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1 Introduction

Let Ω ⊂ R
n be a bounded domain with smooth boundary Γ. Consider the following system

for the variable U = (u(1), · · · , u(N))T :

{
U ′′ −∆U +AU = 0 in R

+ × Ω,

U = DH on R
+ × Γ,

(1.1)

where A is a matrix of order N and D is a matrix of order N ×M .

Obviously, system (1.1) is controlled by the controls H directly acted on the boundary,

and also implicitly influenced by the interaction between the equations. It is well-known that

when rank(D) < N , because of the compactness of the coupling term AU , system (1.1) is never

exactly controllable in the space (L2(Ω)×H−1(Ω))N (see [6]). However, the following Kalman’s

rank condition

rank(D,AD, · · · , AN−1D) = N (1.2)

is necessary (and even sufficient in some special situations) for the approximate boundary con-

trollability of system (1.1) (see [7]). This shows that the coupling term AU plays an important

role for the approximate boundary controllability. It seems that rank(D,AD, · · · , AN−1D),

called the total number of controls in [8], is a good indicator for the action of the coupling ma-

trix A with the boundary control matrix D. Since rank(D) is the number of boundary controls
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H , it is natural to name rank(D,AD, · · · , AN−1D) − rank(D) as the number of indirect con-

trols, but we did not see what are these (internal or boundary) controls, nor how they intervene

into the system.

In this paper, we try to explain the meaning of indirect controls and the mechanism of

their roles. The basic idea is to project system (1.1) to Ker(DT) for getting a system with a

homogeneous boundary condition. We first show the idea by a simple example, and present the

general procedure later.

Example 1 Consider the following system





u′′

1 −∆u1 + u2 = 0 in R
+ × Ω,

u′′

2 −∆u2 + u3 = 0 in R
+ × Ω,

u′′

3 −∆u3 = 0 in R
+ × Ω,

u1 = u2 = 0, u3 = h on R
+ × Γ.

(1.3)

First let

A =



0 1 0
0 0 1
0 0 0


 , D =



0
0
1


 .

We have

Ker(DT) = Span







1
0
0


 ,



0
1
0





 .

Then, applying the row-vectors (1, 0, 0) and (0, 1, 0) in Ker(DT) to system (1.3), we get




u′′

1 −∆u1 + u2 = 0 in R
+ × Ω,

u′′

2 −∆u2 = −u3 in R
+ × Ω,

u1 = u2 = 0 on R
+ × Γ.

(1.4)

The reduced system (1.4) is for the variables u1 and u2, so at the first step, the variable

h(1) = −u3 can be formally regarded as an internal control appearing in system (1.4). However,

the value of h(1) can not be freely chosen, then we call it as an indirect internal control.

Next let

A1 =

(
0 1
0 0

)
, D1 =

(
0
−1

)
.

We have

Ker(DT
1 ) =

(
1
0

)
.

Then, applying the row-vector (1, 0) in Ker(DT
1 ) to the reduced system (1.4), at the second

step we get
{
u′′

1 −∆u1 = −u2 in R
+ × Ω,

u1 = 0 on R
+ × Γ.

(1.5)

This is a system for the variable u1, in which the variable h(2) = −u2 can be regarded as an

indirect internal control.

Finally, let

A2 = (0), D2 = (−1). (1.6)



Indirect Control of Wave Equations 361

Since Ker(DT
2 ) = (0), we stop the projection.

By this way, we decompose the original system (1.3) into two sub-systems (1.4) and (1.5).

Consequently, besides the direct boundary control h acting on the boundary and appearing in

the original system (1.3), we find two indirect internal controls h(1) and h(2), which are hidden

in the sub-systems (1.4) and (1.5), respectively.

