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Abstract In this paper, the authors study ground states for a class of K-component

coupled nonlinear Schrödinger equations with a sign-changing potential which is periodic

or asymptotically periodic. The resulting problem engages three major difficulties: One is

that the associated functional is strongly indefinite, the second is that, due to the asymp-

totically periodic assumption, the associated functional loses the ZN -translation invariance,

many effective methods for periodic problems cannot be applied to asymptotically periodic

ones. The third difficulty is singular potential µi

|x|2
, which does not belong to the Kato’s

class. These enable them to develop a direct approach and new tricks to overcome the

difficulties caused by singularity and the dropping of periodicity of potential.
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Non-Nehari manifold method.
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1 Introduction

In this paper, we study standing waves for the following system of time-dependent nonlinear

Schrödinger equations:





i
∂φ1

∂t
+∆φ1 +

(
V1(x)−

µ1

|x|2
+ ω1

)
φ1 = f1(x,Φ),

i
∂φ2

∂t
+∆φ2 +

(
V2(x)−

µ2

|x|2
+ ω2

)
φ2 = f2(x,Φ),

· · · · · ·

i
∂φK

∂t
+∆φK +

(
VK(x)−

µK

|x|2
+ ωK

)
φK = fK(x,Φ),

(1.1)
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where Φ = (φ1, φ2, · · · , φK), µi (i = 1, 2, · · · ,K) are non-negative constants. φj (t, x)(j =

1, 2, · · · ,K) are the complex valued envelope functions. Suppose that f(x, eiθΦ) = f(x,Φ) for

θ ∈ [0, 2π], x ∈ R
N \ {0}, N ≥ 3. We will look for standing waves of the form

φj(t, x) = e−iωjtuj(x), j = 1, 2, · · · ,K,

which propagate without changing their shape and thus have a soliton-like behavior. It is

well known that solutions of (1.1) are related to the solitary waves of the Gross-Pitaevskii

equations, which have applications in many physical models, such as in nonlinear optics and in

Bose-Einstein condensates for multi-species condensates (see [4, 26]) and the references therein.

In general, the above coupled nonlinear Schrödinger system leads to the elliptic system





−∆u1 +
(
V1(x)−

µ1

|x|2

)
u1 = f1(x, u) in R

N ,

−∆u2 +
(
V2(x)−

µ2

|x|2

)
u2 = f2(x, u) in R

N ,

· · · · · ·

−∆uK +
(
VK(x) −

µK

|x|2

)
uK = fK(x, u) in R

N ,

(1.2)

where N ≥ 3, fi(x, u) = ∂ui
F (x, u) with u = (u1, u2, · · · , uK) : RN → R

K .

When µi = 0 (i = 1, 2, · · · ,K), (1.2) reduces to






−∆u1 + V1(x)u1 = f1(x, u) in R
N ,

−∆u2 + V2(x)u2 = f2(x, u) in R
N ,

· · · · · ·
−∆uK + VK(x)uK = fK(x, u) in R

N .

(1.3)

In the past fifteen years, the two-coupled case of (1.3) (i.e., k = 2) has been studied extensively

in the literature [5, 11–12, 14–15, 17, 21–25, 28–29, 37–40] and the references therein. By using

variational methods, Lyapunov-Schmidt reduction methods or bifurcation methods, various

theorems, about the existence, multiplicity and qualitative properties of nontrivial solutions of

the two-coupled elliptic systems similar to (1.3), have been established in the literature under

various assumptions. However, there are very few works about k ≥ 3 in the context [18–19,

35–36]. It is worth to mention that most of them focused on the case that V is non-negative

constant or function, compared to this case, it is more difficult to consider the case that V is a

sign-changing function to which the energy functional corresponding has the strongly indefinite

structure. Very recently, Mederski [20] considered (1.3) and obtained the existence of ground

state solution for the case of periodic potential by applying a new linking-type result involving

the Nehari-Pankov manifold.

For µi 6= 0, µi

|x|2 is called inverse square potential or Hardy potential which arises in many

other areas such as quantum mechanics, nuclear, molecular physics and quantum cosmology.

From the mathematical point of view, the inverse square potential is critical: Indeed, it has the

same homogeneity as the Laplacian and does not belong to the Kato’s class, hence it cannot be

regarded as a lower order perturbation term of second order operator, which may result in the

change of the essential spectrum of the operator. Moreover, any nontrivial solutions of system

(1.2) are singular at x = 0 if µ 6= 0. Since the appearance of inverse square potential, compared

with system (1.3), system (1.2) becomes more complicated to deal with and therefore we have
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to face more difficulties. As far as we know, it seems that there are no existence results of

solution for system (1.2), hence, it makes sense for us to investigate system (1.2) thoroughly.

Due to the special physical importance and the above facts, in the present paper, we will study

the existence and some properties of solutions of system (1.2).

As a motivation, we recall that there are many of articles concerning the nonlinear Schrödinger

equations with the inverse square potentials

−△u+
(
V (x)−

µ

|x|2

)
u = f(x, u), (1.4)

see for example, [1–4, 6–9, 16, 27–28] and the references therein. These authors studied the

existence of positive solutions, nodal solutions, multiple solutions and ground state solutions

under suitable assumptions. Most of them focused on the case that V is non-negative constant or

function in which the energy functional corresponding to (1.4) has the mountain pass structure.

Only very recently, Guo and Mederski [10] studied the case that V is a general periodic function,

possibly sign-changing, and the corresponding energy functional may be strongly indefinite.

Combining Nehari manifold technique (see [22–23, 29]) and linking argument, they proved the

existence of ground state solutions for the case µ ≥ 0 and the non-existence of ground state

solutions was explored for the case µi < 0. Furthermore, some asymptotical behavior of ground

state solutions are derived.

Inspired by the aforementioned works, we are going to consider two situations in the present

paper: Periodic case and asymptotically periodic case. Our aim is to find ground states for

(1.2) on some suitable manifold, one difficulty is that the associated functional is strongly indef-

inite, i.e., its quadratic part is respectively coercive and anti-coercive in infinitely dimensional

subspace of the energy space. To tackle this difficulty, we adapt the properties of the spectrum

of the corresponding opertor which had been analysed in [40], it is convenient to decompose

the functional space L2 into a direct sum of two subspaces E+ and E− (E is defined in Section

2), one of which is infinite dimensional.

Another difficulty is lack of periodic assumption on potential. As a result, neither the

periodic translation technique nor the compact inclusion method can be adapted. In this

case, the functional loses the Z
N -translation invariance. For the above reasons, many effective

methods for periodic problems cannot be applied to asymptotically periodic ones. To the best

of our knowledge, there are no results on the existence of ground state solutions to (1.2) when Vi
is not periodic. In this paper, we find new tricks to overcome the difficulties caused by getting

rid of periodicity condition.

The last difficulty is singular potential µ
|x|2 , which does not belong to the Kato’s class. This

enables us to develop a direct approach and new tricks to overcome the difficulties caused by

singularity. We find a new method to overcome the difficulty caused by the non-compactness

of the embedding H1(RN ) →֒ L2(BR(0), |x|
−2dx). Our treatments presented in the paper differ

from those in [10] and other existing literature.

In this paper, we further develop the non-Nehari method in [32–33] which is completely

different from the one of Szulkin-Weth [31] and Mederski [20] to find ground state solution

of Nehari-Pankov type for (1.2). For the asymptotically periodic case, a nontrivial solution is

obtained by using a generalized linking theorem and comparing with a ground state solution

of the periodic problem associated with (1.2). More precisely, we will prove that system (1.2)

possesses a ground state solution via variational methods for sufficiently small µ ≥ 0, and

provide the comparison of the energy of ground state solutions for the case µ > 0 and µ = 0.
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Moreover, we also give the convergence property of ground state solutions as µ→ 0+.

