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Critical Trace Trudinger-Moser Inequalities on a Compact

Riemann Surface with Smooth Boundary∗

Mengjie ZHANG1

Abstract In this paper, the author concerns two trace Trudinger-Moser inequalities and
obtains the corresponding extremal functions on a compact Riemann surface (Σ, g) with
smooth boundary ∂Σ. Explicitly, let

λ1(∂Σ) = inf
u∈W1,2(Σ,g),

∫
∂Σ udsg=0,u 6≡0

∫

Σ
(|∇gu|

2 + u2)dvg
∫

∂Σ
u2 dsg

and

H =
{

u ∈ W
1,2(Σ, g) :

∫

Σ

(|∇gu|
2 + u

2)dvg − α

∫

∂Σ

u
2dsg ≤ 1 and

∫

∂Σ

u dsg = 0
}

,

where W 1,2(Σ, g) denotes the usual Sobolev space and ∇g stands for the gradient operator.
By the method of blow-up analysis, we obtain

sup
u∈H

∫

∂Σ

eπu2

dsg

{

< +∞, 0 ≤ α < λ1(∂Σ),

= +∞, α ≥ λ1(∂Σ).

Moreover, the author proves the above supremum is attained by a function uα ∈ H∩C∞(Σ)
for any 0 ≤ α < λ1(∂Σ). Further, he extends the result to the case of higher order
eigenvalues. The results generalize those of [Li, Y. and Liu, P., Moser-Trudinger inequality
on the boundary of compact Riemannian surface, Math. Z., 250, 2005, 363–386], [Yang,
Y., Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary,
Pacific J. Math., 227, 2006, 177–200] and [Yang, Y., Extremal functions for Trudinger-
Moser inequalities of Adimurthi-Druet type in dimension two, J. Diff. Eq., 258, 2015,
3161–3193].
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tremal function
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1 Introduction

Let Ω ⊆ R
2 be a smooth bounded domain and W 1,2

0 (Ω) be the completion of C∞
0 (Ω) under

the Sobolev norm ‖∇R2u‖22 =
∫

Ω |∇R2u|2dx, where ∇R2 is the gradient operator on R
2 and ‖·‖2
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denotes the standard L2-norm. The classical Trudinger-Moser inequality (see [20, 24–25, 27,

32]), as the limit case of the Sobolev embedding, says

sup
u∈W 1,2

0 (Ω), ‖∇
R2u‖2≤1

∫

Ω

eβu
2

dx < +∞, ∀β ≤ 4π. (1.1)

Moreover, 4π is the best constant for this inequality in the sense that when β > 4π, all integrals

in (1.1) are finite and the supremum is infinite. It is interesting to know whether or not the

supremum in (1.1) can be attained. For this topic, see Carleson-Chang [5], Flucher [11], Lin [17],

Adimurthi-Struwe [2], Li [13–14], Zhu [38], Tintarev [26], Zhang [33–34, 37] and the references

therein.

Trudinger-Moser inequalities were studied on Riemann manifolds by Aubin [3], Cherrier [6],

Fontana [12] and others. In particular, let (Σ, g) be a compact Riemann surface with smooth

boundary ∂Σ and W 1,2(Σ, g) be the completion of C∞(Σ) under the norm

‖u‖2W 1,2(Σ,g) =

∫

Σ

(|∇gu|2 + u2) dvg,

where ∇g and vg stand for the gradient operator and the volume element on Σ with respect to

the metric g, respectively. Liu [18] derived a trace Trudinger-Moser inequality in his doctoral

thesis from the result of Osgood-Phillips-Sarnak [23]: For all functions u ∈ W 1,2(Σ, g), there

holds some constant C depending only on (Σ, g) such that

ln

∫

∂Σ

eudsg ≤
1

4π

∫

Σ

|∇gu|2dvg +
∫

∂Σ

udsg + C, (1.2)

where sg denotes the induced length element on ∂Σ with respect to g. Later Li-Liu [15] obtained

a strong version of (1.2), namely

sup
u∈W 1,2(Σ,g),

∫
Σ
|∇gu|2dvg=1,

∫
∂Σ

udsg=0

∫

∂Σ

eγu
2

dsg < +∞ (1.3)

for any γ ≤ π. This inequality is sharp in the sense that all integrals in (1.3) are finite when

γ > π and the supremum is infinite. Moreover, for any γ ≤ π, the supremum is attained. After

that, Yang [28] established the boundary estimate without direct boundary conditions, which

is

sup
u∈W 1,2(Σ,g),

∫
Σ
(|∇gu|2+u2)dvg=1

∫

∂Σ

eπu
2

dsg < +∞. (1.4)

Moreover, the supremum in (1.4) can be attained.

