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Abstract In this paper, the authors investigate the boundedness of Toeplitz product
TyT, and Hankel product H;H, on Fock-Sobolev space for f,g € P. As a result, the
boundedness of Toeplitz operator Ty and Hankel operator Hy with f € P is characterized.
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1 Introduction

Let C™ be the Euclidean space of complex dimension n and dv be the Lebesgue measure on

C™. For z=(z1, -+ ,2,) and w = (wyq,- -+ ,w,) in C", we denote
— —\ L
zjwj, |z =(z-2)2.

The Fock space F? consists of all entire functions f on C" such that

1 L2 2
9= (5 [ 1P du)” <.
C’n
Let N be the set of nonnegative integers. For any multi-index o = (a1, -+ , ) € N” and
z € C", we write
ol =1+ 4 an, al=agl-a,l, 9Y=07"-- 0, 2% =zt

where 0; denotes the partial derivative with respect to the z;.
For any m € N, the Fock-Sobolev space F>™ consists of all entire functions f on C" such
that

I fll2.m =Y [0%f]2 < oo

laf<m
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The Fock-Sobolev space was introduced by Cho and Zhu in [4], where they proved that
f € F2™ if and only if the function 2 f(z) is in F? for all multi-indexes o with |a| = m, which

allows us to introduce the equivalent norm on F2™:

1
1.2 2
19 em = (o [ 1FGIRIEPeF do(z))
(C’n.
where
(n—1)!
Wnom = ————
T g (m 4 n)
is a normalizing constant such that the constant function 1 has norm 1 in F2™.
For any z € C", Let

AV (2) := wn7m|z|2me_|z|2dv(z).

Denote L2, by the space of Lebesgue measurable functions f on C" so that the function
f(z) € L*(C",dV,,). It is well-known that the space L2, is a Hilbert space with the inner
product

<f7 g>m = o f(Z)@de(Z)

It is clear that the Fock-Sobolev space F'>™ is a closed subspace of L2,. Let P, be the

orthogonal projection from L2, to F2™, that is
Pnf(z) = g fw) K (2, w)dVin(2),

where K,,(z,w) is the reproducing kernel of F?™.
For a Lebesgue measurable function f on C" such that fK,,(z,-) are in L?(C",dV,,) for all
z € C", the Toeplitz operator with symbol f on F?™ is defined by

ng = Pm(fQ)a

and the Hankel operator H; with symbol f is given by

Hyg = (I = Pun)(f9),

where [ is the identity operator on L2,.

The original Toeplitz product problem was raised by Sarason in [8], to ask whether one can
give a characterization for the pairs of outer functions g, h in the Hardy space H? such that
the operator T,T% is bounded on H?. The famous Sarason’s conjecture on this problem has
attracted the attention of some mathematical researchers in operator theory. This problem was
partially solved on the Hardy space of the unit circle in [13], on the Bergman space of the unit
disk in [9], on the Bergman space of the polydisk in [10] and on the Bergman space of the unit
ball in [7, 11]. Unfortunately, Sarason’s conjecture was eventually proved to be false, both on
the Hardy space and the Bergman space, see [1, 6] for counterexamples. However, in [2-3], the
Sarason’s conjecture was proved to be true on the Fock space, and in this setting, the explicit

forms of the symbols f and g were given. Although the boundedness of a single Toeplitz operator
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on Fock space is still an open problem, some progress has been made in Toeplitz products and
Hankel products. Ma, Yan, Zheng and Zhu [5] gave a sufficient but not necessary condition on
bounded Hankel product H}Hg for f,g in the Fock space. Yan and Zheng [12] characterized
bounded Toeplitz product 7T, and Hankel product H}Hy on Fock space for two polynomials
fand g in z, Z € C. Inspired by these work, we study the boundedness of Toeplitz product
T'yTy and Hankel product H;Hg on F 2m for two polynomials f, g € P, where

n
P = { H ( Z Z algs%,szfﬂzs) ik, ls €N, 2z, € C and ag,,, s are constants}.

s=1  Bs<ksvs<ls

Our main results can be stated as follows.

Theorem 1.1 Let f,g € P. Then the Toeplitz product TsT, is bounded on F*™ if and

only if both  and g are constants.

