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A Generalization of Lappan’s Theorem to Higher
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Abstract In this paper, the authors discuss a generalization of Lappan’s theorem to higher
dimensional complex projective space and get the following result: Let f be a holomorphic
mapping of A into P"(C), and let Hi, - - -, Hq be hyperplanes in general position in P"(C).
Assume that

q
sup {(1 = 2" ff(2) sz € [ J £ (H)) } < o0,
j=1
if ¢ > 2n% + 3, then f is normal.
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1 Introduction

In the theory of normal families, perhaps the following criterion of Montel [1] is the most

celebrated theorem.

Theorem 1.1 Let F be a family of meromorphic functions in a domain D C C, and let
a,b, c be three distinct points in C. Assume that all functions in F omit three points a,b,c in

D. Then F is a normal family in D.

In 1957, Lehto and Virtanen [2] proved the following well-known result, which says that a

function f(z) meromorphic in the unit disc A :={z € C: |z| < 1} is normal if and only if
sup{(1 — [2[*) f#(2)} < +o0,
zEA

where ft:= % is the spherical derivative of f.

In 1972, Pommerenke [3] posed an open question: For a given positive number M > 0,
does there exist a finite subset E2 C C such that if f is a meromorphic function in A, then the
condition that (1 — |z|?)f#(2) < M for each z € f~!(E) implies that f is a normal function?

Latter, Lappan [4] answered the above question and proved the following well-known result

named Lappan’s theorem.
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Theorem 1.2 Let E be any set consisting of five complex numbers, finite or infinite. If f

is a meromorphic function in A such that

sup{(1 — [2[*) f*(2) : 2 € fTH(E)} < o0,
then f is a mormal function.

In 2020, Tan [5] generalized the above theorem to the n dimensional complex projective

space, and proved the following theorem.

Theorem 1.3 Let f be a holomorphic mapping of A into P*(C), and let Hy, ---, H, be

hyperplanes in general position in P"(C). Assume that

sup { (1 = |2%)(2) zeUf Hj)} < o,

if g>n2n+ 1)+ 2, then f is normal.

Inspried by the method of the proof of the main theorem in Chen and Yan [6], we reduce

the number of hyperplanes in Theorem 1.3 and obtain the following main result.

Theorem 1.4 Let f be a holomorphic mapping of A into P*(C), and let Hy, ---, H, be

hyperplanes in general position in P"(C). Assume that

sup { (1= 22)f4() zeUf H;)} < oo,
if ¢ > 2n? + 3, then f is normal.

2 Notations and Preliminaries

In this section, we introduce some notations and preliminaries related to this paper. For
more details see [7].

Let f = [fo: -+ : fn] be a holomorphic mapping from a domain in C to P"(C) given by
homogeneous coordinate function f; (j = 0,1,---,n) which are holomorphic without common
zeros. In this paper, we also need the following formula named Fubini-Study derivative f* of f
(for details, see [8]),

. LI WP
112 . Z 2 _ s<t<n

Definition 2.1 (see [7]) Let v be an effective divisor on C. For each positive integer (or

+00) p, we define the counting function of v (where multiplicities are truncated by p) by

(]

NP (7, 1) ::/ nLdt 1<r<oo,
1
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where nl?! (t) = > min{v(z),p}. For brevity, we will omit the character [p] in the counting
EES

Sfunction if p = +o0.

For a meromorphic function ¢ on C (p Z 0, p # c0), we denote by (¢)o the divisor of zeros

of . We have the following Jensen’s formula for the counting function:

N(r, (¢)o) — N(r, (é)o) = % /0277 log |p(re™”)[d6 + O(1).

Definition 2.2 (see [7]) We define the proximity function of ¢ by
1 2w )
mirg) = 5= [ Tor* e(re) s

where log™ x = max{0, logz} for z > 0.

If ¢ is nonconstant, then m(r, %) = o(Ty,(r)) as r — oo, outside a set of finite Lebesgue
measure (Nevanlinna’s lemma on the logarithmic derivative).

Nevanlinna’s first main theorem for ¢ states that, for any a € C,

T,(r) = N(r, (@ia)o) +(r, @ia) +0(1).