To simplify notation, we set

µ = (µ1, µ2, · · · , µK), µ := min{µi}
K
i=1, µ := max{µi}

K
i=1.

For the sake of convenience, let E be the Hilbert spaces with an orthogonal decomposition

E = E− ⊕ E+, and let Iµ denote the energy functional of system (1.2), where E and Iµ will

be defined in Section 2. A ground state solution stands for a critical point being a minimizer

of Iµ on the Nehari-Pankov manifold introduced in [22–23],

Nµ := {u ∈ E \ E− : 〈I ′
µ(u), u〉 = 〈I ′

µ(u), w〉 = 0, ∀w ∈ E−},

the set Nµ is a natural constraint and it contains all nontrivial critical points, any ground state

solution is a nontrivial critical point with the least energy of Iµ.

Let l0 be a positive constant (l0 will be given later in (2.3)). Now, we are ready to state the

main results of the present paper as follows.

1.1 Periodic potential

(V1) For i = 1, 2, · · · ,K, Vi ∈ C(RN ) ∩ L∞(RN ) is ZN -periodic and

sup[σ(−∆+ Vi) ∩ (−∞, 0)] := Λi < 0 < Λi := inf[σ(−∆+ Vi) ∩ (0,∞)]

for all x ∈ R
N ;

(F1) fi : R
N ×R

K → R is measurable, ZN -periodic in x ∈ R
N and continuous in u ∈ R

K for

a.e. x ∈ R
N . Moreover f = (f1, f2, · · · , fK) = ∂uF , where F : RN × R

K → R is differentiable

with respect to the second variable u ∈ R
K and F (x, 0) = 0 for a.e. x ∈ R

N ;

(F2) there exist constants C > 0 and 2 < p < 2∗ = 2N
N−2 such that

|f(x, u)| ≤ C(1 + |u|p−1), ∀ (x, u) ∈ R
N × R

K ;

(F3) f(x, u) = o(u) as |u| → 0 uniformly in x ∈ R
N ;

(F4) lim
|u|→∞

|F (x,u)|
|u|2 = ∞ uniformly in x ∈ R

N ;

(F5) for all κ ≥ 0, u, v ∈ R
K ,

F (x, κu + v)− F (x, u) +
1− κ2

2
Fu(x, u) · u− κFu(x, u) · v ≥ 0;

(F6) ∂uF (x, ·) is of C
1 class for a.e. x ∈ R

N and there exist b1, b2 > 0 and 1 < q ≤ 2 such

that for all x ∈ R
N ,

f(x, u) · u− 2F (x, u) ≥

{
b1|u|2 for |u| ≤ 1,
b2|u|q for |u| > 1.

Theorem 1.1 Assume that (V1), (F1)–(F5) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2

4 l20, then

system (1.2) has a ground state, i.e., it has at least a solution uµ ∈ E such that Iµ(uµ) =

inf
Nµ

Iµ > 0.

Theorem 1.2 Assume that (V1), (F1)–(F5) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2

4 l20. Let

uµ be a ground state solution of Iµ and u0 be a ground state solution of I0. Then
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(i) there exist t > 0 and w ∈ E− such that tuµ + w ∈ N0 and

inf
N0

I0 ≤ inf
Nµ

Iµ +
µ

2

∫

RN

|tuµ + w|2

|x|2
dx;

(ii) there exist t > 0 and w ∈ E− such that tu0 + w ∈ Nµ and

inf
Nµ

Iµ ≤ inf
N0

I0 −
µ

2

∫

RN

|tu0 + w|2

|x|2
dx.

Theorem 1.3 Assume that (V1), (F1)–(F5) and (F6) are satisfied, let uµ be a ground state

solution of Iµ and u0 be a ground state solution of I0. Then

(i) there holds

lim
µ→0+

inf
Nµ

Iµ = inf
N0

I0;

(ii) for any sequence {µ(n)}, there exists a subsequence uµ(n) such that

lim
µ(n)→0+

uµ(n) = u0.

1.2 Asymptotically periodic potential

(V1’) Vi(x) = Ui(x) +Wi(x), i = 1, 2, · · · ,K, where Ui ∈ C(RN ) ∩ L∞(RN ) is ZN -periodic

and

sup[σ(−∆+ Ui) ∩ (−∞, 0)] := Λi < 0 < Λi := inf[σ(−∆+ Ui) ∩ (0,∞)]

for all x ∈ R
N , Wi ∈ C(RN ) and lim

|x|→∞
Wi(x) = 0. Moreover,

0 ≤ −Wi(x) ≤ sup
RN

[−Wi(x)]
K
i=1 ≤

min{Λi}Ki=1

2

[
1−

4µ

(N − 2)2l20

]
;

(F1’) fi(x, u) = gi(x, u)+hi(x, u), gi : R
N ×R

K → R is measurable, ZN -periodic in x ∈ R
N

and continuous in u ∈ R
K for a.e. x ∈ R

N , gi(x, u) = o(u) as |u| → 0, uniformly in x ∈ R
N ;

(F5’) ∂uG = (g1, g2, · · · , gK), where G satisfies that for all κ ≥ 0, u, v ∈ R
K ,

G(x, κu + v)−G(x, u) +
1− κ2

2
Gu(x, u) · u− κGu(x, u) · v ≥ 0.

Furthermore, ∂uH = (h1, h2, · · · , hK) and H satisfies that

0 ≤ hi(x, u) ≤ ai(x)(|u|
2 + |u|p),

where ai ∈ C(RN ), lim
|x|→∞

ai(x) = 0 (i = 1, 2, · · · ,K) and 2 < p < 2∗ = 2N
N−2 . Moreover,

H(x, u)−
K∑

i=1

Wi(x)u
2
i > 0, ∀(x, u) ∈ B1+

√
N (0)× R

K \ {0}.

Theorem 1.4 Assume that (V1’), (F1’), (F2)–(F4), (F5’) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2

4 l20, then system (1.2) has a ground state, i.e., it has at least a solution uµ ∈ E such that

Iµ(uµ) = inf
Nµ

Iµ > 0.
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Theorem 1.5 Assume that (V1’), (F1’), (F2)–(F4), (F5’) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2

4 l20 . Let uµ be a ground state solution of Iµ and u0 be a ground state solution of I0. Then

(i) there exist t > 0 and w ∈ E− such that tuµ + w ∈ N0 and

inf
N0

I0 ≤ inf
Nµ

Iµ +
µ

2

∫

RN

|tuµ + w|2

|x|2
dx;

(ii) there exist t > 0 and w ∈ E− such that tu0 + w ∈ Nµ and

inf
Nµ

Iµ ≤ inf
N0

I0 −
µ

2

∫

RN

|tu0 + w|2

|x|2
dx.

Theorem 1.6 Assume that (V1’), (F1’), (F2)–(F4), (F5’), (F6) are satisfied, let uµ be a

ground state solution of Iµ and u0 be a ground state solution of I0. Then

(i) there holds

lim
µ→0+

inf
Nµ

Iµ = inf
N0

I0;

(ii) for any sequence {µ(n)}, there exists a subsequence uµ(n) such that

lim
µ(n)→0+

uµ(n) = u0.

The present paper is organized as follows. Section 2 is dedicated to the variational form

associated with problem (1.2). We recall the abstract linking theorem in [13], which is going

to be used to prove the existence of solution in periodic case, as well as in the asymptotically

periodic case. Some preliminaries are introduced in Section 3. Section 4 is dedicated to the

periodic case. In order to do so, exploiting the profile of spectrum presented by the associated

operator, we decompose the space E in appropriate subspaces for the linking structure. Sub-

sequently, the requirements of the abstract result are verified: compactness, linking geometry

and boundedness of Cerami sequences for the functional associated with problem (1.2). Section

5 is dedicated to asymptotically periodic case. Our greatest challenge in the asymptotically

periodic case is the functional loses the Z
N -translation invariance, many effective methods for

periodic problems cannot be applied to asymptotically periodic ones.