A different form was also derived by Yang [30], namely

sup
u∈W 1,2(Σ,g),

∫
Σ
(|∇gu|2−αu2)dvg≤1,

∫
Σ
udvg=0

∫

Σ

e4πu
2

dvg < +∞ (1.5)

for all 0 ≤ α < λ1(Σ), where

λ1(Σ) = inf
u∈W 1,2(Σ,g),

∫
Σ
udvg=0,u6≡0

∫

Σ
|∇gu|2dvg
∫

Σ
u2dvg

is the first eigenvalue of the Laplace-Beltrami operator ∆g. Further, he extended (1.5) to the

case of higher order eigenvalues. Precisely, let λ1(Σ) < λ2(Σ) < · · · be all distinct eigenvalues
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of the Laplace-Beltrami operator and Eλk(Σ) = {u ∈W 1,2(Σ, g) : ∆gu = λk(Σ)u}, k = 1, 2, · · ·
be associated eigenfunction spaces. For any positive integer k, we set

Ek(Σ) = Eλ1(Σ) ⊕ Eλ2(Σ) ⊕ · · · ⊕ Eλk(Σ), k = 1, 2, · · ·

and

E⊥
k (Σ) =

{

u ∈ W 1,2(Σ, g) :

∫

Σ

uvdvg = 0, ∀v ∈ Ek(Σ)
}

, k = 1, 2, · · · .

Then we have

sup
u∈E⊥

k
(Σ),

∫
Σ
(|∇gu|2−αu2)dvg≤1,

∫
Σ
udvg=0

∫

Σ

e4πu
2

dvg < +∞ (1.6)

for all 0 ≤ α < λk(Σ); moreover the above supremum can be attained by some function

uα ∈ E⊥
k (Σ).

In this paper, we will establish two new trace Trudinger-Moser inequalities, which are ex-

tensions of (1.5) and (1.6), respectively. Precisely we first have the following theorem.

Theorem 1.1 Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ, λ1(∂Σ)

be defined as

λ1(∂Σ) = inf
u∈W 1,2(Σ,g),

∫
∂Σ

udsg=0,u6≡0

∫

Σ
(|∇gu|2 + u2)dvg
∫

∂Σ u
2 dsg

(1.7)

and

H =
{

u ∈W 1,2(Σ, g) :

∫

Σ

(|∇gu|2 + u2)dvg − α

∫

∂Σ

u2dsg ≤ 1 and

∫

∂Σ

u dsg = 0
}

.

Then we have

(i) when 0 ≤ α < λ1(∂Σ), we have

sup
u∈H

∫

∂Σ

eπu
2

dsg < +∞ (1.8)

and it can be attained by some function uα ∈ H ∩ C∞(Σ);

(ii) when α ≥ λ1(∂Σ), the above supremum is infinite.

An interesting consequence of Theorem 1.1 is the following weak form of (1.8).

Theorem 1.2 Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ, λ1(∂Σ)

be defined as in (1.7). Then for any 0 ≤ α < λ1(∂Σ), u ∈ W 1,2(Σ, g) and
∫

∂Σ u dsg = 0, there

exists a constant C > 0 depending only on α and (Σ, g), such that

4π ln

∫

∂Σ

eudsg ≤
∫

Σ

(|∇gu|2 + u2)dvg − α

∫

∂Σ

u2dsg + C.

Moreover, we extend Theorem 1.1 to the case of higher order eigenvalues. Let us introduce

some notations. For any positive integer k, we set

Eλk(∂Σ) =
{

u ∈ W 1,2(Σ, g) : ∆gu+ u = 0 in (Σ, g) and
∂u

∂n
= λk(∂Σ)u on ∂Σ

}

,
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where n denotes the outward unit normal vector on ∂Σ and

E⊥
λk(∂Σ) =

{

u ∈ W 1,2(Σ, g) :

∫

∂Σ

uvdsg = 0, ∀v ∈ Eλk(∂Σ)

}

.

Then we set

λk+1(∂Σ) = inf
u∈E⊥

k
(∂Σ),

∫
∂Σ

udsg=0,u6≡0

∫

Σ(|∇gu|2 + u2)dvg
∫

∂Σ
u2 dsg

, (1.9)

which is the (k + 1)-th eigenvalue of ∆g on ∂Σ, where

Ek(∂Σ) = Eλ1(∂Σ) ⊕ Eλ2(∂Σ) ⊕ · · · ⊕ Eλk(∂Σ) (1.10)

and

E⊥
k (∂Σ) =

{

u ∈ W 1,2(Σ, g) :

∫

∂Σ

uvdsg = 0, ∀v ∈ Ek(∂Σ)
}

. (1.11)

We note that W 1,2(Σ, g) = Ek(∂Σ) ⊕ E⊥
k (∂Σ). Then a generalization of Theorem 1.1 can be

stated as follows.