Related to the indirect controllability, the notion of the indirect stabilization was introduced

by Russell [16] in the early 1990’s. It concerns if the dissipation induced by one of the equations

can be sufficiently transmitted to the other ones in order to realize the stability of the overall

system (see [2–3] for wave equations and [14–15] for wave/heat equations). Moreover, as shown

in [4, 13], the situation is more complicated for partially damped systems. The effectiveness of

the indirect damping depends in a very complex way on all of the involved factors such as the

nature of the coupling, the order of boundary dissipation, the hidden regularity, the accordance

of boundary conditions and many others.

The paper is organized as follows. In §2, we will give a general procedure of projection, which

decomposes a system of wave equations into a sequence of sub-systems. In §3, we establish the

relation between the ranks of the matrices appearing in the procedure of projection. In §4, we

identify the indirect internal controls in the reduced systems and explain its role in the systems.

In §5, we establish a uniqueness theorem under Kalman’s rank condition without any algebraic

condition on the coupling matrix, neither any geometrical condition on the controlled domain.

This result will be served as a base for the approximate controllability by locally distributed

controls later. §6 is devoted to some questions to be developed in the forthcoming work.

2 An Algebraic Procedure of Reduction

Now we describe the general procedure of projection. Let

N0 = N, A0 = A, D0 = D,

where A0 is a matrix of order N0, D0 is a matrix of order N0 ×M with

N1 = N0 − rank(D0).

D0 is not necessarily a full column-rank matrix.

Let

Ker(DT
0 ) = Span{d1, · · · , dN1

}. (2.1)

We choose

K0 = (d1, · · · , dN1
). (2.2)

In particular, we have

DT
0 K0 = 0. (2.3)

Noting

Im(K0)⊕ Im(D0) = Ker(DT
0 )⊕ Im(D0) = R

N , (2.4)



362 T. -T. Li and B. P. Rao

there exist a matrix A1 of order N1 and a matrix D1 of order N1 ×M , such that

AT
0 K0 = K0A

T
1 −D0D

T
1 . (2.5)

Since K0 is of full column-rank, A1 is uniquely determined. While, since D0 may be not of full

column-rank, for guaranteeing the uniqueness of D1, we require

Im(DT
1 ) ∩Ker(D0) = {0}. (2.6)

Then, noting (2.3), by applying KT
0 to system (1.1) and setting

U (1) = KT
0 U, H(1) = DT

0 U, (2.7)

we get

{
(U (1))′′ −∆U (1) +A1U

(1) = D1H
(1) in R

+ × Ω,

U (1) = 0 on R
+ × Γ.

(2.8)

The projected system (2.8) is not self-closed in general. It can be regarded as a system for the

reduced variable U (1), associated with the internal control H(1).

Similarly, by the successive projections, for l = 2, 3, · · · , we get

{
U (l−1)′′ −∆U (l−1) +Al−1U

(l−1) = Dl−1H
(l−1) in R

+ × Ω,

U (l−1) = 0 on R
+ × Γ.

(2.9)

For l = 1, 2, · · · , let

Nl = Nl−1 − rank(Dl−1). (2.10)

Define

Ker(DT
l−1) = Span{d1, · · · , dNl

}, Kl−1 = (d1, · · · , dNl
). (2.11)

In particular, we have

DT
l−1Kl−1 = 0. (2.12)

Noting that

Im(Kl−1)⊕ Im(Dl−1) = Ker(DT
l−1)⊕ Im(Dl−1) = R

Nl−1 , (2.13)

there exist a matrix Al of order Nl and a matrix Dl of order Nl ×M , such that

KT
l−1Al−1 = AlK

T
l−1 −DlD

T
l−1. (2.14)

Then, noting (2.12), we have

KT
l−1Kl−1A

T
l
= KT

l−1A
T
l−1Kl−1 (2.15)

and

DT
l−1Dl−1D

T
l
= −DT

l−1A
T
l−1Kl−1. (2.16)
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Since Kl−1 is of full column-rank, we have Ker(Kl−1) = {0}. It follows from (2.15) that