2 Variational Structure

Let Ai = −∆ + Vi, here and in what follows i = 1, 2, · · · ,K. Then Ai are self-adjoint in

L2(RN ) with domain D(Ai) = H2(RN ). Let {Ei(λ) : −∞ ≤ λ ≤ ∞} and |Ai| be the spectral

family and the absolute value of Ai, respectively, and |Ai|
1
2 be the square root of Ai. Set

Ui = id − Ei(0) − Ei(0−). Then Ui commutes with Ai, |Ai| and |Ai|
1
2 , and Ai = Ui|Ai| is the

polar decomposition of Ai.

Let

Hi = D(|Ai|
1
2 ), H−

i = Ei(0)Hi, H+
i = [id− Ei(0)]Hi.

Define

〈u, v〉Hi
= (|Ai|

1
2u, |Ai|

1
2 v)L2 , ∀u, v ∈ Hi
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and the corresponding norm

‖u‖Hi
= ‖|Ai|

1
2u‖L2, u ∈ Hi.

For any u ∈ H , fixing i = 1, 2, · · · ,K, it is easy to see that

u = u−i + u+i , u−i := Ei(0)u ∈ H−
i , u+i := [id− Ei(0)]u ∈ H+

i ,

Aiu
−
i = −|Ai|ui, Aiu

+
i = |Ai|u

+
i , ∀u = u−i + u+i ∈ H ∩ D(Ai).

Since 0 6∈ σ(−∆+ Vi), the spectral theory asserts that we may find continuous projections P+
i

and P−
i of H1(RN ) onto H+

i and H−
i , respectively, such that H1(RN ) = H+

i ⊕H−
i , then

〈u, v〉Hi
=

∫

RN

〈∇P+
i (u),∇P+

i (v)〉 + Vi(x)〈P
+
i (u), P+

i (v)〉dx

−

∫

RN

〈∇P−
i (u),∇P−

i (v)〉+ Vi(x)〈P
−
i (u), P−

i (v)〉dx,

and norms are given by

‖u‖Hi
:= (〈u, u〉i)

1
2 .

Let

E+ : = H+
1 ×H+

2 × · · · ×H+
K ,

E− : = H−
1 ×H−

2 × · · · ×H−
K .

Note that any u ∈ E := H1(RN )K admits a unique decomposition u = u+ + u−, where

u+ = (P+
1 (u1), P

+
2 (u2), · · · , P

+
K (uK)) ∈ E+, u− = (P−

1 (u1), P
−
2 (u2), · · · , P

−
K (uK)) ∈ E−.

We introduce a new norm on E given by

‖u‖2 =
K∑

i=1

(‖P+
i (ui)‖

2
i + ‖P−

i (ui)‖
2
i ) =

K∑

i=1

‖ui‖
2
i .

Then

Iµ(u) =
1

2

K∑

i=1

∫

RN

(|∇ui|
2 + Ui(x)u

2
i )dx+

1

2

K∑

i=1

∫

RN

Wi(x)u
2
i dx

−
1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx

=
1

2

K∑

i=1

(‖P+
i (ui)‖

2
i − ‖P−

i (ui)‖
2
i ) +

1

2

K∑

i=1

∫

RN

Wi(x)u
2
i dx

−
1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx

=
1

2
(‖u+‖2 − ‖u−‖2) +

1

2

K∑

i=1

∫

RN

Wi(x)u
2
i dx
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−
1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx (2.1)

and

〈I ′
µ(u), v〉 =

K∑

i=1

∫

RN

(∇ui · ∇vi + (Ui(x) +Wi(x))uivi)dx

−
K∑

i=1

∫

RN

µiui · vi
|x|2

dx−

∫

RN

f(x, u) · vdx. (2.2)

Our hypotheses imply that Iµ ∈ C1(E,R) and a standard argument shows that critical points

of Iµ are solutions of (1.2).

Lemma 2.1 E is continuously embedded in Lq(RN ,RK) and compactly embedded in

L
q′

loc(R
N ,RK), where 2 ≤ q ≤ 2∗, 2 ≤ q′ < 2∗, 2∗ is defined in (F2).

By Lemma 2.1, there exist positive constants l0, l1 such that

l0‖z‖H1 ≤ ‖z‖ ≤ l1‖z‖H1 for all z ∈ E. (2.3)

Observe that, in view of the Hardy inequality

(N − 2)2

4

∫

RN

u2i
|x|2

dx ≤

∫

RN

|∇ui|
2dx for all ui ∈ Hi,

then we have

(N − 2)2

4

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx ≤ µ

K∑

i=1

∫

RN

|∇ui|
2dx

≤ µ

K∑

i=1

∫

RN

(|∇ui|
2 + |ui|

2)dx ≤
µ

l20
‖u‖2. (2.4)

To get the ground state solutions of (1.2), we define the generalized Nehari manifold

Nµ := {u ∈ E \ E− : 〈I ′
µ(u), u〉 = 〈I ′

µ(u), w〉 = 0, ∀w ∈ E−}. (2.5)

This type of manifold was first introduced by Pankov [22–23]. As is well known that if uµ 6= 0 is

a critical point of Iµ, then uµ ∈ Nµ. The ground state solution will be obtained as a nontrivial

critical point of Iµ in Nµ. The next section will be used to get such points.

3 Preliminaries

Lemma 3.1 (see [13]) Let X be a real Hilbert space, X = X− ⊕X+ and X− ⊥ X+, and

let ϕ ∈ C1(X,R) be of the form

ϕ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− ψ(u), u = u− + u+ ∈ X− ⊕X+.

Suppose that the following assumptions are satisfied:

(A1) ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-continuous;



Ground States of K-component Coupled Nonlinear Schrödinger Equations 327

(A2) ψ′ is weakly sequentially continuous;

(A3) there exist r > ρ > 0, e ∈ X+ with ‖e‖ = 1 such that

κ := inf ϕ(S+
ρ ) > supϕ(∂Q),

where

S+
ρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {v + se : v ∈ X−, s ≥ 0, ‖v + se‖ ≤ r}.

Then for some c ∈ [κ, supϕ(Q)], there exists a sequence {un} ⊂ X satisfying

ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0.

Set

Fµ(u) =
1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx+

∫

RN

F (x, u)dx.

Employing a standard argument, one can check easily the following lemma.

Lemma 3.2 Assume that (V1’), (F1’) and (F2)–(F4), (F5’) are satisfied, then Fµ is non-

negative, weakly sequentially lower semicontinuous, and F ′
µ is weakly sequentially continuous.

Lemma 3.3 Assume that (V1’), (F1’) and (F2)–(F4), (F5’) are satisfied. Then for all

κ ≥ 0, u ∈ E, ζ = (ζ1, ζ2, · · · , ζK) ∈ E−,

Iµ(u) ≥ Iµ(κu+ ζ) +
1

2
‖ζ‖2 −

1

2

K∑

i=1

∫

RN

Wi(x)ζ
2
i dx

+
µ

2

∫

RN

|ζ|2

|x|2
dx+

1− κ2

2
〈I ′

µ(u), u〉 − κ〈I ′
µ(u), ζ〉. (3.1)

Proof From (2.1)–(2.2) and (F5’) we have

Iµ(u)− Iµ(κu+ ζ) +
1

2

K∑

i=1

∫

RN

Wi(x)ζ
2
i dx

=
1

2
‖ζ‖2 +

1

2

K∑

i=1

∫

RN

µiζ
2
i

|x|2
dx+

1− κ2

2
(‖u+‖2 − ‖u−‖2)

−

∫

RN

[F (x, u)− F (x, κu+ ζ)]dx + κ(u, ζ)

=
1

2
‖ζ‖2 +

1− κ2

2
〈I ′

µ(u), u〉 − κ〈I ′
µ(u), ζ〉

+

∫

RN

[1− κ2

2
Fu(x, u) · u− κFu(x, u) · ζ

]
dx

+

∫

RN

[F (x, κu + ζ)− F (x, u)]dx+
µ

2

∫

RN

|ζ|2

|x|2
dx

≥
1

2
‖ζ‖2 +

1− κ2

2
〈I ′

µ(u), u〉 − κ〈I ′
µ(u), ζ〉, ∀κ ≥ 0, u ∈ E, ζ ∈ E−.

