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On a Supercongruence Conjecture of Z.-W. Sun∗
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Abstract In this paper, the author partly proves a supercongruence conjectured by Z.-W.
Sun in 2013. Let p be an odd prime and let a ∈ Z

+. Then, if p ≡ 1 (mod 3),

⌊ 5
6
pa⌋

∑

k=0

(

2k

k

)

16k
≡

( 3

pa

)

(mod p2)

is obtained, where
(

·
·

)

is the Jacobi symbol.
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1 Introduction

In the past years, congruences for sums of binomial coefficients have attracted the attention

of many researchers (see, for instance, [1, 3–4, 6, 10, 12, 16–17, 19]). In 2011, Sun [17] proved

that for any odd prime p and a ∈ Z
+,

pa−1
∑

k=0

(

2k

k

)

≡
(pa

3

)

(mod p2).

Recently, Liu and Petrov [7] showed some congruences on sums of q-binomial coefficients.

Pan and Sun [13] proved that for any prime p ≡ 1 (mod 4) or 1 < a ∈ Z
+,

⌊ 3
4
pa⌋

∑

k=0

(

2k
k

)

(−4)k
≡

( 2

pa

)

(mod p2).

In 2017, Mao and Sun [11] showed that for any prime p ≡ 1 (mod 4) or 1 < a ∈ Z
+,

⌊ 3
4
pa⌋

∑

k=0

(

2k
k

)2

(16)k
≡

(−1

pa

)

(mod p3).

Sun [15] proved that for any odd prime p and a ∈ Z
+,

pa−1

2
∑

k=0

(

2k
k

)

16k
≡

( 3

pa

)

(mod p2). (1.1)
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In this paper, we partly prove Sun’s conjecture (see [15, Conjecture 1.2(i)]).

Theorem 1.1 Let p be an odd prime and let a ∈ Z
+. If p ≡ 1 (mod 3), then

⌊ 5
6
pa⌋

∑

k=0

(

2k
k

)

16k
≡

( 3

pa

)

(mod p2).

We shall prove Theorem 1.1 in Section 2. Our result is much interesting because of much

rarer are the examples where the upper limit of the sum is strictly between p−1
2 and p− 1, and

these congruences are much more difficult to handle.

2 Proof of Theorem 1.1

Lemma 2.1 (see [5]) For any prime p > 3, we have the following congruences modulo p

H⌊ p

2
⌋ ≡ −2qp(2), H⌊ p

3
⌋ ≡ −

3

2
qp(3), H⌊ p

6
⌋ ≡ −2qp(2)−

3

2
qp(3).

Proof of Theorem 1.1 In view of (1.1), we just need to verify that

⌊ 5
6
pa⌋

∑

k= pa+1

2

(

2k
k

)

16k
≡ 0 (mod p2). (2.1)

Let k and l be positive integers with k + l = pa and 0 < l < pa

2 . In view of [13], we have

l

2

(

2l

l

)

=
(2l − 1)!

(l − 1)!2
6≡ 0 (mod pa) (2.2)

and
(

2k

k

)

≡ −pa
(l − 1)!2

(2l− 1)!
= −

2pa

l
(

2l
l

) (mod p2). (2.3)

So we have

⌊ 5
6
pa⌋

∑

k= pa+1

2

(

2k
k

)

16k
≡

⌊ 5
6
pa⌋

∑

k= pa+1

2

−2pa

(pa − k)
(

2pa−2k
pa−k

)

16k
=

−2pa

16pa

pa−1

2
∑

k=⌊ pa

6
⌋+1

16k

k
(

2k
k

) (mod p2).

It is easy to see that for k = 1, 2, · · · , pa−1
2 ,

( pa−1

2

k

)

(2kk )
(−4)k

=

( pa−1

2

k

)

(− 1
2

k

)

=

k−1
∏

j=0

pa−1
2 − j

− 1
2 − j

=

k−1
∏

j=0

(

1−
pa

2j + 1

)

≡ 1 (mod p). (2.4)

This, with Fermat’s little theorem yields that

⌊ 5
6
pa⌋

∑

k= pa+1

2

(

2k
k

)

16k
≡ −

pa

8

pa−1

2
∑

k=⌊ pa

6
⌋+1

(−4)k

k
( pa−1

2

k

)

≡ −pa

pa−3

2
∑

k=⌊ pa

6
⌋

(−4)k

( pa−3

2

k

)

(mod p2).
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Thus, by (2.1) we only need to show that

pa−1

pa−3

2
∑

k=⌊ pa

6
⌋

(−4)k

( pa−3

2

k

)

≡ 0 (mod p). (2.5)

Now we set

n =
pa − 1

2
, m =

⌊pa

6

⌋

, λ = −4,

then we only need to prove that

pa−1
n−1
∑

k=m

λk

(

n−1
k

) ≡ 0 (mod p). (2.6)

Setting n = n− 1 in the last equation of page 3 in [18], we have

n−1
∑

k=m

λk

(

n−1
k

) = n

n−1−m
∑

k=0

λm+k

(λ+ 1)k+1

n−1−m−k
∑

i=0

(−1)i
(

n−1−m−k

i

)

m+ i+ 1

+
nλn

(λ+ 1)n+1

n−1
∑

k=m

(λ+ 1)k+1

k + 1
.