AT
l = (KT

l−1Kl−1)
−1KT

l−1A
T
l−1Kl−1. (2.17)

While, since Dl−1 may be not of full column-rank, Ker(Dl−1) 6= {0} in general. In order to

uniquely determine the matrix Dl by the relation (2.16), similarly to (2.6), we require

Im(DT
l ) ∩Ker(Dl−1) = {0}. (2.18)

Then, applying KT
l−1 to system (2.9) and setting

U (l) = KT
l−1U

(l−1), H(l) = DT
l−1U

(l−1), (2.19)

we get

{
(U (l))′′ −∆U (l) +AlU

(l) = DlH
(l) in R

+ × Ω,

U (l) = 0 on R
+ × Γ.

(2.20)

We continue the procedure of projection until

(i) either DL = 0, then we get a self-closed conservative system

{
(U (L))′′ −∆U (L) +ALU

(L) = 0 in R
+ × Ω,

U (L) = 0 on R
+ × Γ,

(2.21)

which is not approximately controllable, so is the original system (1.1);

(ii) or Ker(DT
L
) = {0}, then we get a non self-closed system

{
(U (L))′′ −∆U (L) +ALU

(L) = DLH
(L) in R

+ × Ω,

U (L) = 0 on R
+ × Γ.

(2.22)

Since the control matrix DL is of full row-rank, this case is favorite for the approximate control-

lability of system (2.22), however, we don’t know whether the original system (1.1) is actually

approximately controllable or not.

The above procedure is purely algebraic. In order to clarify the leading idea, we do not take

other type boundary conditions into account.

3 Mathematical Analysis

Let us recall the following fundamental result (see [7, Lemma 2.5]).

Lemma 3.1 Let d ≥ 0 be an integer. The rank condition

rank(D,AD, · · · , AN−1D) = N − d (3.1)

holds if and only if d is the largest dimension of the subspaces, which are contained in Ker(DT)

and invariant for AT.

Proposition 3.1 Let l be an integer with 1 ≤ l ≤ L. For any subspace V contained in

Ker(DT
l
) and invariant for AT

l
, there exists a subspace W contained in Ker(DT

l−1) and invariant

for AT
l−1, such that dim(W ) = dim(V ), and vice versa.
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Proof First, let V ⊆ Ker(DT
l
) be an invariant subspace of AT

l
. Let W = Kl−1(V ) denote

the direct image of V by Kl−1.

For any given y ∈ W , by the definition of W , there exists x ∈ V , such that y = Kl−1x.

Applying xT to (2.14) leads that

xTKT
l−1Al−1 = xTAlK

T
l−1 − xTDlD

T
l−1.

Since x ∈ V ⊆ Ker(DT
l
), we have xTDlD

T
l−1 = 0, then

AT
l−1Kl−1x = Kl−1A

T
l x. (3.2)

Moreover, since V is invariant for AT
l
, we have AT

l
x ∈ V , then it follows from (3.2) that

AT
l−1y = AT

l−1Kl−1x = Kl−1A
T
l x ⊆ W.

By (2.12), we have

DT
l−1y = DT

l−1Kl−1x = 0.

Thus W is contained in Ker(DT
l−1) and invariant for AT

l−1.

Inversely, let W ⊆ Ker(DT
l−1) be an invariant subspace of AT

l−1. Let

V = K−1
l−1(W ) = {x : Kl−1x ∈ W}

denote the inverse image of W by Kl−1. For any given x ∈ V , there exists y ∈ W , such that

Kl−1x = y. Applying xT to (2.14), we get

xTKT
l−1Al−1 = xTAlK

T
l−1 − xTDlD

T
l−1. (3.3)

Applying Kl−1 from the right to the above relation, it follows that

xTKT
l−1Al−1Kl−1 = xTAlK

T
l−1Kl−1 − xTDlD

T
l−1Kl−1.

