′) = da2i′ , ai′ ∈ Z.

Let S = {∞}. Then RS = Z. Consider the set

A =
{

(x, y) ∈ Z× Z | y2 =
f(x)

d

}

.

It follows that there exist infinitely many pairs of (ti′ , ai′) in A. But by Siegel’s theorem 4.1, A

is a finite set, which leads to a contradiction. Hence E is a set with infinite many elements.
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Proof of Theorem 1.1 For the real case, we choose a proper l in Lemma 3.1. Set

B =
( 3nk2(p− 1)2 + l2p2

4
√
3lkp(p− 1)− 3nk2(p− 1)2 + l2p2

)
1

3

,

one can check that 4w3
1 − 27u2

1 > 0 when t > B. This guarantees that

Q(
√

4y31 − 27x2
1) = Q(

√
D),

Q(
√

4y32 − 27x2
2) = Q(

√
D + n)

are real quadratic fields.

For the imaginary case, choose an integer l > (4
√
3+3n)k. When t > 0, we have 4y32 −27x2

2

< 0. This means the quadratic fields

Q(
√

4y31 − 27x2
1) = Q(

√
D),

Q(
√

4y32 − 27x2
2) = Q(

√
D + n)

are imaginary.

Let

T1 = {t ∈ Z | t satisfies the condition (3.9) in Theorem 3.2 and t > B},
T2 = {t ∈ Z | t satisfies the condition (3.9) in Theorem 3.2 and t > 0},

T =

{

T1 for the real case,

T2 for the imaginary case.

Chinese Remainder theorem implies that the set T consists of infinite elements. Let f(t) =

4y31 − 27x2
1 and E = {Q(

√

f(t)) | t ∈ T }.
Since f(t) has no repeated roots which is in the form of [(2+3

√
3b)t3+3

√
3c][(2−3

√
3b)t3−

3
√
3c] with α, β ∈ Q×, Lemma 4.1 implies that E contains infinitely many quadratic fields.

Moreover, let Dt = f(t), t ∈ T , Theorem 3.2 implies that 3 | h(Q(
√
Dt)), 3 | h(Q(

√
Dt + n)).

Then we complete our proof.
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