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Critical Trace Trudinger-Moser Inequalities on a Compact
Riemann Surface with Smooth Boundary*

Mengjie ZHANG!

Abstract In this paper, the author concerns two trace Trudinger-Moser inequalities and
obtains the corresponding extremal functions on a compact Riemann surface (X, g) with
smooth boundary 9%. Explicitly, let

f2(|Vgu|2 + u?)dv,

A (0Y) = i
1(0%) u€W1v2(Z,g),lfr}32 uds g =0,uZ0 faz u? dsg
and
H = {u e Wh3(%,9) : /(|Vgu|2 + u?)dv, — a/ u’dsy <1 and / udsy = 0}7
b ox 0%

where W'2(%, g) denotes the usual Sobolev space and V4, stands for the gradient operator.
By the method of blow-up analysis, we obtain

ul <400, 0<a<A(0%),
sup / e"" dsg
ueM Jox =400, a>A(0%).

Moreover, the author proves the above supremum is attained by a function u, € HNC(X)
for any 0 < a < A1(0X). Further, he extends the result to the case of higher order
eigenvalues. The results generalize those of [Li, Y. and Liu, P., Moser-Trudinger inequality
on the boundary of compact Riemannian surface, Math. Z., 250, 2005, 363-386], [Yang,
Y., Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary,
Pacific J. Math., 227, 2006, 177-200] and [Yang, Y., Extremal functions for Trudinger-
Moser inequalities of Adimurthi-Druet type in dimension two, J. Diff. Egq., 258, 2015,
3161-3193].
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1 Introduction

Let 2 C R? be a smooth bounded domain and WOM(Q) be the completion of C§°(€2) under
the Sobolev norm || Vgeul|3 = [, [Vreul*dz, where Vg2 is the gradient operator on R? and |- ||
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denotes the standard L?-norm. The classical Trudinger-Moser inequality (see [20, 24-25, 27,
32]), as the limit case of the Sobolev embedding, says

sup / P dx < 400, VP < 4m. (1.1)
uEWy*(9), | Vyzull2 <179

Moreover, 47 is the best constant for this inequality in the sense that when 5 > 4, all integrals
in (1.1) are finite and the supremum is infinite. It is interesting to know whether or not the
supremum in (1.1) can be attained. For this topic, see Carleson-Chang [5], Flucher [11], Lin [17],
Adimurthi-Struwe [2], Li [13-14], Zhu [38], Tintarev [26], Zhang [33-34, 37] and the references
therein.

Trudinger-Moser inequalities were studied on Riemann manifolds by Aubin [3], Cherrier [6],
Fontana [12] and others. In particular, let (X, ¢g) be a compact Riemann surface with smooth
boundary 9% and W12(%, g) be the completion of C°°(X) under the norm

305, = / (IV,ul? + u?) du,

where V, and v, stand for the gradient operator and the volume element on ¥ with respect to
the metric g, respectively. Liu [18] derived a trace Trudinger-Moser inequality in his doctoral
thesis from the result of Osgood-Phillips-Sarnak [23]: For all functions u € W12(%, g), there
holds some constant C' depending only on (X, ¢g) such that

1
ln/ e'ds, < —/ |Vgu|2dvg+/ udsg + C, (1.2)
0% ar Js o

where s, denotes the induced length element on 0% with respect to g. Later Li-Liu [15] obtained
a strong version of (1.2), namely

2
sup / e’ dsy < 400 (1.3)
ueWh2(3,g), jE |Vgu|2dv9:1,faz udsy=0J 0%

for any v < w. This inequality is sharp in the sense that all integrals in (1.3) are finite when
~v > 7 and the supremum is infinite. Moreover, for any v < m, the supremum is attained. After
that, Yang [28] established the boundary estimate without direct boundary conditions, which
is

sup / e”“2dsg < +o0. (1.4)
UEWL2(S,9), [5(IVgul>+u?)dvg=1J0%

Moreover, the supremum in (1.4) can be attained.

A different form was also derived by Yang [30], namely

sup / e4’”‘2dvg < 400 (1.5)
weWbh2(2,9), [w(IVgul?—au?)dvy<1, [gudvg=0J%

for all 0 < a < A\1(X), where

Js |V gul*do,

AM(2) = in
1( ) ueEWH2(3,9), [ udvg=0,u#0 fE u2dvg

is the first eigenvalue of the Laplace-Beltrami operator A,. Further, he extended (1.5) to the
case of higher order eigenvalues. Precisely, let A\ (X) < A2(X) < --- be all distinct eigenvalues
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of the Laplace-Beltrami operator and Ey, sy = {u € Wh(2,g) : Agu = \e(D)u}, k=1,2,--
be associated eigenfunction spaces. For any positive integer k, we set

Ek(z)ZE)\I(g)@E)Q(E)@"'EBEA,C(E); k=1,2,---

and

EL(D) = {u e W2(3,g) : /

uvdv, = 0, Yo € Ek(E)}, k=1,2,---.
>

Then we have

sup / e4”“2dvg < 400 (1.6)
weEE (D), [5(IVaul2—au?)dvy,<1, [y udv,=0J%

for all 0 < a < A,(X); moreover the above supremum can be attained by some function
uq € B (2).