Theorem 1.2 Let f,g € P. Then the Hankel product H;Hy is bounded on F2m if and
only if at least one of the following statements holds:

(1) f is holomorphic.

(2) g is holomorphic.

(3) n =1 and there exist two holomorphic polynomials f1 and g1 such that
f:f1+a27 gzgl—l—b?,
where a,b are constants and z,Z € C.

We would like to mention that all the conclusions for the Fock-Sobolev space F2™ in this
paper are consistent with the results in [12] when m = 0 and n = 1, but the boundedness
characterization of Hankel product for n > 2 is essentially different from n = 1 and all the
results for m > 1 are new.

The layout of the paper is as follows. In Section 2 we give the proof of characterizations of
bounded Toeplitz product T¢T, on F>™. In Section 3 we give the proof of characterizations of
bounded Hankel product H} Hg.

In what follows, denote by xg the characteristic function of a measurable set E. We say
a multi-index o = (a3, ,a,) € N tends to oo if each component «; tends to oo. For two
arbitrary sequences A, and B, depending on multi-index o = (a1, -+ , a, ), we use the notation
A, ~ B, to denote the relationship:

i 5t =
where C' is a positive constant independent of «.

Recall that the Stirling’s formula is stated as

K~ m(ﬁ)‘“,

e

”

where k is a positive integer and “~” can be understood in the sense that the ratio of the two

sides tends to 1 as k goes to oc.
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2 Toeplitz Products

In this section, we are going to characterize bounded Toeplitz product 17, with f,g € P.
For a € N” and z € C", the functions

(2) = (m+n—11n—1+|a)!
Cal®) = a!(n—l)!(m+n—1+|a|)!z

form an orthonormal basis for F™ see [4] for more details.
Given a = (a1, - ,ap), 8= (681, -, 0n) € N", the addition and the subtraction of « and
[ are defined by
a:l:ﬁ = (al iﬁlv"' aaniﬁn)-
We call a > 8 (resp. a> B, a < 8, a < B) if a; > B; (resp. a; > By, o < Bi, oy < ;) for each
i=1,-.,n

We now give a technical result that will be frequently used in the following.

Lemma 2.1 Let {e, : a € N"} be any orthonormal basis of F>™. Then for any 3, v € N"

and z € C™, we have

TZBE’Y €o

al(n—1+|a])!(n—1+|a+B—~|)! (a+B)!(m+n—1+4|a+8))!
(@t B—N(mtn—1+aD(min—1+atBD  alln—I+latpl  catBb-r a+f—v=0,

0, otherwise.

Proof Direct verifications give

-1 —1
Tooren = (m+n )(n + |af)! P, (Za+ﬁEW) (2.1)
al(n = Dl(m+n—1+a])!
and
Pu(z7720) = 3 (7720 ephmey
neNn
_ Z (m+4+n—1)(n—1+n])! <Za+ﬁ 2T e, (2.2)
L\ =D+ =1+ )} R

For n # o + 3 — 7, it is easy to see that
(z0F08 1), = 0. (2.3)

For n = a+ 8 — v, applying integration in polar coordinates and using [14, Lemma 1.11],
we obtain

(a+B8)!(n—D(m+n—1+|a+ )
(m+n—1ln—-1+|a+8|)!

<204+/37 Zn+'y>m _
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Notice that if «+ 38—~ > 0, then there exists a unique 7 in (2.2) such that n = «+ 3 —~. Thus
P (227877

_ (mtn—-Dn—-1+]a+5—7)) ath atp
\/(a+ﬁ M= Dim+n—T+]at Bl & 7 Imeers=

_ (n=D!n—1+la+5—19]! (et Blm+n—1+la+B]!
Vet B =it n=Dilm+n-T+la+B-D"  (n—T+]a+p)! e
This together with (2.1) gives

TZBE’Yea
_ al(n —1+]a!(n =1+ |a+ 8 —1)) (a+Alm+n—1+]a+ )
V@B lmtn -1+l m+n—T+la+B-aD  alln-T+la+p) T

If &+ 3 —~ is less than 0, then n # o+ 8 — v for all 5 in (2.2), it follows from (2.1)—(2.3) that
T.s3v€o = 0. This completes the proof.