Definition 2.3 (see [7]) Let f be a holomorphic mapping of C into P"(C) with a reduced

representation (fo,-- -, fn). The characteristic function T¢(r) of f is defined by

1 27 . 1 2 .
7y(r) = 5= [ togllfrea0 - 5o [ tog 5 oo, 7> 1

2m
where || = max ||
Let H= {(wo: " :wy) € P"(C): éaiwi =0} be a hyperplane in P"(C) such that f(C) ¢
H. Denote by (H(f))o the divisor of zer_os of z:l: a; fi(z), and put Nj[cp] (r, H) := NP (H(f))o).

=0
Definition 2.4 Let g, k be two positive integers, satisfying ¢ > k > n and let Hy, ---,

H, be q hyperplanes in P™(C). These hyperplanes are said to be in k-subgenerral position if
k
H;, =0, forall 1<jo<---<jr<q.
i=0
Definition 2.5 (see [7]) Let f be a holomorphic mapping of C into P™*(C). If there exists
a hyperplance H in P™*(C), such that f(C) C H, then we call that [ is a linearly degenerate

holomorphic mapping, otherwise [ is linearly non-degenerate.

Definition 2.6 (see [3]) Let f : A — C be a meromorphic function, and let F = {f o ¢ |

v : A — A be a conformal mapping}. If F is normal in A, then f is called a normal function.

Similarly, we can give the following definition for the normal curve.
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Definition 2.7 Let f : A — P"(C) be a holomorphic mapping, and let F = {fop | ¢ :

A — A be a conformal mapping}. If F is normal in A, then f is called a normal curve.

Nochka’s Second Main Theorem (see [9]) Let f be a linearly non-degenerate holomor-
phic mapping of C into P*(C), and let Hy, ---, H, be ¢ hyperplanes in k-subgeneral position
in P*"(C) (k>n and ¢ > 2k —n+1). Then

q
(g = 2k +n = D)Ty(r) < S NP, Hy) + o(Ty(r)),
j=1
where “||” means the estimate holds for all large r outside a set of finite Lebesgue measure.

3 Preliminary Lemmas

Before we give the proof of our main theorem, we need the following version of Zalcman’s

lemma for holomorphic mappings from the domain Q C C to P*(C).

Lemma 3.1 (see [10]) Let F be a family of holomorphic mappings of a hyperbolic domain
Q in C into P*(C). The family F is not normal on Q if and only if there exist sequences
{fx} CF, {zx} C Q with 2z, — 20 € Q, {rx} with rpy >0 and v, — 0, such that

9i(&) = fr(zr + 1i€)
converges uniformly on compact subsets of C to a nonconstant holomorphic map g of C into
P*(C).

Lemma 3.2 (see [7]) Let f : C — P"(C) be a holomorphic mapping, and Hi, ---, Hy be
(¢ > 2n+ 1) hyperplanes in P"(C) in general position. If for each j =1, ---, q, either f(C) is

contained in H;, or f(C) omits H;, then f must be a constant.
The following lemma plays an important role in the proof of Theorem 1.3.

Lemma 3.3 (see [5]) Let f be a linearly non-degenerate holomorphic mapping of C into
P*(C), and let Hy, -- -, Hy be q hyperplanes in k-subgeneral position in P"(C), where k > n and
q>2k—n+1. Assume that f(z) € H; = f*(2) =0,j=1, -, q. Thenq<2k(n+1)—n-+1.

In this paper, inspired by the method of Chen and Yan [6], we improve the above lemma

and get the following lemma, which plays a key role in the proof of our main theorem.

Lemma 3.4 Let f be a linearly non-degenerate holomorphic mapping of C into P™(C),
and let Hy, ---, Hy be q hyperplanes in k-subgeneral position in P"(C), where k > n and
q>2k—n+1. Assume that f(z) € H; = f¥(2) =0,j=1, -+, q. Thenq < 2k(n+1)—2n+3.

Proof We pick up a reduced presentation (fo, -, fn) of f. We also write it as f =
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(fo,-++, fn) and let f/ = (f§,---, f}). For each z € U 71 (H;), we define

7j=1

A, = {(CLo, R 70/11) ccntl. aof()(Z) +--- anfn(z) = 0}

q

Since A, is a vector subspace of dimension n of C"*! and since |J f~!(H;) is at most countable,
j=1

it follows that there exists a vector

0= (o, ,ln e(C"“\(O U ).
J=lzef~*(Hj)

Let L be a hyperplane in P*(C), where L(w) is defined by the equation
(w,0) =lowo + - - + Lywy, = 0.