In this paper, we will establish two new trace Trudinger-Moser inequalities, which are ex-
tensions of (1.5) and (1.6), respectively. Precisely we first have the following theorem.

Theorem 1.1 Let (X, g) be a compact Riemann surface with smooth boundary 0%, A\ (0X)
be defined as

fE(|Vgu|2 + u?)dv,

A (0%) = inf 1.7
1( ) u€W1*2(E,g),f6Z udsg=0,u#0 faz u2 ng ( )
and
H = {u e Wh3(%,g) : /(|un|2 + u?)dv, — a/ u?ds, <1 and / udsy = O}.
s o% o%
Then we have
(i) when 0 < oo < A\1(0%), we have
2
sup/ e™ dsy < 400 (1.8)
u€H Jox

and it can be attained by some function u, € H N C=(2);
(i) when a > A\ (0X), the above supremum is infinite.

An interesting consequence of Theorem 1.1 is the following weak form of (1.8).

Theorem 1.2 Let (X, g) be a compact Riemann surface with smooth boundary 0%, A\ (0X)
be defined as in (1.7). Then for any 0 < oo < A\1(9%), u € Wh2(2,g) and [y, udsy = 0, there
exists a constant C > 0 depending only on « and (X, g), such that

47rln/ e'ds, < /(|Vgu|2 + u?)dv, — a/ u?ds, + C.
% b o5

Moreover, we extend Theorem 1.1 to the case of higher order eigenvalues. Let us introduce
some notations. For any positive integer k, we set
ou

By, (ox) = {u e W(2,9): Ayju+u=0in (,g) and = A, (0X)u on 82},
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where n denotes the outward unit normal vector on 93 and

E5, (ox) = {U e Wh(s,g) : /

uvdsg =0, Vv € EAk(aE)}.
%

Then we set
f2(|Vgu|2 + u?)dv,

Ai41(0%) = ueEﬁ(aE),;i:fudsgz(),uaéO T ds, , (1.9)
which is the (k + 1)-th eigenvalue of A, on 0%, where
E(0%) = Ex, (ox) © Ex,o5) @ -+ © By, (o%) (1.10)
and
B (0%) = {u e W2(D,g) : /62 uvds, =0, Yo € Ek(az)}. (1.11)

We note that W12(3, g) = E(9%) @ EL(0X). Then a generalization of Theorem 1.1 can be
stated as follows.

Theorem 1.3 Let (X,g) be a compact Riemann surface with smooth boundary 0% and
Mie+1(0X) be defined by (1.9). For any 0 < a < A\p41(0%), let

S= {u € EF (oY) : /2(|VQU|2 + u?)dv, — 04/8E u?ds, <1 and /aEudsg = 0}, (1.12)

where Ei-(0%) is defined as in (1.11). Then the supremum

sup/ e”"zdsg (1.13)
u€eS Jox

is attained by some function u, € SN C™ ().

Clearly Theorems 1.1 and 1.3 extend (1.5) and (1.6) to the trace Trudinger-Moser inequal-
ities, respectively. For theirs proofs, we employ the method of blow-up analysis, which was
originally used by Carleson-Chang [5], Ding-Jost-Li-Wang [8], Adimurthi-Struwe [2], Li [13],
Liu [18], Li-Liu [15] and Yang [28-29]. This method is now standard. For related works, we
refer Adimurthi-Druet [1], do O-de Souza [7, 9], Nguyen [21-22], Zhu [39], Fang-Zhang [10],
Mancini-Martinazzi [19] and Zhang [35-36].

In the remaining part of this paper, we prove Theorem 1.1 in Section 2 and Theorem 1.3 in
Section 3, respectively.

2 The First Eigenvalue Case

In this section, we will prove Theorem 1.1(ii) first, and then we will prove Theorem 1.1(i).
Without loss of generality, we do not distinguish sequence and subsequence in the following.

2.1 The case of a > A\1(9X)

Let A1 (0X) be defined in (1.7). It is easy to know that A;(9Y) is attained by some function
up € WH2(%, g) satisfying faz updsy, = 0 and faz u3 ds, = 1. By a direct calculation, we derive
that uo satisfies the Euler-Lagrange equation

Agug +ug =0 in X,

(2.1)

ou
8—13 =M (0X)up on 0%,
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where Ay denotes the Laplace-Beltrami operator, n denotes the outward unit normal vector
on 0. Applying elliptic estimates to (2.1), we have ug € WH2(%, g) N C°(X). Then we obtain
that A1 (0X) can be attained by some function tug € W12(%, g) NC°(X) for any positive integer
t.