Using Lemma 3.3, some important corollaries are given as follows, the proof process will be

omitted.
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Corollary 3.1 Assume that (V1’), (F1’) and (F2)–(F4), (F5’) are satisfied. Then for

u ∈ Nµ, we have

Iµ(u) ≥ Iµ(κu+ ζ) +
1

2
‖ζ‖2 +

µ

2

∫

RN

|ζ|2

|x|2
dx−

1

2

K∑

i=1

∫

RN

Wi(x)ζ
2
i dx, ∀κ ≥ 0, ζ ∈ E−.

Corollary 3.2 Assume that (V1’), (F1’) and (F2)–(F4), (F5’) are satisfied. Then for all

u ∈ E, κ ≥ 0,

Iµ(u) ≥
κ2

2
‖u‖2 +

1− κ2

2
〈I ′

µ(u), u〉+ κ2〈I ′
µ(u), u

−〉 −
∫

RN

F (x, κu+)dx

+
κ2

2

K∑

i=1

∫

RN

Wi(x)[(u
+
i )

2 − (u−i )
2]dx−

µκ2

2

∫

RN

|u+|2 − |u−|2

|x|2
dx. (3.2)

Lemma 3.4 Assume that (V1’), (F1’) and (F2)–(F4), (F5’) are satisfied. Then

(i) there exists ρ > 0 such that

mµ := inf
Nµ

Iµ ≥ Λµ := inf{Iµ(u) : u ∈ E+, ‖u‖ = ρ} > 0;

(ii) ‖u+‖ ≥ max{‖u−‖,
√
2mµ} for all u ∈ Nµ.

Proof Set γ0 = sup
RN

[−Wi(x)]
K
i=1, Λ0 = min{Λi}

K
i=1. It follows from (V1’) that

Λ0‖u‖
2
2 ≤ ‖u‖2, ∀u ∈ E+.

By (V1’) and (F2), there exist p ∈ (2, 2∗) and C1 > 0 such that

F (x, u) ≤
[Λ0

4

(
1−

4µ

(N − 2)2l20

)
−
γ0

2

]
|u|2 + C1|u|

p, ∀u ∈ R
K .

From Corollary 3.1, we have for u ∈ Nµ,

Iµ(u) =
1

2
‖u‖2 +

1

2

K∑

i=1

∫

RN

Wi(x)u
2
i dx−

1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx

≥
1

2
‖u‖2 −

γ0

2
‖u‖22 −

2µ

(N − 2)2l20
‖u‖2

−
[Λ0

4

(
1−

4µ

(N − 2)2l20

)
−
γ0

2

]
‖u‖22 − C1‖u‖

p
p

≥
1

4

(
1−

4µ

(N − 2)2l20

)
‖u‖2 − C2‖u‖

p > 0, ∀u ∈ E+.

This shows that there exists a ρ > 0 such that (i) holds.

By Lemma 3.2, Fµ(u) > 0 for all (x, u) ∈ R
N × R

K , so we have for u ∈ Nµ,

mµ ≤
1

2
‖u+‖2 −

1

2
‖u−‖2 +

1

2

K∑

i=1

∫

RN

Wi(x)u
2
idx−

1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx

−

∫

RN

F (x, u)dx ≤
1

2
‖u+‖2 −

1

2
‖u−‖2 ≤

1

2
‖u+‖2,
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which implies that ‖u+‖ ≥ max{‖u−‖,
√
2mµ}.

With the help of the preceding two corollaries, an argument similar to the one used in [34]

shows that we can now prove the following lemma in the same way as [34].

Lemma 3.5 Assume that (V1’), (F1)–(F4) are satisfied. Then for every e ∈ E+, we have

supIµ(E− ⊕ R
+e) <∞, and there exists Re > 0 such that

Iµ(u) ≤ 0, ∀z ∈ E− ⊕ R
+e, ‖z‖ ≥ Re.

Proof Let e ∈ E+, t ≥ 0 and u = te+ u− ∈ E− ⊕ R
+e. Since µi ≥ 0, we have

Iµ(u) ≤ I0(u) =
1

2
(‖u+‖2 − ‖u−‖2)−

∫

RN

F (x, u)dx.

For the proof of the functional I0 is standard, see [34]. So we omit its details here.

Corollary 3.3 Assume that (V1’), (F1)–(F4) are satisfied. Let e ∈ E+ with ‖e‖ = 1. Then

there exists r0 > ρ such that sup Iµ(∂Q) ≤ 0 as r ≥ r0, where

Q = {ζ + se : ζ ∈ E−, s ≥ 0, ‖ζ + se‖ ≤ r}. (3.3)

Lemma 3.6 Assume that (V1’), (F1)–(F4) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2l20

4 . Then

there exist a constant cµ ∈ [Λµ, sup I(Q)] and a sequence {un} ⊂ E satisfying

Iµ(un) → c, ‖I ′
µ(un)‖(1 + ‖zn‖) → 0,

where Q is defined in (3.3).

Proof Combining with Lemmas 3.1–3.2, 3.4 and Corollary 3.3, it is easy to verify Lemma

3.6. The proof will be omitted.

Lemma 3.7 Assume that (V), (F1)–(F4) are satisfied and 0 ≤ µ ≤ µ <
(N−2)2l20

4 . Then

there exist a constant cµ ∈ [Λµ,mµ] and a sequence {un} ⊂ E satisfying

Iµ(un) → cµ, ‖I ′
µ(un)‖(1 + ‖un‖) → 0. (3.4)

Proof This is a standard result which can be found in [32–33], for the convenience of

readers, we give the detailed proof process here. Choose ξk ∈ Nµ such that

mµ ≤ Iµ(ξk) < mµ +
1

k
, k ∈ N. (3.5)

Using Lemma 3.4, we can derive ‖ξ+k ‖ ≥
√
2mµ > 0. Let ek = ξk

‖ξk‖ . Then ek ∈ E+ with ‖ek‖ =

1. Applying Corollary 3.3, there exists a constant rk > max{ρ, ‖ξk‖} satisfying sup Iµ(∂Qk) ≤

0, where

Qk = {ζ + sek : ζ ∈ E−, s ≥ 0, ‖ζ + sek‖ ≤ rk}, k ∈ N. (3.6)

Then, by Lemma 3.6, there exist a constant ck ∈ [Λµ, supIµ(Qk)] and a sequence {uk,n}n∈N ⊂

E,

Iµ(uk,n) → ck, ‖I ′
µ(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N. (3.7)
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In virtue of Corollary 3.1, we get

Iµ(ξk) ≥ Iµ(ηξk + ζ), ∀η ≥ 0, ζ ∈ E−. (3.8)

Since ξk ∈ Qk, by (3.6) and (3.8) we have Iµ(ξk) = sup Iµ(Qk). Furthermore, by (3.5) and

(3.7), we have

Iµ(uk,n) → ck < m+
1

k
, ‖I ′

µ(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N.

We can choose {nk} ⊂ N such that

Iµ(uk,nk
) < mµ +

1

k
, ‖I ′

µ(uk,nk
)‖(1 + ‖uk,nk

‖) <
1

k
, k ∈ N.