In order to state the following lemma effectively, for any function f, we define

¥ b ] = 07
po =15 (2.4)
foi=1
Lemma 2.2 Suppose 8 = (1, ,0n), ¥ = (1, ,7n), k = (k1,--+ ,kn) and | =
(I, ,1n) are in N™. For any z = (21, ,2,) € C", let
fﬁm ZZ Z alh zl+ﬁl zl’ g’h ZZ Z bl’zsz,—%_uq
i <k; v; <l;
where a,;, b, are constants with ay,, b, nonzero for each i = 1,--- ,n. For iy,--- iy,

jla' o 7jn S {071}; let

Fo(2) = f50 (1) 157 (2n), g0(2) = 690 (21) - gl ().

Then each of the Toeplitz products Ty, Ty, is bounded on F2™ ifand only if =~y =k =1=
0,---,0).

Proof For simplicity, we set i = (i1, ,in), j = (j1, -, jn) and denote

0:= 0.5 = (1 + xg03(11)B1, - 5 bn + X103 (in) Bn),
V=08 = (1 +xq3(01)B1, 5 pin + x{13(0n) Bn),
=Py = (1 4+ X703 (G0)71 5 Ve + X0y (Fn)Tn)s
Y=o = 1+ xq ) s v+ xqay (Gn) )

For oo € N™ satisfying s > X113 (Js)vs + xq13(4s)Bs (s = 1,--- ,n), we apply Lemma 2.1 twice
to obtain

TfB Tgw (&

— Z Z Z Z al(jll) f}:)b(h) bl(j{;n)TzezﬁTngEwea

1<k pin <kn v1<l1 vn<ln
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Z Z Z Z al(jll)...al(j:lz)bl(jjl'l)_..bl(jJT'Ln)fIvZGE19

1<k pon <kn v1<ly v <ln
><( alln =1+ |a)(n =1+ |a+ o —|)!
(a+o—)(m+n—1+]a)l(m+n—1+|a+e—1|)!

" (a+o)l(m+n—14+|a+¢|)!
alln — 14+ |a+ ¢|)!

Z Z Z Z aﬁf)"'aﬁ:)bl(,?)”'bz(/i")

1<k pn <kn 1<l v <ln
><( alln =1+ la)l(n -1+ |a+e—P|)!
(a+e—)m+n—1+]a)l(im+n—1+|a+¢—1|)!
(ot o)m+tn—1+4|a+p|)!
al(n—1+Ja+ ¢|)!

X\/ (ate—Pln—1+lato—¢)(n—1+|at+e—1y+6—0)

)ea+w—w

(a+p—t+0-U)!(m+n—-1+la+p—¢p)(m+n—-1+]a+p—1+0—79|)!
(a+o—Y+O)m+n—14|a+e—1+06))!
(a+p—Ul(n—1+|a+¢—1+0))!

= Z Z Z Z aﬁf)-'-aﬁf)bﬁ?)-'-b,(,i")AiﬂWeaw—ere—m (2.5)

1<k pn <kn v1<ly vp <ln

) Catp—yp+0—19

where

A0t ._\/ alln—14+a)ln—14|a+p—1+06—9|)!
« (a+o—Y+0—Nm+n—1+a)(m+n—1+]a+e—1y+0—19|)!
" (a+o)la+o—v+0O)(m+n—1+]a+p)(n—1+|a+e—1p|)!
alla+o—v)(n—1+]a+e)im+n—14+|a+e—¢|)!
(m+n—1+a+e—1v+0))!
(n—1+la+¢—v+0])!

An application of Stirling’s formula implies that

A0V 3ot tOt0) — (3Bt tuty <y < (2.6)

Since ay,, by, are nonzero constants for each i = 1,---  n, it follows from (2.5) and (2.6) that

HTfBTgwea”Q,m:‘ ST S S e S Gl alg ) A0

p1<k1 pn <kpn v1<l1 Vn <lpn
(i1) (in)7 (41) (Gn) o % (B+v)+k+1
~agea o b |

Therefore, if we denote

A={aeN":a;> xy(ds)7s + xq13(is)fs for any s = 1,--- ,n},

then the Toeplitz product Ty, T, is bounded if and only if

{||TfBTg»yeOé||2,m}a€A
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is uniformly bounded on F*™, which is equivalent to 3 = v = k = [ = (0,---,0). This
completes the proof of Lemma 2.2.