Since a > A1 (90X), we have

/(|Vg(tuo)|2 + (tug)?)dv, — a/ (tug)? ds, < 0.
s

o))

Then there holds tug € H N CO(X). In view of ug # 0, [, uodsy = 0 and ug € C°(X), we
obtain that there is a point xz¢g € 9% with ug(xg) > 0. Moreover, there exists a neighborhood
U of xq satisfying ug(x) > w > 0 in U. Then we get

/ em(tw0)* g 2/ em(tu0) 4 > e%“g(r(’)tz/ 1ds,.
0% ozNU ozNU

Letting ¢ — 400, one has Theorem 1.1(ii).

2.2 The case of 0 < a < A\1(9X)

In this subsection, we will prove Theorem 1.1(i) by four steps: Firstly, we consider the exis-
tence of maximizers for subcritical functionals and the corresponding Euler-Lagrange equation;
secondly, we deal with the asymptotic behavior of the maximizers through blow-up analysis;
thirdly, we deduce an upper bound of the supremum sug faz e”“2dsg under the assumption

ue

that blow-up occurs; finally, we construct a sequence of functions to show that Theorem 1.1(i)
holds.

Step 1 Existence of maximizers for subcritical functionals.
For any 0 < o < \(9X), we let

i = [V o, ~a [ s,

o
We have the following lemma.

Lemma 2.1 For any 0 < ¢ < m, the supremum Sug Jos: e(ﬂ_s)uzdsg is attained by some
ue

function u. € HNC®(X).

Proof Let 0 < ¢ < 7 be fixed. By the definition of supremum, we can choose a maximizing
sequence {u;}32, in H such that

lim e(”_a)“?dsg = sup/ e(”_‘s)“2dsg. (2.2)
170 Jox ueH Jox

Moreover, u; converges to some function u. weakly in W2(3, g) and strongly in LP(9%, g) for

any p > 1. Then we have [, oy U dsg = 0. According to the definition of weak convergence

and the Holder’s inequality, we get ||[Vouc||12(sy < lim [|Vgusl|p2(s), which gives [Juclf , < 1.
1—00 ’

From Lagrange’s mean value theorem, the Holder’s inequality and (1.3), there holds

lim ‘/ e(”_s)“?dsg—/ e(”_s)“gdsg =0.
el Jon o%
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In view of (2.2), we have
/ e(”_a)ﬁdsg = sup/ e(”_a)“2dsg. (2.3)
ox u€EH J oS

Suppose [luc||?, <1, then one gets

— Ug 2
/ e(ﬂ'—s)ugdsg </ e( 5)(\\%\\1,@) ng < Sup/ e(ﬂ-_s)uzdsg.
o o)) ueH Jox

This result contradicts with (2.3). Hence ||uc||{, = 1 holds and u. € H.
By a direct calculation, we derive that u. satisfies the Euler-Lagrange equation

Ague +u. =0 in X,

6’11, 1 T—e)u2 17
3116 = )\—Euse( e 4, — )\—Z

2
)\Ez/ uZe(m=)uzds,,
%

1 2
- (m—e)u; _
e %) (/62 Uge dsg /\E/Zu‘S dvg),

where £(9X) denotes the length of 9%. Applying elliptic estimates to (2.4), we have u. €
H N C>®(X). Then Lemma 2.1 follows.

Moreover, we have

on 0%,
(2.4)

: (m—e)u? _ wu?
lim e dsy = sup e™ dsg (2.5)
=0 Jon uweH Jox ‘

from Lebesgue’s dominated convergence theorem. It follows from (2.5) and the fact of e? < 1+te?
for any ¢ > 0 that

liminf A; > 0. (2.6)
e—0

From (2.6) and u. € H, one gets

He 1 / (r—e)u? / (m—e)u?
— < — luele =dsy + lucle cdsy ) +C
‘/\a )\af(az)( (w€dS |1} T Jeosiu <1y g)
1 / 2g(m—e)u? / (m—e)u?
< — uze\" " eds, + e\" T eds, | + C
Aaf(ag)( (uedsiuc|>1} T Jueositun <1} g)
1 e™
< ———+—+C
Sty Pt
<c (2.7)

Step 2 Blow-up analysis.
Let us perform the blow-up analysis. Without loss of generality, we set c¢. = |uc(z:)| =
max |ug|. If ¢. is bounded, by elliptic estimates, we complete the proof of Theorem 1.1(i). In
s

the following, we assume lin% Ce = limO ue(x:) = 400 and . — p as ¢ — 0. Applying maximum
E— E—r
principle to (2.4), we have p € 3. Then we have the following lemma.
Lemma 2.2 There hold u. — 0 weakly in WY%(%, g) and u. — 0 strongly in L?(0%,g) as

e — 0. Furthermore, |V juc|*dvy — 6, in sense of measure, where 6, is the usual Dirac measure
centered at p.
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Proof Since u. is bounded in W12(3, g), there exists some function ug such that u. — ug
weakly in W12(3, g) and u. — up strongly in L2(9%, g) as ¢ — 0. Then we have faE uopdsy =0
and [Jun]3 o < 1.