Set uk = uk,nk
, k ∈ N. Then we have

Iµ(un) → c∗ ∈ [κ,mµ], ‖I ′
µ(un)‖(1 + ‖un‖) → 0.

Lemma 3.8 Assume that (V1’), (F1)–(F4) are satisfied. Then for any u ∈ E \ E−,
N− ∩ (E− ⊕ R

+z) 6= ∅, there exist η(u) > 0, ζ(u) ∈ E− such that η(u)u+ ζ(u) ∈ Nµ.

Proof Note that E− ⊕ R
+u = E− ⊕ R

+u+, then we may assume that u ∈ E+. It

follows from Lemma 3.5 that there exists a constant R > 0 such that Iµ(u) ≤ 0 for any

u ∈ (E− ⊕ R
+z) \ BR(0). For sufficiently small s ≥ 0, we have Iµ(su) > 0. Thus, 0 <

supIµ(E− ⊕ R
+u) < ∞. It is easy to show that Iµ is weakly continue on E− ⊕ R

+u, then

for some u0 ∈ E− ⊕ R
+u, we have Iµ(u0) = sup Iµ(E− ⊕ R

+u). So u0 is a critical point of

Iµ|E−⊕Ru. Moreover, 〈I ′
µ(u0), u0〉 = 〈I ′

µ(u0), ζ〉, ∀ ζ ∈ E− ⊕ Ru. From the above discussion,

we can derive that u0 ∈ Nµ ∩ (E− ⊕ R
+z).

4 Periodic Case

In this section, we assume that V and f are 1-periodic in each of x1, x2, · · · , xN , i.e., (V1)

and (F1) are satisfied. In this case, Vi = Ui and Wi = 0.

Lemma 4.1 Assume that (V1), (F1)–(F4) are satisfied. Then for any {un} ⊂ E such that

0 < µ(n) ≤ µ(0) <
(N − 2)2l20

4

and

sup
n

|Iµ(n)(un)| <∞, ‖I ′
µ(n)(un)‖(1 + ‖un‖) → 0 (4.1)

is bounded in E, where µ(n) := max{µ
(n)
1 , µ

(n)
2 , · · · , µ

(n)
K } and µ(0) := max{µ

(0)
1 , µ

(0)
2 , · · · , µ

(0)
K }.

Proof Choose M > 0 such that |Iµ(n)(un)| ≤ M . We prove the boundedness of {un}

by negation, if the assertion would not hold, then ‖un‖ → ∞. Denote vn = un

‖un‖ , we have

‖vn‖ = 1. Taking into account Sobolev embedding theorem, there exists a constant C1 > 0

such that ‖vn‖2 ≤ C1. If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)

|v+n |
2dx = 0,
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it is easy to verify that v+n → 0 in Lp (p ∈ (2, 2∗)) by using Lions’ concentration compactness

principle. Fix R > (N − 2)

√
2(1+M)l20

(N−2)2l20−4µ(0)
, combining (F1) with (F2), we see that there exists

a constant Cε > 0 such that

F (x, u) ≤ ε|u|2 + Cε|u|
p

for ε = 1
4(RC1)2

> 0, where (x, u) ∈ R
N × R

K . Hence, we have

lim sup
n→∞

∫

RN

F
(
x,
Ru+n
‖un‖

)
dx

= lim sup
n→∞

∫

RN

F (x,Rv+n )dx

≤ lim sup
n→∞

R2ε

∫

RN

|v+n |
2dx+ lim sup

n→∞
RpCε

∫

RN

|v+n |
2dx

≤ ε(RC1)
2 =

1

4
. (4.2)

Set ηn = R
‖un‖ , by virtue of Corollary 3.2, we have, in light of (4.2),

M ≥ Iµ(n)(un)

≥
η2n
2
‖un‖

2 −

∫

RN

F (x, ηnu
+
n )dx+

1− η2n
2

〈I ′
µn

(un), un〉

+ η2n〈I
′
µn

(un), u
−
n 〉 −

µ(n)η2n
2

∫

RN

|u+n |
2 − |u−n |

2

|x|2
dx

=
R2

2
‖vn‖

2 −

∫

RN

F (x,Rv+n )dx+
(1
2
−

R2

2‖un‖2

)
〈I ′

µn
(un), un〉

+
R2

‖un‖2
〈I ′

µn
(un), u

−
n 〉 −

µ(n)R2

2

∫

RN

|v+n |
2 − |v−n |2

|x|2
dx

≥
R2

2
−

∫

RN

F (x,Rv+n )dx −
2µ(n)R2

(N − 2)2

∫

RN

|∇v+n |
2dx+ o(1)

=
R2

2
−

∫

RN

F (x,Rv+n )dx −
2µ(n)R2

(N − 2)2l20
+ o(1)

≥
R2

2

[
1−

4µ(0)

(N − 2)2l20

]
−

1

4
+ o(1) >

3

4
+M + o(1).

This leads to a contradiction, so δ > 0.

Without loss of generality, we suppose the existence of kn ∈ Z
N such that

∫

B1+
√

N
(kn)

|v+n |
2dx >

δ

2
.

Denote ζn(x) = vn(x+ kn), then

∫

B1+
√

N
(0)

|ζ+n |2dx >
δ

2
. (4.3)

Set ũn(x) = un(x + kn),
ũn

‖un‖ = ζn, then ‖ζn‖ = 1. Passing to a subsequence, we may assume

that ζn ⇀ ζ on E, and ζn → ζ, ζn → ζ on L2
loc a.e. on R

N . It is evident that (4.3) implies
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that ζ 6= 0. Thus, by virtue of (2.1), (F3) and Fatou’ lemma, we see that

0 = lim
n→∞

Iµ(n)(un)

‖un‖2

= lim
n→∞

[1
2
(‖v+n ‖

2 − ‖v−n ‖
2)−

1

2‖un‖2

K∑

i=1

∫

RN

µ
(n)
i (un)

2
i

|x|2
dx−

∫

RN

F (x, un)

‖un‖2
dx

]

≤ lim
n→∞

[1
2
(‖v+n ‖

2 − ‖v−n ‖
2)−

1

2‖un‖2

K∑

i=1

∫

RN

µ
(n)
i (un)

2
i

|x|2
dx−

∫

RN

F (x, un)

|ũn|2
|ζn|

2dx
]

≤
1

2
− lim inf

n→∞

∫

RN

F (x, un)

|ũn|2
|ζn|

2dx

= −∞,

which is a contradiction. Hence the statement of Lemma 4.1 is proved.

The following fact is very useful to deal with the Hardy type term and plays a very important

role in the proof of the decomposition result. Their proofs are similar to those in [10], which

we omit here.

Lemma 4.2 If |xn| → ∞, then for any u ∈ E,

∫

RN

|u(· − xn)|

|x|2
dx→ 0 as n→ ∞.

Lemma 4.3 Assume that 0 ≤ µ ≤ µ <
(N−2)2l20

4 and let {un} be a bounded (C)cµ-

sequence of Iµ at level cµ ≥ 0. Then there exists uµ ∈ E such that I ′
µ(uµ) = 0, and there

exist a number k ∈ N∪{0}, nontrivial critical points u1, · · · , uk of I0 and k sequences of points

xin ⊂ Z
N , 1 ≤ i ≤ k, such that

|xin| → +∞, |xin − xjn| → +∞, i 6= j, i, j = 1, 2, · · · , k,

‖un − uµ −
k∑

i=1

ui(· − xin)‖ → 0,

cµ = Iµ(uµ) +
k∑

i=1

I0(ui).