By (2.12), DT
l−1Kl−1 = 0, then

xTKT
l−1Al−1Kl−1 = xTAlK

T
l−1Kl−1. (3.4)

Since W is invariant for AT
l−1, we have AT

l−1y ∈ W . By the definition of V , there exists x̃ ∈ V ,

such that Kl−1x̃ = AT
l−1y. Then, it follows from (3.4) that

x̃TKT
l−1Kl−1 = yTAl−1Kl−1 = xTKT

l−1Al−1Kl−1 = xTAlK
T
l−1Kl−1.

Since KT
l−1Kl−1 is invertible, we have

AT
l
x = x̃ ∈ V,

namely, V is invariant for AT
l
.

Finally, inserting Kl−1x = y and AT
l
x = x̃ into (3.3), and noting Kl−1x̃ = AT

l−1y, we get

xTDlD
T
l−1 = xTAlK

T
l−1 − xTKT

l−1Al−1 = x̃TKT
l−1 − yTAl−1 = 0.

Then Dl−1D
T
l
x = 0. By (2.18), we get DT

l
x = 0. So, V ⊆ Ker(DT

l
). Moreover, since Kl−1 is

of full column-rank, we have dim(V ) = dim(W ).
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Proposition 3.2 We have

rank(D0, A0D0, · · · , A
N0−1
0 D0) =

L∑

l=0

rank(Dl). (3.5)

Proof We first show that for 1 ≤ l ≤ L, we have

rank(Dl, AlDl, · · · , A
Nl−1
l

Dl)

= rank(Dl−1, Al−1Dl−1, · · · , A
Nl−1−1
l−1 Dl−1)− rank(Dl−1). (3.6)

In fact, let

rank(Dl−1, Al−1Dl−1, · · · , A
Nl−1−1
l−1 Dl−1) = Nl−1 − pl−1. (3.7)

By Lemma 3.1, pl−1 is the dimension of the largest subspace which is contained in Ker(DT
l−1)

and invariant for AT
l−1. By Proposition 3.1, the largest subspace which is contained in Ker(DT

l
)

and invariant for AT
l
has also the dimension pl−1. Then we have

rank(Dl, AlDl, · · · , A
Nl−1
l

Dl) = Nl − pl−1. (3.8)

Noting (2.10) and combining (3.7)–(3.8), we get (3.6).

Then, the summation of (3.6) for l from 1 to L gives

rank(D0, A0D0, · · · , A
N−1
0 D0) (3.9)

=

L−1∑

l=0

rank(Dl) + rank(DL, ALDL, · · · , A
NL−1
L

DL).

At the L-th step of reduction, we have either DL = 0, then

rank(DL, ALDL, · · · , A
NL−1
L

DL) = rank(DL) = 0; (3.10)

or Ker(DT
L
) = 0, then

rank(DL, ALDL, · · · , A
NL−1
L

DL) = rank(DL). (3.11)

Then, using (3.10) and (3.11) in (3.9), we get (3.5).

Proposition 3.3 rank(Dl, AlDl, · · · , A
Nl−1
l

Dl) − Nl is a constant with respect to l with

0 ≤ l ≤ L. Consequently, Kaman’s rank condition

rank(Dl, AlDl, · · · , A
Nl−1
l

Dl) = Nl (3.12)

holds for all l with 0 ≤ l ≤ L if and only if Ker(DT
L
) = {0}.

Proof First, using (2.10) and (3.6), we deduce

rank(Dl, AlDl, · · · , A
Nl−1
l

Dl)−Nl

= rank(Dl−1, Al−1Dl−1, · · · , A
Nl−1−1
l−1 Dl−1)− rank(Dl−1)−Nl

= rank(Dl−1, Al−1Dl−1, · · · , A
Nl−1−1
l−1 Dl−1)−Nl−1, 1 ≤ l ≤ L. (3.13)
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Next, assume that condition (3.12) holds for all l with 1 ≤ l ≤ L. In particular, we have

rank(DL, ALDL, · · · , A
NL−1
L

DL) = NL. (3.14)

Since NL > 0, we have DL 6= 0. By the alternative of reduction, we get Ker(DT
L
) = {0}.