Suppose ug # 0, then one has fE(|Vgu0|2 + u3)dv, > 0 and

«
1> H’U,()Hia > (1 — m) /E(|Vgu0|2 —|—U(2))d’l)g > 0.

Then we obtain ||V, (u. — up)|3 = 1 — ||u0||%)a

0 < ¢ < 1. For sufficiently small €, there holds

as ¢ — 0. Letting ¢ = 1 — [Juol7 ,, one has

IVg(ue —uo)|l3 < *5— < 1. (2.8)

From the Holder’s inequality, (1.3) and (2.8), we get e(™=9)uZ is bounded in L1(0%, g) for
sufficiently small . Applying the elliptic estimate to (2.4), one gets that u. is uniformly bounded,
which contradicts ¢. — +o00. That is to say ug = 0.

Suppose |V uc|*dv, — u # §, in sense of measure. Then there exists some positive number
r > 0 such that E11_1[)1(1J fBr(p) |V uc|*dv, =1 < 1, where B, (p) is a geodesic ball centered at p with

radius r. Moreover, we obtain fBT(p) |Vgu€|2dvg < ”TH < 1 for sufficiently small e. We choose a

cut-off function p € Cj (B, (p)), which is equal to 1 in Bz (p) and J"Br(p) |V (pue)|?do, < "%F <1
for sufficiently small €. Hence there holds

J

eq(ﬂ'—s)uzdsg < / eq(ﬂ'—s)(PUS)zdsg

(p)nox B, (p)no%

r
2

(pue)?

q(m—e)nt3  loue)”

< / e b B Ve leue)Pdvg (g
By (p)Nox

for some ¢ > 1. In view of (1.3), we obtain e is bounded in LBz (p)nox,g) for

sufficiently small €. Applying the elliptic estimate to (2.4), we get that . is uniformly bounded
in Bx(p) N 0%, which contradicts c. — +00. Therefore, Lemma 2.2 follows.

Now we analyse the asymptotic behavior of u. near the concentration point p. Let

A (2.9)

Te = ——————=
€ cge(ﬂ'_g)ce

Following [31, Lemma 4], we can take an isothermal coordinate system (U, ¢) near xg, such that
P(z0) = 0, ¢(U) = B;f and ¢(UNIX) = ORZ NB, for some fixed r > 0, where B} = {(z1,z2) €
R? : 2 + 23 < 1?23 > 0} and R2 = {z = (21,22) € R? : 23 > 0}. In such coordinates, the
metric g has the representation g = ?/(dz? + dz2) and f is a smooth function with f(0) = 0.
Denote U = uz 0 ¢~ 1, T = ¢(x.) and U. = {x € R? : T. +r.x € ¢ (U)}. Define two blowing
up functions in Uk,

Ue (Te + re)
Ce

Ve(x) = (2.10)
and

Pe (Ji) = C¢ (ﬂs(fs + Tsx) - Cs)- (2.11)
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In view of (2.4) and (2.9)—(2.11), for any fixed R > 0, we obtain

—Apeth, = 2 @eFTe) 2y, in BE,
B (2.12)
O ofFet7ee) (o 2,0 s, — THE) on 0RZ (B
and
—Agzpe = e2f(55+r51)7-3(¢a +c2) in ]Bg;g“
9 B (2.13)
5’:’5 = —ef(@etre2) (wse(”_s)wsﬂ)“’s + acrap. — CE?:\EEME) on OR% N Bg,
where Az denotes the Laplace operator on R2, v denotes the outward unit normal vector on
ORZ, B, = {z € R? : dist(2,0) < r} and B} = {& = (z1,22) € B, : x5 > 0} for any r > 0.
Applylng elliptic estimates to (2.12), we have lirn Y. =1 in Cl(IB%+) for any fixed R > 0 with
¥(0) = 1. According to (2.4), (2.7) and (2.9), we get hm =0 on OR% NBz. Then there
holds
sll_rg% e =1 in Cj (R%). (2.14)

Using the same argument for (2.13) as above, we obtain

lim g, = ¢ in Cl (RY), (2.15)
e—0
where ¢ satisfies
Agzp =10 in IB%E,
0
8—3 = —?m® on ami N Bg,

¢(0) =supp = 0.

It is not difficult to check that

. 1
/ e?™Pdxy < l1m1nf/ —u (™ Eds
OR2 NBr =0 JosnBa,. () Ae

for any fixed R > 0, that is to say [z, €*™da; < 1. By a result of Li-Zhu [16], we obtain
+

p(z) = —% In(m22? + (1 + 7a2)?). (2.16)

A direct calculation gives
/ e*™Pdry = 1. (2.17)
OR?