Lemma 4.4 Assume that Q ∈ C(RN ×R
K ,R) and there exist a0, b1, b2 > 0, p ∈ (2, 2∗) and

1 < q2 ≤ q1 < 2 such that

Q(x, u) ≤ a0(|u|
2 + |u|p), ∀(x, u) ∈ R

N × R
K ,

Q(x, u) ≥

{
b1|u|q1 for |u| ≤ 1,
b2|u|q2 for |u| > 1.

If un ⇀ u in E, and

lim
n→∞

∫

RN

Q(x, un)dx = lim
n→∞

∫

RN

Q(x, u)dx,

then un → u in Lq1(RN ).
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Proof of Theorem 1.1 In light of Lemma 4.1, there exists a bounded sequence {un} ⊂ E

satisfying Lemma 3.6. Hence, there exists a constant C2 > 0 such that ‖un‖2 ≤ C2. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|un|2 = 0, then un → 0 in Lp, where p ∈ (2, 2∗). On the other hand, by

virtue of (F1) and (F2), for ε =
cµ
4C2

2
> 0, there exists a constant Cε > 0 such that

F (x, u) ≤ ε|u|2 + Cε|u|
p, ∀(x, u) ∈ R

N × R
K .

Based on the above discussion, we have

limsup
n→∞

∫

RN

[1
2
Fu(x, un) · un − F (x, un)

]
dx

≤
3ε

2
C2

2 +
3ε

2
Cε lim

n→∞
|un|

p

=
3cµ
8
.

Thus,

cµ = Iµ(un)−
1

2
〈I ′

µ(un), un〉+ o(1)

=

∫

RN

[1
2
Fu(x, un) · un − F (x, un)

]
dx+ o(1)

≤
3cµ
8

+ o(1),

which is a contraction. Then δ > 0.

Passing to the subsequence, we may assume that there exists kn ∈ Z
N such that

∫

B1+
√

N
(0)

|u+n |
2 >

δ

2
.

Set ζn(x) = un(x+ kn), then

∫

B1+
√

N
(0)

|ζ+n |2dx >
δ

2
. (4.4)

Due to the periodic assumption of V (x) and F (x, u), it follows that ‖ζn‖ = ‖un‖ and

Iµ(ζn) → cµ, ‖I ′
µ(ζn)‖(1 + ‖ζn‖) → 0. (4.5)

Thus, passing to the subsequence, suppose that ζn ⇀ ζ in E, ζn → ζ in L2
loc, ζn(x) → ζ(x)

a.e. onRN . In light of (4.4), we see that ζ 6= 0. For every φ ∈ C∞
0 (RN ), by (2.2), we have

〈I ′
µ(ζ), φ〉 = lim

n→∞
〈I ′

µ(ζn), φ〉 = 0. Hence, I ′
µ(ζ) = 0, which implies that ζ ∈ Nµ. Then, Iµ(ζ) ≥

mµ. On the other way, it follows from (F2), (F3), (F4), Lemmas 3.4, 3.7 and Fatou’s lemma

that

mµ ≥ cµ = lim
n→∞

[
Iµ(un)−

1

2
〈I ′

µ(un), un〉
]

= lim
n→∞

∫

RN

[1
2
Fu(x, un) · un − F (x, un)

]
dx

≥

∫

RN

lim
n→∞

[1
2
Fu(x, un) · un − F (x, un)

]
dx
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=

∫

RN

[1
2
Fuµ

(x, uµ) · uµ − F (x, uµ)
]
dx

= Iµ(uµ)−
1

2
〈I ′

µ(uµ), uµ〉 = Iµ(uµ),

which implies Iµ(uµ) ≤ mµ. So Iµ(uµ) = mµ = inf
Nµ

Iµ > 0. The proof is completed.

Next we claim that uµ 6= 0. Indeed, for µ = 0, by Lemma 3.7 and the concentration

compactness arguments, it is easy to prove that I0 has a nontrivial ground state solution

u0 ∈ N0 such that I0(u0) = m0 = inf
u∈N0

I0. Now let us assume that 0 < µ ≤ µ <
(N−2)2l20

4 and

consider

Q(u0) := {u = tu0 + w : w ∈ E−, t ≥ 0, ‖tu0 + w‖ ≤ R}.

Observe that, let tnu0 + wn ∈ Q(u0), then passing to a subsequence we may assume that

tn → t0, wn ⇀ w0 in E
− and L2

(
R

N , 1
|x|2

)
, and wn(x) → w0(x) a.e. on R

N . Hence tnu0+wn ⇀

t0u0 + w0 ∈ Q(u0) by the weak lower semi-continuous of norm, which implies that Q(z0) is

weakly sequentially closed. It follows from Fatou’s lemma that

limsup
n→∞

Iµ(tnu0 + wn) ≤ Iµ(t0u0 + w0),

this shows that Iµ is weakly sequentially upper semi-continuous. Then Iµ attains its maximum

in Q(u0). Assume that t0u0 + w0 ∈ Q(u0) such that

Iµ(t0u0 + w0) = max
u∈Q(u0)

Iµ(u) > 0,

then t0u0 + w0 ∈ Nµ. Therefore by Corollary 3.1, we have

m0 = I0(u0) ≥ I0(t0u0 + w0) > Iµ(t0u0 + w0) ≥ mµ ≥ cµ,

similar to the Lemma 4.3, we get un → uµ in E, and so uµ 6= 0. The proof is completed.

Proof of Theorem 1.2 Let uµ ∈ Nµ be a ground state solution of Iµ and 0 ≤ µ ≤ µ <
(N−2)2l20

4 . In view of Lemma 3.8, there exist tµ > 0 and wµ ∈ E− such that tµuµ + wµ ∈ N0.

Then, by Corollary 3.1 we have

mµ = Iµ(uµ) ≥ Iµ(tµuµ + wµ)

= I0(tµzµ + wµ)−
1

2

K∑

i=1

∫

RN

µi|tµ(uµ)i + (wµ)i|2

|x|2
dx

≥ m0 −
µ

2

∫

RN

|tµuµ + wµ|2

|x|2
dx, (4.6)

this shows that conclusion (i) holds. Similarly, let u0 ∈ N0 be a ground state solution of Iµ.

By Lemma 3.8, there exist t0 > 0 and w0 ∈ E− such that t0u0 +w0 ∈ Nµ. Then, by Corollary

3.1 we have

m0 = I0(u0) ≥ Iµ(t0u0 + w0)

= Iµ(t0u0 + w0) +
1

2

K∑

i=1

∫

RN

µi|t0(u0)i + (w0)i|2

|x|2
dx
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≥ mµ +
µ

2

∫

RN

|t0u0 + w0|2

|x|2
dx, (4.7)

which implies that conclusion (ii) holds.

Proof of Theorem 1.3 Since µi ≥ 0, we get by (4.7),

m0 ≥ mµ = Iµ(uµ), (4.8)

and by Lemma 4.1 we have {uµ} is bounded if µ → 0+. We take a sequence µ(n) → 0+ and

denote un := uµ(n) . If

limsup
n→∞ y∈RN

∫

B(y,1)

|u+n |
2dx = 0,

then by Lions’ concentration compactness principle, we get u+n → 0 in Lp for 2 < p < 2∗. Thus,
from un ∈ Nµ(n) , it follows that

‖u+n ‖
2 =

K∑

i=1

∫

RN

µ
(n)
i (un)i(un)

+
i

|x|2
dx+

∫

RN

Fu(x, un) · u
+
n dx→ 0,

which shows that limsup
n→∞

Iµ(n)(un) ≤ 0, this implies a contradiction with Lemma 3.4(i). There-

fore, there exist ̺ > 1 and {yn} ⊂ Z
N such that

liminf
n→∞

∫

B(yn,̺)

|u+n |
2dx ≥ 0,

then passing to a subsequence, we find u ∈ E such that u+n (· + yn) → u+ in L2
loc and u+ 6= 0.