Inversely, by Lemma 3.1, condition Ker(DT
L
) = {0} implies condition (3.14). Then, it follows

from relation (3.13) that condition (3.12) holds for all l with 1 ≤ l ≤ L.

Proposition 3.4 Let A be a cascade matrix and Ω satisfy the geometrical control condition.

Then system (1.1) is approximately controllable if and only if Ker(DT
L
) = {0}.

Proof By [7] (see also [1]), system (1.1) is approximately controllable if and only if the pair

(A,D) satisfies Kalman rank condition (1.2), or equivalently, by Proposition 3.3, if and only if

Ker(DT
L
) = {0}.

At the end of the section, we give two others examples for further illustrating the reduction

procedure.

Example 2 Consider the following system




u′′

1 −∆u1 + u2 = 0 in R
+ × Ω,

u′′

2 −∆u2 = 0 in R
+ × Ω,

v′′1 −∆v1 + v2 = 0 in R
+ × Ω,

v′′2 −∆v2 = 0 in R
+ × Ω,

u1 = v1 = 0, u2 = v2 = h on R
+ × Γ.

(3.15)

Let

A0 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , D0 =




0
1
0
1


 .

Noting (2.1)–(2.2), we may take

K0 =




1 0 0
0 0 1
0 1 0
0 0 −1


 .

Then, using (2.16)–(2.17) with l = 1, a straightforward computation gives

DT
1 = −(DT

0 D0)
−1DT

0 A
T
0 K0 = −

1

2
(1, 1, 0)

and

AT
1 = (KT

0 K0)
−1KT

0 A
T
0 K0 =

1

2



0 0 0
0 0 0
1 −1 0


 .

Applying KT
0 to system (3.15), we get





u′′

1 −∆u1 +
η1

2
= −

h1

2
in R

+ × Ω,

v′′1 −∆v1 −
η1

2
= −

h1

2
in R

+ × Ω,

η′′1 −∆η1 = 0 in R
+ × Ω,

u1 = v1 = η1 = 0 on R
+ × Γ,

(3.16)
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where

U (1) = KT
0 U

(0) =




u1

v1
u2 − v2 =: η1




and

H(1) = DT
0 U

(0) = u2 + v2 =: h1.

This is a system for the variables u1, v1 and η1. The variable h1 can be regarded as an internal

control in system (3.16).

Next, applying (2.16)–(2.17) with l = 2 to

A1 =
1

2



0 0 1
0 0 −1
0 0 0


 , D1 = −

1

2



1
1
0


 , K1 =



0 1
0 −1
1 0


 ,

we get

A2 =

(
0 0
1 0

)
, D2 =

(
0
0

)
.

Applying KT
1 to system (3.16), we get





η′′1 −∆η1 = 0 in R
+ × Ω,

η′′2 −∆η2 + η1 = 0 in R
+ × Ω,

η1 = η2 = 0 on R
+ × Γ,

(3.17)

where

U (2) = KT
1 U

(1) =

(
η1

u1 − v1 =: η2

)
.

Since D2 = 0, we stop the projection with N2 = 2. By Proposition 3.3, none of the pairs

(A0, D0), (A1, D1) or (A2, D2) satisfies Kalman’s rank condition (3.12). More precisely, we have

rank(D0, A0D0, A
2
0D0, A

3
0D0)− 4 = rank(D1, A1D1, A

2
1D1)− 3 = rank(D2, A2D2)− 2.

Noting rank(D2, A2D2) = 0, it follows that

rank(D0, A0D0, A
2
0D0, A

3
0D0) = 4− 2 = 2, rank(D1, A1D1, A

2
1D1) = 3− 2 = 1.