Next we discuss the convergence behavior of u. away from p. Denote u. g = min{fc., u-} €
W12(3, g) for any real number 0 < 8 < 1. Following [29, Lemma 4.7], we can easily get

tim [V g1 53 = 5. (2.18)
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Lemma 2.3 Letting A be defined by (2.4), we obtain

. —e)u? . )\5
hrsnj(l)lp /82 oM s, = £(O%) + ;1_% 2 (2.19)
and
A . . (m—e)u?
lim — = lim lim e = dsg. (2.20)

e=0 €2 R—+ooe—=0 Jy1(my, (z.))nos
Proof Recalling (2.4) and (2.18), one gets

/ e(”_g)uidsg —0(0%)
ox

= / (e(’T_E)“g —1)dsg +/ (e(’T_E)“g —1)dsg
{z€dS:u.<fecc} {z€dZ:u.>Pce}

1 2
< (e(”_g)uﬁvﬂ —1)ds, + —/ ulel™=e)ue 4
/82 J 6265 {z€dX: uc>Pec} : .

A
< (71'—5)“? 8 _ 2 d e
< /axe (m—e)usdsg + s

1 1

- s A
< s, ) (/ —e)utds,) " + 55
< (/me Sq 82(7r e)’u’dsy ) + 722

€

for any real number 0 < 8 < 1 and some r, s > 1 with %—F% = 1. From (1.3) and (2.18),
(™92 5 is hounded in L7 (0%, g). Letting € — 0 first and then 8 — 1, we obtain
: (71'—5)u2 : /\5
lim sup e cdsg — £(0%) < lim —. (2.21)
e—0 oy e=0 cg

According to ¢. = maxue, (2.4) and Lemma 2.2, we have
by

5 2
/ o=l ds _ p(a%) > 25— / e ds,,
ox o

cz 5 ¢
that is to say
: (m—e)u? : /\5
lim sup e cdsg — £(0%) > lim —. (2.22)
e—0 oy e=0 ¢z

Combining (2.21) with (2.22), one gets (2.19).
Applying (2.4) and (2.9)—(2.11), we have

/ e(ﬂ—E)ugng = / rge(ﬂ_s)cze(ﬂ_s)(qbi'i'l)@Eef(fs"l‘rsm)dxl
‘1571(]31?7‘5 (Ts))maz ]BRﬂaRi

- / Ae (o) (e +1) peof @etren) qq
B

2
R ﬂaRi CE

From (2.14)~(2.17), (2.20) holds.

Next we consider the properties of c.u.. Combining Lemma 2.3 with [29, Lemma 4.9], we
obtain

1
)\—csuse(”_g)ui dsg — dp. (2.23)
154

Furthermore, one has the follwing lemma.
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Lemma 2.4 There hold

ceue — G weakly in WH4(3, g), V1 < ¢ < 2,
c.u. — G strongly in L2(9%, g),
ceue — G in Clloc(i\{p})a

where G is a Green function satisfying

NG+ G =06, inT,

G _ ~ 1 (2.24)
o aG o) on 0¥\ {p},

Jos Gdsg = 0.

Proof From (2.4), there hold

Ag(caug) + ceue =0 in 2,
d(ceu 1 —e)u?
(55116) _ /\—Ecsuse(ﬂ e 4 qesue — CE'L;—: on 0%, (2.25)

/ ccusdsg = 0.
%

Combining (2.4) with (2.23), we obtain

1 1 2
(m—e)uZ ‘
= —f( )] ’ /a x CoUge dsg — /E csu-dvg

< C’—I—/ lecue|dug. (2.26)
b

Celbe
Ae

Moreover, it follows from the Poincaré inequality that

/ |ceue — Cotiz|dvy < Cllccue — Cotie||pa(sy < C||Vg(ccue)||Lasn)s
®

where cu: = fzc‘s%dvg, then we have
/E|csu5|dvg < OV, (ceus) | pagsy + C. (2.27)
From the Holder’s inequality and the Sobolev embedding theorem, one gets
/82 lcctieldsy < Cllestie|laony < CIIV,(ccte) o) (2.28)
for some ¢ > 1. It is well known (see for example [15, Proposition 3.5]) that
/ |V g(ceue)|?dv, < sup / V4@V (cous)dvg, (2.29)
s 19l 17 55,0y =1 /2

where % + % = 1. For any 1 < ¢ < 2, the Sobolev embedding theorem implies that H(I’HCO(E) <

C, where C' is a constant depending only on (3, g). Using (2.23), (2.25)—(2.29) and the diver-
gence theorem, we have

”Vg(csus)”%q(g) S/Evgq)vg(csus)dvg
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1 (m—e)u? He
< D —cou.e cdsy + « Ocoucdsg — co— ®dsy — Ocudog
o A 0% Ae Jos )

€

< P(p) + Cla+ 1)va(cau5)HLq(§3) + C.