Moreover, we may assume that un(·+yn)⇀ u in E, un(x+yn) → u(x), u+n (x+yn) → u+(x) a.e.

on R
N . Let tnun +wn ∈ N0 and tn > 0, wn ∈ E−. By (F6), we have f(x, u) · u− 2F (x, u) ≥ 0.

Then

‖u+n ‖
2 =

∥∥∥u−n +
wn

tn

∥∥∥
2

+
1

t2n

∫

RN

f(x, tnun + wn) · (tnun + wn)dx

≥
∥∥∥u−n +

wn

tn

∥∥∥
2

+ 2

∫

RN

F
(
x, tn

(
un + wn

tn

))

t2n
dx, (4.9)

which implies that
∥∥u−n + wn

tn

∥∥ is bounded. Hence we may assume that u−n + wn

tn
→ w(x) a.e.

on R
N for some w ∈ E−. Now we claim that tn is bounded. If not, then |tnun(x) + wn(x)| =

t
∣∣u−n + wn

tn

∣∣ → ∞ provided that u+ + w(x) 6= 0. It follows from (F4) and Fatou’s lemma that

∫

RN

F
(
x, tn

(
un + wn

tn

))

t2n
dx→ ∞,

which contradicts (4.9), thus tn is bounded. Then ‖tnu+n ‖ and ‖tnu−n + wn‖ are bounded, by

the Hölder’s inequality and (2.4) we get

1

2

K∑

i=1

∫

RN

µi|tnun + wn|
2

|x|2
dx→ 0. (4.10)

Therefore, (4.6), (4.8) and (4.10) imply that conclusion (i) holds.
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Next, we will verify that (ii) holds. Let {uµ(n)} be a sequence of ground state solutions

of Iµ(n) , and we take a sequence µ(n) → 0+ and denote un := uµ(n) . It follows from Lemma

4.1 that {un} is bounded, then passing to a subsequence, we may assume that un ⇀ u0 in E,

un → u0 in Lp
loc for 2 ≤ p < 2∗ and un(x) → u0(x) a.e. on R

N .

Define ũn(x) = un(x + xn), then ‖ũn‖ = ‖un‖. Passing to a subsequence, ũn ⇀ u in

E, ũn → u0 in Ls
loc(R

N ), ∀s ∈ [2, 2∗), ũn → u0 a.e. on R
N . For each φ ∈ C∞

0 (RN ), set

φn = φ(x − yn), In view of the Hölder’s inequality and Lemma 4.2, we have

lim
n→∞

K∑

i=1

∫

RN

(un)i(φn)i
|x|2

dx = 0.

Noting that Vi(x) and f(x, u) are periodic in x, it follows that

〈I ′
0(ũn), φ〉 =

K∑

i=1

∫

RN

[∇(ũn)i∇φi + Vi(x)(ũn)iφi]dx−

∫

RN

f(x, ũn) · φdx

=

K∑

i=1

∫

RN

[∇(ũn)i∇(φn)i + Vi(x)(ũn)i(φn)i]dx−

∫

RN

f(x, ũn) · φndx

= 〈I ′
µn

(ũn), φn〉+
K∑

i=1

∫

RN

µ
(n)
i (un)i(φn)n

|x|2
dx

= o(1).

Thus, we have I ′
0(u0) = 0, which implies that u0 is a nontrivial critical point of I0. We will

claim that u0 is a ground state solution of I0. Since µ ≥ 0, it is to show that mµ = Iµ(u) is

non-increasing on µ ∈
[
0, (N−2)2

4 l20
)
. Then we obtain

m0 ≥ limsup
n→∞

mµ(n) = limsup
n→∞

Iµ(n)(un)

= limsup
n→∞

[
Iµn

(un)−
1

2
〈I ′

µn
(un), un〉

]

= limsup
n→∞

∫

RN

F̂ (x, un)dx = limsup
n→∞

∫

RN

F̂ (x, ũn)dx

≥ liminf
n→∞

∫

RN

F̂ (x, ũn)dx

≥

∫

RN

F̂ (x, u0)dx = I0(u0) ≥ m0.

This implies

lim
n→∞

∫

RN

F̂ (x, ũn)dx =

∫

RN

F̂ (x, u0)dx.

Applying Lemma 4.4 to F̂ (x, u), we have ‖ũn − u0‖2 = 0. Since |f(x, u)| ≤ c1|u| for some

c1 > 0, we deduce that

lim
n→∞

∫

RN

f(x, ũn) · (ũ
±
n − u±0 )dx = 0.

Thus

‖ũ+n − u+0 ‖ = 〈I ′
µn

(ũn), ũ
+
n − u+0 〉 − (u+, ũ+n − u+0 )
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+
K∑

i=1

∫

RN

µiũn(ũ
+
n − u+0 )

|x|2
dx+

∫

RN

f(x, ũn) · (ũ
+
n − u+0 )dx

= o(1) (4.11)

and

‖ũ−n − u−0 ‖ = 〈I ′
µn

(ũn), ũ
−
n − u−0 〉 − (u+0 , ũ

−
n − u−0 )

+
K∑

i=1

∫

RN

µiũn · (ũ−n − u−0 )
|x|2

dx+

∫

RN

f(x, ũn) · (ũ
−
n − u−0 )dx

= o(1). (4.12)

It follows from (4.11)–(4.12) that ũn → u0 in E, which implies that (ii) holds. The proof is

completed.

5 Asymptotically Periodic Case

In this section, we always assume that V (x) satisfies (V1’). We define functional Jµ as

follows

Jµ(u) =
1

2

K∑

i=1

∫

RN

(|∇ui|
2 + Ui(x)|ui|

2)dx−
1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx

=
1

2
(‖u+‖2 − ‖u−‖2)−

1

2

K∑

i=1

∫

RN

µiu
2
i

|x|2
dx−

∫

RN

F (x, u)dx.

Then (V1’), (F1’), (F2)–(F5) imply that Jµ ∈ C1(E,R) and

〈J ′
µ(u), v〉 =

K∑

i=1

∫

RN

(∇ui · ∇vi + Ui(x)uivi)dx−
K∑

i=1

∫

RN

µiuivi

|x|2
dx−

∫

RN

f(x, u) · vdx.

Similar to Lemma 3.3, we have the following lemma.

Lemma 5.1 Assume that (V1’), (F1’), (F2)–(F5) are satisfied. Then for all κ ≥ 0, u ∈

E, ζ = (ζ1, ζ2, · · · , ζK) ∈ E−,

Jµ(u) ≥ Jµ(κu+ ζ) +
1

2
‖ζ‖2 −

1

2

K∑

i=1

∫

RN

Wi(x)ζ
2
i dx

+
1

2

K∑

i=1

∫

RN

µiζ
2
i

|x|2
dx+

1− κ2

2
〈J ′

µ(u), u〉 − κ〈J ′
µ(u), ζ〉. (5.1)

Lemma 5.2 Assume that (V1’), (F1’), (F2)–(F5) are satisfied. Then any sequence {un} ⊂

E satisfying (4.1) is bounded in E.