Example 3 Consider the following system.





u′′

1 −∆u1 + u1 + u2 + u3 = 0 in R
+ × Ω,

u′′

2 −∆u2 + u1 + 2u2 + 3u3 = 0 in R
+ × Ω,

u′′

3 −∆u3 + 3u1 + 2u2 + u3 = 0 in R
+ × Ω,

u1 = u2 = u3 = h on R
+ × Γ.

(3.18)

Let

A0 =



1 1 1
1 2 3
3 2 1


 , D0 =



1
1
1


 .

Noting (2.1)–(2.2), we may take

K0 =




1 0
−1 1
0 −1


 .
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Using (2.16)–(2.17) with l = 1, a straightforward computation gives

DT
1 = −(DT

0 D0)
−1DT

0 A
T
0 K0 = (1, 0)

and

AT
1 = (KT

0 K0)
−1KT

0 A
T
0 K0 =

(
1 −2
1 −2

)
.

Then, applying KT
0 to system (3.18), we get





v′′1 −∆v1 + v1 + v2 = h1 in R
+ × Ω,

v′′2 −∆v2 − 2v1 − 2v2 = 0 in R
+ × Ω,

v1 = v2 = 0 on R
+ × Γ,

(3.19)

where

U (1) = KT
0 U =

(
u1 − u2 =: v1
u2 − u3 =: v2

)
,

H(1) = DT
0 U = u1 + u2 + u3 =: h1.

This is a system for the variables v1, v2 with an internal control h1.

Next, applying (2.16)–(2.17) with l = 2 to

A1 =

(
1 1
−2 −2

)
, D1 =

(
1
0

)
, K1 =

(
0
1

)
,

we get

A2 = (−2), D2 = (2).

Then, applying KT
1 to system (3.18), we get

{
v′′2 −∆v2 − 2v2 = 2h2 in R

+ × Ω,

v2 = 0 on R
+ × Γ,

(3.20)

where

U (2) = KT
1 U

(1) =: v2, H(2) = DT
1 U

(1) = v1 =: h2.

This is a system for the variable v2 with an internal control h2. Since Ker(DT
2 ) = {0}, we stop

the projection.

Since Ker(DT
2 ) = {0}, we stop the projection with N2 = 2. By Proposition 3.3, the pairs

(A0, D0), (A1, D1) and (A2, D2) satisfy Kalman’s rank condition (3.12).

4 Notion of Indirect Controls

For 1 ≤ l ≤ L, the term H(l) can be formally regarded as internal controls in the sub-system

(2.20). But the value of H(l) is given by (2.19), therefore, it can not be freely chosen. So,

H(l)(1 ≤ l ≤ L) will be called indirect internal controls, and accordingly, rank(Dl) denotes its

number. Thus, the original system (1.1) is directly controlled by the boundary control H(0),

and indirectly controlled by the internal controls H(1), · · · , H(L) which are hidden in the sub-

system (2.20) and intervene into the systems at different steps of the reduction. Moreover,
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the formula (3.5) justifies well the notion of the total number of (direct and indirect) controls

previously introduced in [8]. This gives a pretty good explanation to the indirect controls.

The term “direct controls” or “indirect controls” is related to the sub-system (2.20). For

1 ≤ l ≤ L, H(l) can be regarded as direct internal controls in (2.20) at the l-th step or as

indirect controls for the original system (1.1). In any case, this is simply a terminology that we

can use as we want.

Proposition 4.1 Assume that system (1.1) is approximately controllable. Then for all l

with 1 ≤ l ≤ L, the rank condition (3.12) holds and the sub-system (2.20) is approximately

controllable by the internal indirect control H(l).

Proof First by Proposition 3.3 and noting (1.2), we have

rank(Dl, AlDl, · · · , A
Nl−1
l

Dl)−Nl = rank(D0, A0D0, · · · , A
N0−1
0 D0)−N0 = 0.

On the other hand, by (2.19), we have

U (l) = (K0 · · ·Kl−1)
TU (0), 1 ≤ l ≤ L.