That is to say ||Vg(ceue)|pe(s) < C. The Poincaré inequality implies that c.u. is bounded in
Wha(3, g) for any 1 < g < 2. Hence there exists some function G such that c.u. — G weakly
in Wh4(%, g) and c.u. — G strongly in L?(9%, g) as € — 0. By (2.25), we obtain (2.24).

For any fixed § > 0, we choose a cut-off function n € C°°(X) such that = 0 on B;(p) and
n=1on X/Bys(p). Using Lemma 2.2, we have gl_ri% [IV4(nue)ll2 = 0. Hence e(m=)uZ is bounded

in L*(X/Bas(p)) for any s > 1. It follows from (2.25) that % € L*(3\Bas(p)) for some

so > 2. Applying the elliptic estimate to (2.25), we get that c.u. is bounded in C*(3/Bys(p)).
Then there holds lim c.u. = G in CL.(3/{p}). This completes the proof of the lemma.
e—

Applying the elliptic estimate to (2.24), we can decompose G near p,
1
G=——Inr+A4,+0(r), (2.30)
T

where r = dist(z, p) and A4, is a constant depending only on «, p and (%, g).

Step 3 Upper bound estimate.

To derive an upper bound of sup |, o% e”“zdsg, we use the capacity estimate, which was first
ueH
used by Li [13] in this topic and also used by Li-Liu [15].

Lemma 2.5 Under the hypotheses c. — 400 and x. — p € 9% as € — 0, there holds

sup/ e”“2dsg < (O%) + 2me™ . (2.31)
ueH Jox

Proof We take an isothermal coordinate system (U, ¢) near p such that ¢(p) = 0, ¢ maps
U to R%, and ¢(U N9L) C ORZ. In such coordinates, the metric g has the representation
g = e/ (dx? + dz2) and f is a smooth function with f(0) = 0. We claim that

A
lim = < 2me™ . (2.32)
e—0 cz
To confirm this claim, we set a = sup u. and b= inf 7. for sufficiently small § > 0
OB5NR2 OBRr. NRY

and some fixed R > 0, where . = u. o ¢~*. It follows from (2.30) and Lemma 2.4 that on
OBs NRZ, 1. = Gto-) which leads to

Ce

1.1
a = ;(;lng—f—Ap—f—O[S(l)"'OE(l))?

where 05(1) = 0, 0.(1) = 0 as € — 0. According to (2.15)—(2.16), we have on dBr,. NRZ,

(@) = o, + 20,

then there holds

b=c. + l(— %ln(l—i-wQRz)—i-oa(l)).
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From a direct computation, there holds
m(a —0)* = w2 +2Ind — 274, — In(1 + 72 R?) + 05(1) + 0-(1). (2.33)
Define

ou
W, :{HGW”B* Bt ): @ 2 =a, U s = b, — :o},
a,b ( ) \ RT‘E) |3]B(5HR+ ) |3]BRT€HR+ 5 v aRiﬁ(Ba\BRrs)

Suppose that el%f fB;\B; |Vrzu|?de can be attained by some function m(x) € W, with
u a,b re

Agzm(z) = 0. We can check that

a(ln|z| —In(Rre)) + b(Ind — In |x)

m(z) = Ino — In(Rr.)
and
2, m(a—1b)’
/IB;\B;T |Veem(z)|*dz = 0o — () (2.34)
Recalling (2.4) and (2.9), we have
Ind — In(Rre) :1n(5—1nR—hn)\—2‘E + (m —¢)ct. (2.35)

€

Letting 7. € Wo and uf = max{a, min{b, u.}}, one gets |[Vgou?| < [Vgou.| in BY \ Bf,_ for
sufficiently small e. Further using [uc|| , = 1, we obtain

[ Vem@Pas [ Ve @
B \B}, B;\B;Ts

Rre
< (1 +a/ ugdsg — / ugdvg) —/ |Vgu5|2dvg
ox oY S\o~1(BY)

—~ / |V g2 du,. (2.36)
o1 (B, )

Now we compute fz\drl(m%*) IV e |*dv, and fdfl(W ) Vg |*dvy. Tn view of (2.30), we obtain
5 Rre

1. 1
[ 9GPy = S+ Ayt al Gl + 0-() + 0s(D).
S\61 () T
Hence we have by Lemma 2.4,
2 1,11 A 9
B\ 1(BY) [Vgue|"dvg = é (; In 5 +Ap + O‘”GHL2(62) +0:(1) + 05(1))- (2.37)
According to (2.11), (2.15) and (2.16), one gets
o 1yq1 1. =
/QH(BE 19y = (zmR+ =+ o0(1) +0r(D), (2.38)
where og(1) — 0 as R — +o00. In view of (2.33)—(2.38), we obtain

A
In — <1In(27) + 74, + o(1),

€



Trace Trudinger-Moser Inequalities on Riemann Surface with Boundary 437

where o(1) — 0 as ¢ — 0 first, then R — 400 and § — 0. Hence (2.32) follows. Combining
(2.5), (2.32) with Lemma 2.3, we finish the proof of the lemma.