Next, we will use Lemma 2.2 to prove the main theorem in this section. To this end, we
first recall that, if f € P, then there exist k = (k1,--- ,k,) and I = (I1,- - ,l,,) € N™ such that

10 =T1( X X asnizr). (2.7)
s=1  Bs<ksvs<ls

For any s =1,--- ,n, let
s =min{fBs — s 1 ap,~, # 0,85 < ks, s < s}
and
i1,s = max{fBs — Vs : ag,, 7 0,Bs < ks,vs < ls}-

For each integer 0, satisfying igs < 05 < i1 s (s =1,---,n), let Fy (zs,%5) be the sum of
all those terms ag,.z"*Z7 in the polynomial formula (2.7) of f such that 85 — s = 0. If
there is no such kind of term, we set Fy, = 0. Then Fy, is of the same form as the function
fa, (if 05 > 0) or the complex conjugate of fg, (if f5 < 0) in Lemma 2.2. Thus, with this new
notation, the expression in (2.7) may be rewritten as

f(z, H( “Z Fy,( zs,zs)
s=1  Os=io,s

Now, we give the proof of the first main result.

Proof of Theorem 1.1 If both f and g are constants, then it is easy to check that Toeplitz
operators Ty and T, are both bounded on F*™. Hence the Toeplitz product 1747, is bounded
on F2m,

Conversely, suppose that the Toeplitz product 7}7} is bounded. Since f,g € P, from the
above discussion, f and g admit expansions:

i1,s n J1,t

(2,%) ﬁ( Z zs,z_s)), 9(2,%z) = ( Z Gq-t(zhz_t))v

0s=io,s t=1  Te=jo,s
where Fj, (2s,%5), Fi, . (25,%5), Gj,, (2, %) and Gj, , (24, %) are nonzero for all s,t =1,--- ,n.

In what follows, we write

Iy, = F‘gs (Zsaz_s)v GTt = GTt (Zt,Z_t)

s

for simplicity. Therefore

91,1 i1,n Ji,1 Ji,n
TrTgeq = E : E : E E TFel -Fo,, TGTI" -G, Ca
01=10,1 0rn=10,n T1=Jo,1 Th=Jo0,n

-Gy, , Ea + Z TFel"'anTGTl---GTnea' (2.8)

(017 i 7177—1; o ;Tn);é
(31,1, 711 nsJ1,157 5 01,n)

TF71 1’ F"l nTGJl 1



408 Y. Y. Zhang, G. F. Cao and L. He
Set multi-index
w = (max{lio,|, [i1,1]} + max{[jo, [71,11}, -, max{lion|, [i1,n|} + max{|jo,nl, [j1,n[})-

It follows from the definitions of Fy , G, and the proof of Lemma 2.2 that for any a > k,
ﬁ = (91’... 79n), v = (7‘17.” ,Tn) with Z'())S < 95 < ZILS and jO,t <7 < jl,t (57t = 1’... 7n)
such that (917 T 791177—17 T 7Tn) 7é (i1717 T 7i1,n7j1717 T 7j17n)7 we have

Try,-Fo, TG, G, €a € SPAN{€atp1r}-

Notice that the first term of (2.8),

Tr, ,Fi, 16, G,y , €a € Span{eas/1+ }
where 8 = (i11, - ,i1,n) and v = (j11,- "+ ,J1,n), We see that TF711,1"'Fil,nTGh,l“'Gh,nea is
orthogonal to the second term of (2.8) for a > k. It follows that
HTngeaHZm > HTFil,1-~~F¢1,n TGj1,1~~-Gjlyn eaHZm-
Obviously, the boundedness of 1T, implies the boundedness of Tp,il’l...pim TGhJ”'Gh,n' This

and G must be constants.

]1,17.-.

,G
Tc,, G, , is bounded if (2.8) is replaced by

along with Lemma 2.2 implies that Fj, ,---, F

il,n jl,n

Similarly, we can also conclude that TE.0 LF
eqn + Z TFel'"FenTGTl---GTnem (2.9)

(01, 00,71, T0)#
(40,15 »80,n,30,15"* »J0,n)

Tngea = TFio,f”Fio,n TG el

Jo,1"""Ydo,n

where the summation is taken over all ig1 < 61 < d11, - ,iopn < Oy < G1m, Jou < 71 <

j1717"' 7j07n < Tn < jlﬂl such that (917"' 797177—17"' 7Tn) 7é (iO,la"' 7i0,n7j0,17"' 7j07n)' By

Lemma 2.2 again, F; , Fiy.,, and G} , G, must be constants. Thus f and g are

0,17.'. 3011’...

constants. This completes the proof of Theorem 1.1.