It is easy to check that for each 0 ≤ k ≤ n− 1−m,

n−1−m−k
∑

i=0

(

n− 1−m− k

i

)

(−1)i

m+ i+ 1

=

∫ 1

0

n−1−m−k
∑

i=0

(

n− 1−m− k

i

)

(−x)ixmdx

=

∫ 1

0

xm(1− x)n−1−m−kdx = B(m+ 1, n−m− k),

where B(P,Q) stands for the beta function. It is well known that the beta function relates to

gamma function:

B(P,Q) =
Γ(P )Γ(Q)

Γ(P +Q)
.

So

B(m+ 1, n−m− k) =
Γ(m+ 1)Γ(n−m− k)

Γ(n− k + 1)

=
m!(n−m− k − 1)!

(n− k)!

=
1

(m+ 1)
(

n−k
m+1

) .
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Therefore

n−1
∑

k=m

λk

(

n−1
k

) =
n

m+ 1

n−1−m
∑

k=0

λm+k

(λ+ 1)k+1
(

n−k
m+1

) +
nλn

(λ+ 1)n+1

n−1
∑

k=m

(λ + 1)k+1

k + 1

=
n

m+ 1

n
∑

k=m+1

λm+n−k

(λ+ 1)n−k+1
(

k
m+1

) +
nλn

(λ+ 1)n+1

n
∑

k=m+1

(λ+ 1)k

k

=
nλn

(λ + 1)n+1

( λm

m+ 1

n
∑

k=m+1

(λ+ 1)k

λk
(

k

m+1

) +

n
∑

k=m+1

(λ+ 1)k

k

)

.

Hence, by (2.6), we just need to show that

pa−1 λm

m+ 1

n
∑

k=m+1

(λ+ 1)k

λk
(

k
m+1

) ≡ −pa−1
n
∑

k=m+1

(λ+ 1)k

k
(mod p). (2.7)

It is obvious that

n
∑

k=m+1

(λ + 1)k

λk
(

k

m+1

) =

n
∑

k=m+1

1
(

k

m+1

)

(3

4

)k

=

n
∑

k=m+1

1
(

k
m+1

)

k
∑

j=0

(

k
j

)

(−4)j

= B+ C,

where

B =

n
∑

j=m+1

1

(−4)j

n
∑

k=j

(

k
j

)

(

k
m+1

) ,

C =

m
∑

j=0

1

(−4)j

n
∑

k=m+1

(

k
j

)

(

k

m+1

) .

By the following transformation
(

k

j

)

(

k

m+1

) =
k!(m+ 1)!(k −m− 1)!

j!(k − j)!k!
=

(m+ 1)!(k −m− 1)!(j −m− 1)!

j!(k − j)!(j −m− 1)!
=

(

k−m−1
j−m−1

)

(

j
m+1

) ,

we have

B =
n
∑

j=m+1

1

(−4)j

n
∑

k=j

(

k−m−1
j−m−1

)

(

j
m+1

) =
n
∑

j=m+1

1

(−4)j
(

j
m+1

)

n−j
∑

k=0

(

k + j −m− 1

j −m− 1

)

.

In view of [2, (1.48)], we have

B =

n
∑

j=m+1

1

(−4)j
(

j
m+1

)

(

n−m

j −m

)

,

and it is easy to check that
(

n−m
j−m

)

(

j

m+1

) =
(n−m)!(m+ 1)!(j −m− 1)!

j!(n− j)!(j −m)!
=

n+ 1

j −m

(

n
j

)

(

n+1
m+1

) .
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Thus

B =
n+ 1
(

n+1
m+1

)

n
∑

j=m+1

(

n

j

)

(j −m)(−4)j
.

Now we calculate C. First we have the following transformation

(

k
j

)

(

k
m+1

) =
k!(m+ 1)!(k −m− 1)!

j!(k − j)!k!
=

(m+ 1)!(k −m− 1)!(m− j + 1)!

j!(k − j)!(m− j + 1)!
=

(

m+1
j

)

(

k−j
m−j+1

) .

Hence,

C =

m
∑

j=0

(

m+ 1

j

)

1

(−4)j

n
∑

k=m+1

1
(

k−j

m−j+1

) =

m
∑

j=0

(

m+ 1

j

)

1

(−4)j

n−m−1
∑

k=0

1
(

k+m+1−j

m−j+1

) .

With the help of package Sigma (see [14]), we find the following identity:

N
∑

k=0

1
(

k+i
i

) =
i

i− 1
−

N + 1

(i− 1)
(

N+i
N

) ,

which can be easily proved by induction on N .

Substituting N = n−m− 1, i = m+ 1− j into the above identity, we have

C =
m−1
∑

j=0

(

m+ 1

j

)

1

(−4)j

(m+ 1− j

m− j
−

n−m

(m− j)
(

n−j
n−m−1

)

)

+ (m+ 1)
(

−
1

4

)m
n−m
∑

k=1

1

k
.