Then, the approximate controllability of system (1.1) implies that of the sub-system (2.20) for

all l with 1 ≤ l ≤ L.

We know few about the structure of indirect controls H(l) with 1 ≤ l ≤ L, however, the

following result shows that the indirect controls H(l) should be so smooth that its action on

the sub-system (2.20) will be very weak, especially as the step l increases.

Proposition 4.2 For any given l with 1 ≤ l ≤ L, let

(K0 · · ·Kl−1)
TÛ0 ∈ (H l

0(Ω))
Nl , (K0 · · ·Kl−1)

TÛ1 ∈ (H l−1
0 (Ω))Nl . (4.1)

Then, we have

U (l) ∈ (Cl−k

loc (R+;Hk

0 (Ω)))
Nl , 0 ≤ k ≤ l. (4.2)

Proof For any given (Û0, Û1) ∈ (L2(Ω)×H−1(Ω))N and any givenH ∈ (L2
loc(R

+;L2(Γ)))M ,

the solution to problem (1.1)–(1.2) has the regularity (see [7–8, 10]):

U (0) ∈ (C0
loc(R

+;L2(Ω)) ∩ C1
loc(R

+;H−1(Ω)))N .

For l = 1, consider the reduced system
{
(U (1))′′ −∆U (1) +A1U

(1) = D1H
(1) in R

+ × Ω,

U (1) = 0 on R
+ × Γ

(4.3)

with the initial data:

t = 0 : U (1) = KT
0 Û0 ∈ (H1

0 (Ω))
N1 , (U (1))′ = KT

0 Û1 ∈ (L2(Ω))N1 . (4.4)

Since the right-hand side

H(1) = D0U
(0) ∈ (C0

loc(R
+;L2(Ω)))N1 ,

the solution to problem (4.3)–(4.4) has the regularity (see [11] or [12])

U (1) ∈ (C0
loc(R

+;H1
0 (Ω)) ∩ C1

loc(R
+;L2(Ω)))N1 .

The general case can be easily completed by a bootstrap argument.
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5 Approximate Controllability by Locally Distributed Controls

This section gives only a brief abstract on the internal controllability. It will be carefully

completed in a forthcoming work.

Now we consider the system for the variable U = (u(1), · · · , u(N))T:
{
U ′′ −∆U +AU = χωDH in R

+ × Ω,

U = 0 on R
+ × Γ

(5.1)

with the initial data

t = 0 : U = Û0, U ′ = Û1 in Ω, (5.2)

where H ∈ (L2
loc(R

+;L2(Ω)))M and χω is the characteristic function of a subset ω of Ω.

Remark 5.1 The global case ω = Ω is trivial, so less interesting. For the exact controlla-

bility, ω is often assumed to be a neighbour of Γ in the literature, while for the approximate

controllability, it seems that no restriction on ω will be necessary.

Definition 5.1 System (5.1) is approximately controllable at the time T > 0 if for any

given initial data (Û0, Û1) ∈ (L2(Ω) × H−1(Ω))N , there exists a sequence {Hn} of controls

in (L2
loc(R

+;L2(Ω)))M with support in [0, T ], such that the corresponding sequence {Un} of

solutions satisfies

Un → 0 in (C0
loc(R

+;H1
0 (Ω)) ∩ C1

loc(R
+;L2(Ω)))N as n → +∞. (5.3)

Similarly to the approximate boundary controllability in [9], we can show the equivalence

between the approximate controllability of system (5.1) and the uniqueness of solution to the

following adjoint system for the variable Φ = (φ(1), · · · , φ(N))T:
{
Φ′′ −∆Φ+ATφ = 0 in R

+ × Ω,

Φ = 0 on R
+ × Γ

(5.4)

associated with the internal observation

DTΦ = 0 in (0, T )× ω. (5.5)

Moreover, condition (1.2) is still necessary for the uniqueness of solution to the overdetermined

system (5.4)–(5.5).