Corollary 2.1 Assume that f € P. Then the Toeplitz operator Ty is bounded on F*™ if

and only if [ is a constant.

Proof It follows from Theorem 1.1 by setting g =1 or g = f.

3 Hankel Products

In this section, we are to characterize bounded Hankel products H;H, with f,g € P. For

technical reasons, we require the following lemma.

Lemma 3.1 Assume ﬂ = (517"' 7ﬁn); Y= (’717"' 7’711)’ n = (/1'17"' 7/1'11) and v =
(V1. ,vp) are all in N*. Let f = 2927 and g = zMz" for 2,Z € C". Then for any

a> (v =Bl + [pr — vl 5 [y = Bl + |pn — val), we have

H?nga = Aaea+7+#_5_l,,
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where

M :(m+7+uﬂm+n—1+m+7+Mﬂ_&%Hmm+7+u—w
“ al(n =1+ Ja 4+ pl)! alla+p—v)!
(mtn—Tl4ja+p)n—1+la+tp—vh(m+n—1+|a+y+p—v])
m—1+]a+p)l(m+n—1+]a+p—v)n—1+a+v+pu—rv)! )

y alln—=14+aD(n -1+ |a+~v+p—5—v|)! (3.1)
@tr+p—B-vmtn—1+am+n—I+tlatytn-B-) =
Furthermore, A, =0 if and only if vy =0 orv=0. And if A, # 0, then
Ay ~ (Z"YJVJ _1) g (3.2)

Proof We only give the proof for the case of m # 0, since the case of m = 0 is much

simpler. It is easy to verify that
H}H, = T3, — T5Tg = Torrugsrr — Tprze Tonzv. (3.3)

It follows from Lemma 2.1 that for any o > (|1 — B1] + |1 — vil, -+ [ — Bal + [0 — vnl),

we have

Tz’y+uzﬁ+v (Y

B alln—=14+aP(n -1+ |a+~v+p—5—v|)!
NV (a+yrpu—B-v)m+n—1+|a)(im+n—1+|a+y+pu—F—v|!
Llatytmimtn—1+]at+y+p)

€a B 3.4
alln — 1+ Ja+v+ u|)! ML (34)
Applying Lemma 2.1 again, we obtain
Tz’vgﬂTz*‘E” €a
. al(n— 1+ [a)(n — 1+ o+ — 1))
TN @t =)t n =1+ fal)lm +n =1+ ]a+pu—v])

(a+m)(m+n—1+|a+ pu|)!
X Catpu—v
al(n — 1+ Ja+ p|)!

_ (atp—v)in—l+jot+p—v)ln—1+|at+y+p—p5—v|)

SV (atyrp=B-v)im+n—1+|a+p—v)(m+n—1+]a+y+p—5-v)

(a+pla+y+p—v)iim+n—1+]a+pu)lim+n—1+a+v+p—v|)!
(ot pu— N n—1+]ata)ln—1+aty+u—)

B alln—1+a)l(n—1+]a+y+p—LF—v|)

N a+y+p—B-v)m+n—1+a)(m+n—1+|a+y+p—B—v|)
(m+n—1+la+u)l(n—1+]a+p—v)lm+n—1+a+y+pu—v)l
m—1+]a+pu)l(m+n—1+]la+p—v)n—1+|a+v+pu—v)!

(a+ )l (a+y+p—r)
alla+p—v)!

X

Catytp—pf-v- (3.5)
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Combining (3.3)—(3.5), we deduce the explicit formula for A, in (3.1). From this formula, it is
not hard to see that A, = 0 is equivalent to v =0 or v = 0.
If A, # 0, then by Stirling’s formula, we have

(@t+y+p—F=v)in—T1+m+la)l(n-1+m+fat+y+p—F—v)

Btv—y—p
pl

\/ aln—1+]a)ln—1+a+vy+u— 8-

o™ (3.6)

C(aty+plmAtn—T+|a+y+pu)  (a+p)l(a+y+p—v)
a(n— 1+ [t + )] I CETED)
(mtn—1+jotu)ln—1+jatp—v)(mt+n—1+lat+vy+p—v|
m—1+]a+p)(m+n—1+]a+p—v)n—-1+a+y+pu—rv))!