By our choice, we have

Moreover, we can also choose such L(w) to satisfy that for all i € {1,2, -+ ,q}, Z(w) #
constant.
Set ®; = L((f)), where i =1,2,--- ,q.

If there exists some iy € {1,2,---,¢}, such that ®;, = C, then H;,(f) = CL(f), and we
have (f,a;,) = (f,C¥¢), which implies that (f,a;, — C¢) = 0. Since HZO (w) £ C, we have

a;, — Cl # 0, which means that f is linearly degenerate, a contradiction.

Then, for every i € {1,2,---,q}, ®; # constant. and then

o = (A0’ _ DY) = )LD
AL ()

For any zg € C, ®/(zp) = 0, we divided into two cases.

£0.

Case 1 f(20) € H;, then (f(20),c;) = 0. And if 20 € {2 | v(5,1,)(2) > 2}, we have
(f'(#0), ;) = 0. Then, z¢ is a zero of @}, and

Ve (20) > min{v(s 1,y (20), v, 1) (20)} = Vg my (20) > 1
We note that

{2 vy (2) 2 2} = {2 [ vym,)(2) =2} U{z | v m,)(2) = 3}
U U{z | vgmy(2) = ny ULz | vigmy(2) > n}.

If 20 € {z | vif,my (2) = (= {2 | vipr,my (2) = 1= 1}), 2 <1 < n, then

29 (20) > min{v (s 1,y (20), V(5 ,1,) (20)} = viprmy (20) =11
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= min{v s u,y(20),n} — min{vs g,y (20), 1}.
If 20 € {z | v(f,m,)(2) > n}, then 20 € {z | vy m,y(2) > n},

v (20) = min{v(s i,y (20), V(g 1,y (20)} = vipr miy (20) > 0 > min{vg gy (20), 0}

Case 2 f(z9) € Hj, where j € {1,--- ,q} and j # i. By the condition of this lemma, we

have

and

[fo - ful(z0) = [fo =+ Fr](20)-

Then H;(f)(z0) = A(z0)Hi(f')(20) = Az0)(Hi(f))'(20) and L(f)(z0) = Az0)L(f")(20) =
Mzo0)(L(f) )(z0), where A(zo) is a constant. Thus, ®i(z9) = 0. So, we have any zero of
(f(20), ;) is also a zero of @f.

Since Hi, ---, Hy are in k-subgeneral position in P"(C), combining with the discussion

above, we have

q
D Ny )+ NGy () = N () < kNay ()
j=1,j#i
< kTg: (r) + O(1). (3.1)

By the first main theorem and the logarithmic derivative lemma of Nevanlinna theory for

meromorphic function, we can easily get
Ty (r) < 2T, (1) + o(Te,(r)). (3.2)

By (3.1)=(3.2) and [7, p.162], we have

q

>N Gy () + Ny () = NGy () < 26T, (1) + o Ta, (1)

J=1,j7#i
= 2kTr(r) + o(Ty(r)). (3.3)
Take summation of (3.3) over 1 < i < ¢, we have
] Sl B ]

(g—1) ZNfHJ Z " ZN ) < 2kqTs(r) + o(T¢(r))

=1

- 1

(g=2)Y Ny )+ ZN[’” ) < 2kqTy(r) + o(Ty(r))

j=1

(q ; 2) ZN[?]HJ ZN["] ) < 2kqT(r) + o(Ty(r))
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(g—2+n)

a
n —

N{Py (7)< 2KT3(r) + (T3 (r).
1

J

By Nochka’s second main theorem, it follows that

H (g—24+n)(g—2k+n— 1)Tf(7") —o(Ty(r)) < 2kqTy(r) + o(T(r)).

n

Comparing the coefficients of T¢(r) in the both sides of above inequality, we have

(g—2+n)(g—2k+n-1)

< 2kq,
then

@+ (2n—2k —3 —2kn)g+ (n —2)(n — 1 — 2k) <0.
Since,

A= (2n—2k —3—2kn)* —4(n —2)(n — 1 — 2k)
= 4k*n® + 8k*n — 8kn® + 12kn + 4k* — 4k + 1
< (2kn 4 2k — 2n + 3)2.