Step 4 Existence result.

In this step, we always assume that 0 < a < A;(0%). We take an isothermal coordinate
system (U, ¢) near p such that ¢(p) = 0, ¢ maps U to R, and ¢(U N9X) C RZ. In such
coordinates, the metric g has the representation g = €2/ (dz? 4+ dx32) and f is a smooth function
with f(0) = 0. Set a cut-off function £ € C§°(¢~'(B;,.)) with & = 1 on ¢~ '(B},.) and
[Vgélle = O(42). Denote B =G+ LInr — A, for any r > 0, where G is defined by (2.30).
Let R = In?¢, then R — +o00 and Re — 0 as ¢ — 0. We construct a blow-up sequence of
functions

1 222 + (mze2 +€)? B _
(c—%ln = —|—?)o¢, T E P 1(18%;56),

Ve = ¢ _655’ LS ¢_1(B;_RE\BEE)7 (2'39)

ol @

’ UAS E\¢_1(B;_Ra)

for some constants B, ¢ to be determined later, such that

/ﬂvwﬁ+@%—mﬁm%—a/(%—@V@g=1 (2.40)
b (o))
and v. — V. € H, where U, = %.

Note that [, Gds, = 0, one has 7. = O(Re In*(Re)), and then

G2
/|%—MM%=L%§@+ommﬂ&»
()3

) (2.41)
G 2
/ [ve — Tc|?dv, = / —5 dvg + O(Re In"(Re)).
) E\BRS (p) ¢
A delicate calculation shows
arcsin LR LR Int LR In R
Insin 6d6 = / dt < C/ Intdt = O — 2.42
/0 0 V1i—t2 0 ( R ) ( )

and

/ |ngs|2dvg
=1 (BY,)

1
= Iz / |Vge In(m222 + m222)2de; day
Q(R)

1 ﬂ—arcsin% R 5 ovn
= m/a deo X |V]R2 1H(7T R )| rdr

1 T
= 1 Insinf df — 2
= (7T n(rR) —l—/o nsin /0

%(IHR—Flng—FO(%)), (2.43)

S
resin =g Tsin g

: 1
arcsin TR

Insin 6 d9+0(%))
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where Q(R) = {(z1,22) : 2§ + 23 < R?, 3 > 1}. According to (2.37) and (2.39), one has

/ |ngs|2dvg
S\o~L(BE,)

1 ) 1
— (4 + alGlR o, — 3 nRe) - [

G2dv, + O(Re 1n2(Ra))) .
S\ Bge(p)

In view of (2.40)—(2.44), there holds

2= A+ %m (218) + O(I%R) + O(Re In*(Re)).

Moreover, in order to assure that v. € W%(X, g), we obtain

1 1 1
> 2 12 -
. In(7m°R )—l—B—i—O(R) 71_11{1(R<€)—|-Ap,

which is equivalent to

1 1 1
2—_ —_— — R
c —Wlnw 7Tln&: B—I—Ap—I—O(R).

According to (2.45)—(2.46), one gets

1 1
B=—In2+ o(n—R) + O(Re In®(Re)).
T R

It follows that in 0% N Bgr(p),

InR

2, 2.2
o2 B e+ oy 2
m(ve —Te)” > In(2m) + 1A, — In (75 ) + O(—R ) + O(ReIn"(Re)).

Hence

_ InR
/ e T s, > 2mem™r 1+ 022 ) + O(Re I (Re)).
axNg—1(B}) R

On the other hand, from the fact e’ > ¢+ 1 for any ¢ > 0 and (2.39), we get

/ o™ (veTe)? dsg > / (1+7(ve —0:)%) ds,
oS\~ (B,.) oS\~ (B,)

7T||GH%2(32)

> ((0%) + —

+ O(Re In*(Re)).
From (2.47)—(2.48) and R = In® ¢, there holds

/ (=7 45, > (X)) + 2me™
ox

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

for sufficiently small € > 0. The contradiction between (2.31) and (2.49) indicates that ¢, must

be bounded. Then Theorem 1.1 follows.
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3 Higher Order Eigenvalue Cases

In this section, we will prove Theorem 1.3 involving higher order eigenvalues through blow-
up analysis. Let k be a positive integer and Fj(9%) be defined by (1.10). Denote the dimension
of Ex(9X) by sk. From [4, Theorem 9.31], it is known that sy is a finite constant only depending

on k. Then we can find a set of normal orthogonal basis {e;};*, € C°°(X) of Ey(0X) satisfying

/ eidsy =0,
ox ’

Agei +e; =0 in X, (3.1)

86i
on

= A\, (0X)e;  on 0%,
where ko < k is a positive integer.