(3.7)

for simplicity. Next, we study the asymptotic behavior of B, as each component «; tends to
infinity. Firstly, we estimate the first term of B,,.

(a4+y+p)!(m+n—14|a+y+pu)
alln =14 Ja+ v+ pl)!

n YitH; m

= (H IT ¢ aj+z)H(n—1+|a+7+u|+i)

j=1 =1 i=1
n Vit

_ (H (ajv_mu +( Z i)a;ﬁm +O0(a vj+uj—2)))

j=1 i=1

x (la™ + (Yo (n =1+ Iyl + lul + ) o™~ + O(la]™))
i=1
n Yit+H;

= (OﬂJ”‘-i-Z( Z z) _1oﬂ+“+ Z O o 1a;1))

= 7,k=1

< (lal™+ (3om =1+ 1yl + 1l + ) o™ + O™ 3))

i=1

n o YjTHj m
= o™ |al" + Z ( > iJag e al™ + (Y0 (n = 1+ o] + [l + ) Ja7 o]
= i=1
+ 0> H|a™2) 4 Z O(a”'“‘aj_l|a|m_l) + Z O(a7+“aj_la;1|a|m). (3.8)
Jj=1 j.k=1
Besides,
(a+ )l a+y+p—r)
alla+p—v)!
n  Hj n Y
= (HH aj +i )(HH(aj—i-uj—Vj—i-i))
j=1li=1 j=1li=1

n

<

(

/N

oc’—|—( z)oc’ 1—|—Oo¢§”_2)))

i=1

I
-

J
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(L () 07)
j=1 i—1
- (a“ +§ (:: Z)Oéj_lalu +j;10 O‘MO‘J O‘kl))
(@ + 3 (X0 - )ar'ar + 3 ofwrarerh)
j=1 i=1 Jk=1
—ar S (S (D)ot S ot 0

and
(mAn—1+latp)n—1+a+p—vhi(m+n—1+|at+y+p—v|)
m—1+]a+p)l(m+n—1+]a+p—v)n—-1+a+y+pu—rv))!
_ﬁ(n—1+|a+u|+z)(n—1+|a+7+u—u|+z)
m—1+|a+p—v|+1)

o™ + (32 (n — 1+ |l +3)) a1 + O(|a|m™~2)

o™+ ( i (n =1+ |pl = [v| +1))lal™=* + O(la|™=2)

< (Jalm+ (3= L+l + 1l = vl +9)) o™t + O(lal™2)

i=1

= o™ + (D (=14 lul + 1+ ) [l + O(a]"~2), (3.10)
i=1
which implies that
(ot ) ety +—0)! (m 1= 1+ o+ p)i(n = 1+ Ja+ = wDlm +n — 1+ |a+ 5+ s — v)!
alla+pu—r)! (n—1+]a+p)im+n—14+la+p—v)n—-1+|a+~v+p—v|)!

Hj

s 5 (350 + (330 )

i=1 i=1

(=14l + Pl + ) o

i=1
n

+0(@ ") + 3" 0@ o a" ) + D0 0@ ag oy al™). (3.11)

j=1 k=1

(3.11) Subtracted from (3.8), we obtain

n

= (Yo wwiart)a el + 0@ (a2 + 3~ O™ *a; " )
j=1

Jj=1

n
+ )o@ a; g o ™).
J,k=1

This along with (3.6) gives

_1 B+V+w+u
(Zw )o
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This completes the proof of Lemma 3.1.

Lemma 3.2 Suppose 8 = (B1,-+,Bn), v = (31, sv), k = (k1,--- ,ky) and | =

(I, ,1n) are in N™. For any z = (21, ,2,) € C", let
’L+ﬁ’L 127 Vit (3
fﬁz ZZ Z Qp; %5 Zi g'Yz ZZ Z b”lzl B V
i<k v <l;

where ay,, b,, are constants with ay,, by, nonzero for each i = 1,--- ,n. For iy, -+ ,ip,

Jiso 2 Jn € {0,1}, let |
Fo(2) = £ () - £ () gy(2) = g0 (20) - g0 ().