Theorem 5.1 If A satisfies Kalman’s rank condition (1.2), then system (5.4)–(5.5) has

only the trivial solution. Consequently, system (5.1) is approximately controllable by locally

distributed controls.

Proof To be clear, let Φ ∈ (C0(R;H1
0 (Ω)) ∩ C1(R;L2(Ω)))N be a solution to system

(5.4)–(5.5). First, applying DT to the equations in (5.4) and noting (5.5), we get

DTATΦ = 0 in (0, T )× ω. (5.6)

Then, successively applying DTAT, DT(A2)T · · · to the equations in (5.4), we get

DTΦ = DTATΦ = DT(A2)TΦ = · · · = 0 in (0, T )× ω, (5.7)
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therefore,

ΦT(D,AD, · · · , AN−1D) = 0 in (0, T )× ω. (5.8)

By (1.2), the matrix (D,AD, · · · , AN−1D) is of full row-rank, then

Φ = 0 in (0, T )× ω. (5.9)

Thus, applying Holmgren’s uniqueness theorem, we get Φ ≡ 0 in (0, T )× Ω, provided that

T > 2d(Ω), (5.10)

where d(Ω) denotes the geodesic diameter of Ω (see [10, Theorem 8.2]).

Remark 5.2 Since the differential operator ∆ commutes with the internal D-observation

(5.5):

DTχω∆Φ = ∆DTχωΦ in D′(ω), (5.11)

the situation is almost the same as for ordinary differential equations (see [5]). This is why the

uniqueness in Theorem 5.1 holds without any restriction on the coupling matrix A, nor on the

damped sub-domain ω.

Remark 5.3 Recall that the controllability time (optimal) for system (1.1) is given by

T > 2(N − rank(D) + 1)d(Ω). (5.12)

It should be sufficiently large, especially as N is large (see [7, 17]). However, the controllability

time given by (5.10) is independent of the number of equations and of the number of applied

controls. It is exactly the same as for a sole equation in [10].

6 Comments

After having discussed the notion of indirect controls, further work would be needed to

develop new results. For example, some interesting problems could be considered as follows.

Question 1 Since the value of H(l) can not be freely chosen, the indirect internal controls

H(l) in the sub-system (2.20) has not the same meaning as the direct internal controls H in

(5.1). Any initiative for further clarifying their relations would be interesting to pursue.

Question 2 The adaptation of the procedure to the coupled system of wave equations with

coupled Robin controls (with two coupling matrices) might be an interesting direction to be

investigated.

Acknowledgement The authors would like to thank the reviewer’s valuable comments.
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[3] Dehman, B., Le Rousseau, J. and Léautaud, M., Controllability of two coupled wave equations on a
compact manifold, Arch. Rat. Mech. Anal., 211, 2014, 113–187.

[4] Hao, J. and Rao, B., Influence of the hidden regularity on the stability of partially damped systems of
wave equations, J. Math. Pures Appl., 143, 2020, 257–286.

[5] Kalman, R. E., Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5, 1960, 102–119.

[6] Li, T.-T. and Rao, B., A note on the exact synchronization by groups for a coupled system of wave
equations, Math. Meth. Appl. Sci., 38, 2015, 2803–2808.

[7] Li, T.-T. and Rao, B., Criteria of Kalman’s type to the approximate controllability and the approximate
synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM J. Control

Optim., 54, 2016, 49–72.

[8] Li, T.-T. and Rao, B., On the approximate boundary synchronization for a coupled system of wave
equations: Direct and indirect controls, ESIAM: COCV, 24, 2018, 1675–1704.

[9] Li, T.-T. and Rao, B., Boundary Synchronization for Hyperbolic Systems, Progress in Non Linear Differ-
ential Equations, Subseries in Control, 94, Birkhaüser, Switzerland, 2019.

[10] Lions, J.-L., Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Vol. 1, Masson,
Paris, 1988.
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