Proof To prove the boundedness of {un}, arguing by contradiction, we suppose that

‖un‖ → ∞. Let vn = un

‖un‖ . Then ‖vn‖ = 1 . By Sobolev imbedding theorem, there exists a

constant C4 > 0 such that ‖vn‖2 ≤ C4. Passing to a subsequence, we have vn ⇀ v in E. There

are two possible cases: (i) v = 0 and (ii) v 6= 0.
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Case (i) v = 0, i.e., vn ⇀ 0 in E. Then v+n → 0 and v−n → 0 in Ls
loc(R

N ). By (V1’), it is

easy to show that

lim
n→∞

∫

RN

Wi(x)(v
+
i )2dx = lim

n→∞

∫

RN

Wi(x)(v
−
i )2dx = 0. (5.2)

If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)

|v+n |
2dx = 0,

then by Lions’ concentration compactness principle, v+n → 0 in Ls(RN ) for 2 < s < 2∗. Fix

R > [2(1 + cµ)]
1
2 . By virtue of (F0) and (F1), for ε = 1

4 (RC4)
2 > 0, there exists Cε > 0 such

that

limsup
n→∞

∫

RN

F (x,Rv+n )dx ≤ limsup
n→∞

[εR2‖v+n ‖
2
2 + CεR

p‖v+n ‖
p
p]

≤ ε(RC4)
2 =

1

4
. (5.3)

Let ηn = R
‖un‖ . Hence, by virtue of (4.1), (5.2)–(5.3) and Corollary 3.2, one can get that

cµ + o(1) = Iµ(un)

≥
η2n
2
‖un‖

2 −

∫

RN

F (x, ηnu
+
n )dx +

1− η2n
2

〈I ′
µ(un), un〉

+ η2n〈I
′
µ(un), u

−
n 〉+

η2n
2

K∑

i=1

∫

RN

Wi(x)[((un)
+
i )

2 − ((un)
−
i )

2]dx

=
R2

2
−

∫

RN

F
(
x,
Ru+n
‖un‖

)
dx+

(1
2
−

R2

2‖un‖2

)
〈I ′

µ(un), un〉

+
R2

‖un‖2
〈I ′

µ(un), u
−
n 〉+

R2

2

K∑

i=1

∫

RN

Wi(x)[((vn)
+
i )

2 − ((vn)
−
i )

2]dx

=
R2

2
−

∫

RN

F
(
x,
Ru+n
‖un‖

)
dx+ o(1)

≥
R2

2
−

1

4
+ o(1) >

3

4
+ cµ + o(1).

This leads to a contradiction, so δ > 0. Without loss of generality, we suppose the existence of

kn ∈ Z
N such that

∫
B1+

√
N
(0)

|ω+
n |

2dx > δ
2 . Denote ωn(x) = vn(x+ kn), then

∫

B1+
√

N
(0)

|ω+
n |

2dx >
δ

2
. (5.4)

Put ũn(x) = un(x+ kn),
ũn

‖un‖ = ωn, then ‖ωn‖ = 1. Passing to a subsequence, we may assume

that ωn ⇀ ω on E, and ωn → ω on L2
loc a.e. on R

N . It is evident that (5.4) implies that ω 6= 0.

Thus, by virtue of (F4) and Fatou’s lemma, we see that

0 = lim
n→∞

cµ + o(1)

‖un‖2

= lim
n→∞

Iµ(un)

‖un‖2
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= lim
n→∞

[1
2
(‖ω+

n ‖
2 − ‖ω−

n ‖
2) +

1

2

K∑

i=1

∫

RN

Wi(x)((vn)i)
2dx

−
K∑

i=1

1

2‖un‖2

∫

RN

µi|(un)i|2

|x|2
dx−

∫

RN

F (x, un)

‖un‖2
dx

]

= lim
n→∞

[1
2
(‖ω+

n ‖
2 − ‖ω−

n ‖
2) +

1

2

K∑

i=1

∫

RN

Wi(x)((vn)i)
2dx−

∫

RN

F (x, un)

|ũn|2
|ωn|

2dx
]

≤
1

2
− lim inf

n→∞

∫

RN

F (x, un)

|ũn|2
|ωn|

2dx

= −∞,

which is a contradiction. Hence the statement of Lemma 5.2 is proved.

Case (ii) v 6= 0. In this case, we can also deduce a contradiction by a standard argument.

Cases (i) and (ii) show that {un} is bounded in E.

Proof of Theorem 1.4 Applying Lemmas 3.7 and 4.1, we deduce that there exists a

bounded sequence {un} ⊂ E satisfying (3.4). Passing to a subsequence, we have un ⇀ u in E.

Next, we prove u 6= 0.

Arguing by contradiction, suppose that u = 0, i.e., un ⇀ 0 in E, and so un ⇀ 0 in Ls
loc(R

N ),

2 ≤ s < 2∗ and un → 0 a.e. on R
N . By (V1’), (F1’) and (F5’), it is easy to show that

lim
n→∞

∫

RN

Wi(x)u
2
ndx = 0, lim

n→∞

∫

RN

Wi(x)unvdx = 0 (5.5)

and

lim
n→∞

∫

RN

H(x, un)dx = 0, lim
n→∞

∫

RN

∂uH(x, un) · vdx = 0, ∀v ∈ E. (5.6)

Note that

Jµ(u) = Iµ(u)−
1

2

K∑

i=1

∫

RN

Wi(x)u
2
i dx+

∫

RN

H(x, u)dx, ∀u ∈ E (5.7)

and

〈J ′
µ(u), v〉 = 〈I ′

µ(u), v〉 −
K∑

i=1

∫

RN

Wi(x)uividx+

∫

RN

∂uH(x, u) · vdx, ∀u, v ∈ E. (5.8)

From (5.5)–(5.8), one can get that

Iµ(un) → cµ, ‖I ′
µ(un)‖(1 + ‖un‖) → 0. (5.9)

Analogous to the proof of Theorem 1.2, we can prove that there exists kn ∈ Z
N such that

∫

B1+
√

N
(kn)

|u+n |
2dx >

δ

2
.

Denote vn(x) = vn(x+ kn), then
∫

B1+
√

N
(0)

|v+n |
2dx >

δ

2
. (5.10)
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Passing to a subsequence, we have vn ⇀ v in E, vn → v in Ls
loc(R

N ), 2 ≤ s < 2∗ and vn → v

a.e. on R
N . Obviously, (5.10) implies that v 6= 0. Since Ui(x) and gi(x, u) are periodic in x, by

(5.9), we have

Jµ(vn) → cµ, ‖J ′
µ(vn)‖(1 + ‖vn‖) → 0. (5.11)

In the same way as the last part of the proof of Theorem 1.2, we can prove that J ′
µ(v) = 0 and

Jµ(v) ≤ cµ.

It is easy to show that v+ 6= 0. By Lemma 3.8, there exist κ0 = κ(v) > 0 and w0 = w(v) ∈

E− such that κ0v + w0 ∈ Nµ, and so Iµ(κ0v + w0) ≥ m.

Hence, from the fact that H(x, u)−
K∑
i=1

Wi(x)u
2
i > 0, for (x, u) ∈ B1+

√
N (0)×R

K \ {0}, we

have

mµ ≥ cµ ≥ Jµ(v)

= Jµ(κ0v + w0) +
1

2
‖w0‖

2 +
1− κ20

2
〈J ′

µ(v), v〉 − κ0〈J
′
µ(v), w0〉

+

∫

RN

[G(x, κ0v + w0)−G(x, v)]dx

+

∫

RN

[1− κ20
2

Gu(x, u) · u− κGu(x, u) · ζ
]
dx

≥ Jµ(κ0u+ w0) +
1

2
‖w0‖

2

=
1

2
‖w0‖

2 + Iµ(κ0V + w0)

+

∫

RN

H(x, κ0v + w0)dx−
1

2

K∑

i=1

∫

RN

Wi(x)((κ0v + w0)i)
2dx

> Iµ(κ0v + w0) ≥ mµ,

since v(x) 6≡ 0 for x ∈ B1+
√
N (0). This contradiction implies that u 6= 0. In the same way as the

last part of the proof of Theorem 1.2, we can certify that I ′
µ(u) = 0 and Iµ(u) = m = inf

Nµ

Iµ.

This shows that u ∈ E is a solution to (1.2) with Iµ(u) = inf
Nµ

Iµ > 0. The proof is completed.

Similar to the proofs of Theorems 1.2–1.3, we can prove Theorems 1.5–1.6, we omit the

proof process.
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