Then the Hankel product H;ﬂ Hy,. is bounded on F2m 4f and only if at least one of the following
conditions holds:
(1) k=(0,---,0) and Bs =0 for any 1 < s < n such that is = 1.
(2)1=1(0,---,0) and v+ =0 for any 1 <t < n such that j, = 1.
B)yn=p=m=i1r=h=1andky =1, =0.

Proof To begin with, we use the same notations 6, 9, ¢ and ¥ as in Lemma 2.2. Then by

Lemma 3.1, for any o € N" satisfying a > 8 + 7,

Hj Hy e

CF E T X el o

1 <ki pon, <kn v1<l1 v <ln

= Z Z Z Z aﬁ}ff Z")b 71) b(J" waeawﬂo—e—w,

p1<k1 pn <kpn v1<l1 Vn <ln

where

Bovew . ((a—i—ﬁ—i—cp)!(m—i—n—1+|a+19—|—<p|)! (a+o)l(a++¢—)!
“ alln =14 |a+9+ ¢|)! alla+ ¢ —P)!

(m+n—1+la+p)n—1+a+p—vD(m+n—1+|a+9+p— w|))
m—1+]a+e)im+n—1+|a+p—yPD)n—1+|a+39+¢—p|)!

alln—14+1]a)ln—14+]a+9+¢—0—1|)!
(a+94+p—0—P)m+n—1+aD(im+n—1+]a+9+p—0—¢|)!

If 9 # 0 and 1 # 0, then by Lemma 3.1 again, we have B%7%% =£ (0 and

n
q 0ttty
BIUeY E Iabsarta 2

s=1

Z (s + X{l} is Bs)(ys +X{1}(]s)'75)04 «@ 27+N+V'
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Since ay,, b, are nonzero constants for each i = 1,--- ,n, we have

[1H},Hy, eall2m

:‘ ST S S Al alipg b gl

1<k pn <kn v1<l vn <ln

i i) 1.0 ) [ . , _1 Bty
~ |al(cll)"'al(cn)bl(fl)"'bl(i )|Z(ks+X{1}(ls)ﬁs)(ls+X{1}(]s)75)04510¢ 3T k41
s=1

for « > B + . Consequently, the Hankel product H}*B H,. is bounded on F2™ if and only if

the following expression

. . _ B+~
(ks + X{l}(ls)ﬁs)(ls + X{1} (]s)’ys)as 104 3k

is independent of « for each s = 1, - -+, n, which is equivalent to that at least one of the following
statements holds:

(a) (ks + X{l}(iS)ﬁs)(Zs + X{l}(js)'}’s) =0foreach s=1,--- n.

(b)n:ﬁlz'yl:il :jlzlandklzllzo.

Since (a) is equivalent to condition (1) or (2), the desired result is then obtained.

We proceed to prove the main theorem in this section.

Proof of Theorem 1.2 If the statement (1) or (2) is true, then H} = 0 or Hy = 0, it
follows that H}H, is bounded on F2™_ If the statement (3) is true, then we have

H}Hge, = abH; Hze,
= abe,,

by Lemma 3.2, which implies that the Hankel product H;H, is bounded on F 2m,

Conversely, assume the Hankel product H}Hg is bounded on F 2m _If neither f nor g is

holomorphic, we are to show that the statement (3) must be true. Since f € P, there exist
k= (ky, - ,kn) and I = (I1,--- ,1,) € N such that

fE=TI( X X ez, (3.12)

Let

)
=
—
n
|
~—"
I
—=

( Z agsg,szfs).
Bs<ks

Then f; is said to be the pure holomorphic part of f. Similarly, denote g; by the pure holomor-

s=1

phic part of g. Let fo = f — f1 and go = g — g1. Then by our assumption, we see that neither
f2 nor g9 is 0. Moreover, from the discussion before Theorem 1.1, f; and go admit expansions

n i1,s n J1,t

E=TI( Y m.) e=II( X 6-)

s=1  Os=io,s t=1 T¢=jo,t
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where F;