By calculation,

_ —(2n — 2k — 3 — 2kn) + VA

q< 5 <2k(n+1)—2n+3.

Thus, this lemma is proved.

4 Proof of Theorem 1.4

If not the case, we may assume that sup{(1—|z|2)f¥(z)} = +oo. Then there exist a sequence
zEA
Zk, |2k < 1, such that

Jim (1= |k [*) f*(2k) = +o0.
Let
fe(z) = flze+ (1 —|zk])2), z€A.
Since |z + (1 — |zk]) 2| < |zk] + (1 —|2x])|2] < |2k] + 1 — |zk| = 1, we have f, is well-defined. By

calculation,
FEG) = (1= Lz fH (e + (1 = |2x])2),

then

(L= fea)f* () (= |2l?) £ (2x)
1+ |2] 2

FRO) = (1 = Jzul) ff (2n) =
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Thus, klim f,g(O) = 400 and {fx(2)} is not normal at z = 0.
—00

By Lemma 3.1, there exist points z; € A, positive numbers pj, with p;, — 0 such that

91 (&) = fr(zr + €)= 9(8);

where ¢ is a nonconstant holomorphic mapping of C into P"(C).

If for each j € {1,---,q}, g(C) is contained in H;, or ¢(C) omits H;. By Lemma 3.2,
g is a constant, a contradiction. So there exist some j € {1,---,¢} and & € C, such that
(9(0), ) = 0 but {g(£), o) # 0.

We now prove that g#(&) = 0. By Hurwitz’s theorem, there exist points & with & — &
(as k — 00), such that gi(&x) € Hj, and hence fi(z; + prée) € H;. Then f(zr + (1 — |2i]) (2] +

Prér)) € Hj
Denoting

k= 2k + (1 — |z&]) (2 + prér),

we have, by the condition of this theorem, there is a positive constant M such that
(1 = lag[*) f¥(ar) < M

for all k sufficiently large.

By calculation,

gL () = prfi(zi + prtr)
= pr(1 = [zi]) f* (2 + (1 = |25]) (2 + préi))

_ pr(L —|z)) e
T P (P TN LSRR R

pk(l w7 e (3 + peé)l)
Tz (U= zl) (2 + o)
pi(1 = |z + préil) !
T 1 [z + (1 — |zkl) (25 4 prée)|
ol I )
(U= 1z DA e 4+ (U= 2D (2 + oxée))

1
(1~ laxl?) f*(ar)

By the proof of Lemma 3.1, we have hm - IZ*\ =0, then
k— o0
L = Pk ‘ ( I )_ Pl e,
1=zl 11—z 1_|k| 1—|ZZ| —|*| 1— ]
=1- €kl >
1- | il

as k — oo.

So, we have

Pk
gh (&) < 2M -
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Let k — oo, g*(&) = 0.

Without loss of the generality, we may assume that there exists some integer g with 1 <
¢o < ¢, such that for any j € {1,---,q}, 9(C) ¢ Hj, and j € {qo +1,--- ,q}, g(C) C Hj.
Denote the smallest subspace of P"(C) containing g(C) by P. Then p := dimP > 1, and ¢ is
a linearly non-degenerate entire curve in P. Since Hy, ---, H, are in general position, we have
q— qo + p < n, furthermore, Hy = Hi N P, -, Eq/o := H,, NP are hyperplanes in n — (¢ — qo)
subgeneral position in P.

For each j = 1,---,qo and for all {§, € C, such that g(&) € H;, we have g(&) € I‘Ivj and

9% (&) = 0.
Since ¢ > 2n2+3 > 2n+1, we have go > qo—(¢—qo) — (¢—2n—1)—p = 2[n—(q—qo)] —p+1.
Applying Lemma 3.4, we have

g0 <2(n—(q¢—q))p+1)—2p+3.

Then
qo+2p+1)(g—q0) <2n(p+1)—2p+3.

Therefore,

q=qo+ (¢ qo)
< q0+2(p+1)(q - q)
<2n(p+1)—2p+3
=2n+(2n—2)p+3
<2n+(2n—-2)n+3
=2n%+3.

This contradicts to the assumption that ¢ > 2n? + 3. Thus, we have sup{(1 — |2]?)f#(2)} < oc.
zZEA
The proof of Theorem 1.4 is finished.
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