It is easy to check that

(n−m)
(

m+1
j

)

(

n−j
n−m−1

) =
(m+ 1)!(n−m)!(m+ 1− j)!

j!(n− j)!(m+ 1− j)!
=

(m+ 1)!(n−m)!

j!(n− j)!
=

(n+ 1)
(

n

j

)

(

n+1
m+1

) .

Therefore

C = (m+ 1)

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
−

n+ 1
(

n+1
m+1

)

m−1
∑

j=0

(

n
j

)

(m− j)(−4)j
+ (m+ 1)

(

−
1

4

)m
n−m
∑

k=1

1

k
.

Hence

B+ C = (m+ 1)

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
+

n+ 1
(

n+1
m+1

)

n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
+ (m+ 1)

(

−
1

4

)m
n−m
∑

k=1

1

k
.

That is

λm

m+ 1
(B+ C) = λm

m−1
∑

j=0

(

m

j

)

(m− j)(−4)j
+

λm

(

n

m

)

n
∑

j=0
j 6=m

(

n

j

)

(j −m)(−4)j
+Hn−m. (2.8)
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One can easily check that

n
∑

k=1

(−3)k

k
=

∫ 1

0

n
∑

k=1

(−3)kxk−1dx

= −3

∫ 1

0

n−1
∑

k=0

(−3x)kdx = −3

∫ 1

0

1− (−3x)n

1 + 3x
dx

= 3

∫ 1

0

n
∑

k=1

(

n

k

)

(−1)k(1 + 3x)k−1dx =

∫ 4

1

n
∑

k=1

(

n

k

)

(−1)kyk−1dy

=

n
∑

k=1

(

n

k

)

(−1)k
4k − 1

k

and (the following identity can be found in [2])

n
∑

k=1

(

n

k

)

(−1)k

k
=

∫ 1

0

n
∑

k=1

(

n

k

)

(−1)kxk−1dx =

∫ 1

0

(1− x)n − 1

x
dx =

∫ 1

0

yn − 1

1− y
dy

= −

∫ 1

0

n−1
∑

k=0

ykdy = −

n−1
∑

k=0

1

k + 1
= −

n
∑

k=1

1

k
.

These yield that
n
∑

k=1

(λ+ 1)k

k
=

n
∑

k=1

(−3)k

k
=

n
∑

k=1

(

n

k

)

(−4)k

k
+Hn.

Replacing n by m in the above equation, we have

m
∑

k=1

(λ+ 1)k − 1

k
=

m
∑

j=1

(

m

j

)

(−4)j

j
= (−4)m

m−1
∑

j=0

(

m

j

)

1

(m− j)(−4)j
.

Hence
m
∑

k=1

(λ+ 1)k

k
= (−4)m

m−1
∑

j=0

(

m

j

)

(m− j)(−4)j
+Hm.

So

n
∑

k=m+1

(λ + 1)k

k
=

n
∑

k=1

(

n

k

)

(−4)k

k
+Hn − λm

m−1
∑

j=0

(

m

j

)

(m− j)(−4)j
−Hm. (2.9)

In view of [16, (1.20)], and by (2.2)–(2.4) we have

pa−1
n
∑

k=1

(

n

k

)

(−4)k

k
≡ pa−1

n
∑

k=1

(

2k
k

)

k
≡ pa−1

pa−1
∑

k=1

(

2k
k

)

k
≡ 0 (mod p). (2.10)

It is obvious that

pa−1Hn = pa−1
n
∑

k=1

1

k
≡ pa−1

p−1

2
∑

j=1

1

jpa−1
= H p−1

2

(mod p)

and pa−1Hm ≡ H⌊ p
6
⌋ (mod p), pa−1Hn−m ≡ H⌊ p

3
⌋ (mod p).
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Since p ≡ 1 (mod 3), by [8, Lemma 17(2)], we have

(

n

m

)

6≡ 0 (mod p).

These, with (2.7)–(2.10) yield that we only need to prove the following congruence:

pa−1
n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
≡ 0 (mod p). (2.11)

Now n = pa−1
2 ,m = pa−1

6 , so, by Fermat’s little theorem we have

pa−1
n
∑

j=0
j 6=m

(

n

j

)

(j −m)(−4)j
≡ −3(−1)

pa−1

2 pa−1
n
∑

j=0
j 6=n−m

(

n

j

)

(−4)j

3j + 1
(mod p).

There are only the items 3j + 1 = pa−1(3k + 1) with k = 0, 1, · · · , p−1
2 and k 6= p−1

3 , so, by [9,

Theorem 1.2] and Lucas congruence, we have

pa−1
n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
≡ −3(−1)

pa−1

2

p−1

2
∑

k=0
k 6= p−1

3

( n

kpa−1+ pa−1
−1

3

)

(−4)kp
a−1+ pa−1

−1

3

3k + 1

≡ −3(−1)
pa−1

2 (−4)
pa−1

−1

3

(p−1
2

k

)(pa−1−1
2

pa−1−1
3

)

p−1

2
∑

k=0
k 6= p−1

3

( p−1

2

k

)

(−4)k

3k + 1
≡ 0 (mod p).

Therefore the proof of Theorem 1.1 is complete.
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