20,5

E

11,5

G

jo.. and G, . are nonzero. Therefore,

H}‘nga = H}2ngea

i1,1 i1, Ji,1 J1,n
- HF91"'F9n HGT1"'GTn Ca
01=1i0,1 n=10,n T1=J0,1 Thn=Jo,n
— * *
= HF770,1 ”'F'i[),n HGjl,l "'Gjl,n €a + E HF91"'F9n HG-rl Grp, € (313)
(01, ,0n, 71,0, Tn)#
(30,157 ,50,n5J1,15* »J1,n)

for any a € N, Set multi-index

k= (max{|io 1, |i11]} +max{|jo 1], [7r1l}, - s max{[io nl, [i1,n]} + max{|jonl, [j1.nl})-

It follows from the definitions of Fy , G-, and the proof of Lemma 3.2 that for any a > x,
B = (917"' 7977.)7 Y= (7—17"' 77-77.) with Z'O,S S 95 S 7:l,s and jO,t S Tt S jl,t (57t - 13 7n)

satisfying (917 e 79715 T1y" 77-71) 7& (il,la e 7i1,n7j1,1a e 7jl,n), we have
H;;gl'“an HGTI”'GTn Co € Span{ea+'y_ﬂ}'

But the first term of (3.13),

*
HE, ,ry, Hay cy €0 € Span{eqt—p},

where v = (ig.1, - ,i0,n) and S’ = (j1,1, -+, J1,n). Therefore, we conclude that

H;},Oyl < Fig o, HGJ'1,1 = Giin €a
is orthogonal to the second term of (3.13) for o > x. This makes

IH;Hgeoll2m > [|HE,

01 HGj1,1"'Gj1,neo‘||2>m

i0,n

for a > k. Carefully examining the proof of Lemma 3.2, we see that H;‘,il P Hg,,  ..q,

is bounded on F>™ if and only if the sequence

{HH;},OJ mFi’O,n HGjl,l ~~~Gj1’n ea||2,m}a2n

is bounded on F*™,
Notice from the definitions of fo and g2 that, for 65 > 0 (resp. 7+ > 0), Fp, (resp. G,,) does

0s

not contain any term as ag, 2%° (resp. b, z["), where ag, (resp. b;,) denotes the coefficient. In

other words, for 65 > 0 (resp. 7z > 0), the term Fy, (resp. G,) is of the following form:

Do etz (resp D by tTz ”t)7 (3.14)

1<p.<ks 1<v, <l

where ks and [; are positive integers greater than or equal to 1.

For 05 < 0 (resp. 7+ < 0), the term Fy, (resp. G,) is of the following form:

szts+10s svetly
E p, 2o F 0] (resp. E by, t2{"Z;" I‘I). (3.15)

s<ks v <l
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Ifigs > 0or ji14 >0 forall s,t =1,---,n, then it follows from (3.14) and Lemma 3.2 that
H;ig,l“'Fm,nHGhJ”'Gh,n is unbounded. Thus, the boundedness of H;io,l“'Fio,nHGh,l”'G
implies that igs < 0 and j; ¢ < 0 for all s,¢ = 1,--- ,n. Then Fp, is the form of (3.15). It

follows from (3) of Lemma 3.2, we have n = 1 and F,, = aoz, Gj,, = boZ, where ag, by are

J1,n

nonzero constants and z € C.
As discussed above, we can also conclude that the Hankel product is bounded if (3.13) is

replaced by

* _ * E *
Hngea = HFil,l"'Fil,n HGjO,l"'GjO,n (% =+ HF91"'F971 HGTl"'G‘rn €Cq-
(01, 00,71, Tn)#
(1,1, ,81,n,70,1,"* 1Jo,n)

Similar to the discussion of H}io LFiy Hg €q, we can also conclude that n = 1 and

j1,1"'Gj1,n

F;, , = a(z, G, , = bz, where aj, by are nonzero constants and Z € C. Therefore, f3(2) = az
and ga2(z) = bz, where a and b are nonzero constants and zZ € C, hence the statement (3) is

true. This completes the proof of Theorem 1.2.

Corollary 3.1 Assume that f € P. Then the Hankel operator Hy is bounded on F*™ if
and only if one of the following statements is true:
(1) f is holomorphic.

(2) n =1 and there exists a holomorphic polynomial f1 such that
f = fl +az,

where a is a constant and z € C.
Proof It is a direct consequence of Theorem 1.2 by setting g = f.

Corollary 3.2 Assume that f € P. Then the Hankel operator Hy is compact on F?™ if
and only if f is holomorphic.
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