3.1 Blow-up analysis

Let Ag+1(0%) and S be defined by (1.9) and (1.12), respectively. In view of Lemma 2.1 and
(3.1), we have the following lemma.

Lemma 3.1 Let 0 < a < A\p+1(9%) be fized. For any 0 < & < 7, the supremum

sup/ e(”_E)uzdsg
u€eS Jox

is attained by some function u. € SN C>®(X). Moreover, the Euler-Lagrange equation of u. is

Agus +u. =0 in X,
Oue 1 (r—e)u? He - ﬁs,i
anz)\—guse c €+au5—)\—€—;/\aei on 0%,
™ u2
A = / uZe(m=)uzds,, (3.2)
%

1 2
- (m—e)u; _
e %) (/82 Uge dsg /\E/Zugdvg),

2

ﬁ57i:/ ucel™ e ds,.
%

Without loss of generality, we set c¢. = |u-(x.)| = max |u.|. We first assume that c. is
)

bounded, which together with elliptic estimates completes the proof of Theorem 1.3. In the
remainder of Section 3, we assume

lim ¢, = lim u.(x.) = +o0
e—0 ¢ e—0 E( E)

and . — p as ¢ — 0. Applying maximum principle to (3.2), we have p € 9%X. Similar to
Lemma 4, we get the following lemma.

Lemma 3.2 There hold ccu. — G weakly in WH4(3, g) (V1 < ¢ < 2), ccue — G strongly
in L?(0%, g) and ccu. — G in OL _(X\{p}) as ¢ — 0, where G is a Green function satisfying

loc

NG+ G =0 in 3,

oG 1 ok

I oG — m — ;eiei(p) on 0X\{p},
Gds, = 0.

ox
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Moreover, GG near p can be decomposed into
1
G=—-=Inr+A,+ O(r), (3.3)
T

where r = dist(z,p) and A, is a constant depending only on «,p and (X, g). Analogous to
Lemma 2.5, using the capacity estimate, we derive an upper bound of the supremum (1.13):

sup/ e”“2dsg < L(9X) + 2me™ . (3.4)
uesS Jox

3.2 Existence result

We always assume that ¢ — +o00 as € — 0. Take an isothermal coordinate system (U, ¢)
near p such that ¢(p) = 0, ¢ maps U to R, and ¢(U N 9%) C ORZ. In such coordinates, the
metric g has the representation g = €2/ (dz? + dz2) and f is a smooth function with f(0) = 0.
Set a cut-off function { € C§°(¢~ (B3,.)) with £ = 1 on ¢~ *(B},.) and [[Veé|~ = O(5)-
Denote g = G + %lnr — A, where G is defined by (3.3). Let R = In?¢, then R — 400 and
Re — 0 as ¢ — 0. We construct a blow-up sequence of functions

1, w2} + (mza+¢e)? B R
(¢ 5—n = +=)os  wes(Bh).
_1G-¢&B _
Ve = T, T € ¢ 1(B;’_RE\BE6)7
G
?a S E\gb_l(B;_Ra)

for some constants B, ¢ to be determined later, such that
/(|ngg|2 + (ve —T.)?)dvy — a/ (ve —Te)?dsy = 1
b oy

_ _ d
and v. — 7. € S, where 7. = faﬁ;;)s“’.

Analogous to Subsection 2.4, we determine the constants

B=—In2+ 0(?) + O(Re In(Re))
and
1 s InR

2 + K 2

¢ = Ayt~ In (28) + 0(—R ) + O(R=In?(Re)).
Then we get

2 |G 22 1
/ ™= ds, > 2me™Ar 4 ((OX) + w + O(ReIn2(Re)) + o(%R). (3.5)
)

Setting
vl = (Ve —Ve) — Zei/ (ve —Te)e; dsy € Eit,
one gets [, vidsy =0 and

*|2 *\2 _ *\2 — i
Jvaut @2, —a | (@)Pds, =1+0(55):



Trace Trudinger-Moser Inequalities on Riemann Surface with Boundary 441

It is easy to verify V. = v}/|[vf[|7,, € S. In view of (3.5) and R = In? e, we have

/82 eV ds, > (14 0(%)) /82 S P

7T||G||%2(ax)
2

+ O(ReIn*(Re)) + o(h%R)

> 2me™ v 4 1(9%) (3.6)

> 2me™ v 4 (0% +

for sufficiently small & > 0. The contradiction between (3.4) and (3.6) indicates that the
assumption of lin% Ce = 111[1%J ue(x:) = 400 is not true. Then ¢ must be bounded and Theorem
e— e—

1.3 follows from the elliptic estimate.
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