Theorem 1.3 Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ and

λk+1(∂Σ) be defined by (1.9). For any 0 ≤ α < λk+1(∂Σ), let

S =
{

u ∈ E⊥
k (∂Σ) :

∫

Σ

(|∇gu|2 + u2)dvg − α

∫

∂Σ

u2dsg ≤ 1 and

∫

∂Σ

u dsg = 0
}

, (1.12)

where E⊥
k (∂Σ) is defined as in (1.11). Then the supremum

sup
u∈S

∫

∂Σ

eπu
2

dsg (1.13)

is attained by some function uα ∈ S ∩ C∞(Σ).

Clearly Theorems 1.1 and 1.3 extend (1.5) and (1.6) to the trace Trudinger-Moser inequal-

ities, respectively. For theirs proofs, we employ the method of blow-up analysis, which was

originally used by Carleson-Chang [5], Ding-Jost-Li-Wang [8], Adimurthi-Struwe [2], Li [13],

Liu [18], Li-Liu [15] and Yang [28–29]. This method is now standard. For related works, we

refer Adimurthi-Druet [1], do Ó-de Souza [7, 9], Nguyen [21–22], Zhu [39], Fang-Zhang [10],

Mancini-Martinazzi [19] and Zhang [35–36].

In the remaining part of this paper, we prove Theorem 1.1 in Section 2 and Theorem 1.3 in

Section 3, respectively.

2 The First Eigenvalue Case

In this section, we will prove Theorem 1.1(ii) first, and then we will prove Theorem 1.1(i).

Without loss of generality, we do not distinguish sequence and subsequence in the following.

2.1 The case of α ≥ λ1(∂Σ)

Let λ1(∂Σ) be defined in (1.7). It is easy to know that λ1(∂Σ) is attained by some function

u0 ∈ W 1,2(Σ, g) satisfying
∫

∂Σ
u0dsg = 0 and

∫

∂Σ
u20 dsg = 1. By a direct calculation, we derive

that u0 satisfies the Euler-Lagrange equation










∆gu0 + u0 = 0 in Σ,

∂u0
∂n

= λ1(∂Σ)u0 on ∂Σ,
(2.1)
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where ∆g denotes the Laplace-Beltrami operator, n denotes the outward unit normal vector

on ∂Σ. Applying elliptic estimates to (2.1), we have u0 ∈W 1,2(Σ, g) ∩C0(Σ). Then we obtain

that λ1(∂Σ) can be attained by some function tu0 ∈ W 1,2(Σ, g)∩C0(Σ) for any positive integer

t.

Since α ≥ λ1(∂Σ), we have

∫

Σ

(|∇g(tu0)|2 + (tu0)
2)dvg − α

∫

∂Σ

(tu0)
2 dsg ≤ 0.

Then there holds tu0 ∈ H ∩ C0(Σ). In view of u0 6≡ 0,
∫

∂Σ
u0dsg = 0 and u0 ∈ C0(Σ), we

obtain that there is a point x0 ∈ ∂Σ with u0(x0) > 0. Moreover, there exists a neighborhood

U of x0 satisfying u0(x) ≥ u0(x0)
2 > 0 in U. Then we get

∫

∂Σ

eπ(tu0)
2

dsg ≥
∫

∂Σ∩U

eπ(tu0)
2

dsg ≥ e
π
4 u

2
0(x0) t

2

∫

∂Σ∩U

1dsg.

Letting t→ +∞, one has Theorem 1.1(ii).

2.2 The case of 0 ≤ α < λ1(∂Σ)

In this subsection, we will prove Theorem 1.1(i) by four steps: Firstly, we consider the exis-

tence of maximizers for subcritical functionals and the corresponding Euler-Lagrange equation;

secondly, we deal with the asymptotic behavior of the maximizers through blow-up analysis;

thirdly, we deduce an upper bound of the supremum sup
u∈H

∫

∂Σ
eπu

2

dsg under the assumption

that blow-up occurs; finally, we construct a sequence of functions to show that Theorem 1.1(i)

holds.

Step 1 Existence of maximizers for subcritical functionals.

For any 0 ≤ α < λ1(∂Σ), we let

‖u‖21,α =

∫

Σ

(|∇gu|2 + u2)dvg − α

∫

∂Σ

u2dsg.

We have the following lemma.

Lemma 2.1 For any 0 < ε < π, the supremum sup
u∈H

∫

∂Σ
e(π−ε)u

2

dsg is attained by some

function uε ∈ H ∩ C∞(Σ).

Proof Let 0 < ε < π be fixed. By the definition of supremum, we can choose a maximizing

sequence {ui}∞i=1 in H such that

lim
i→∞

∫

∂Σ

e(π−ε)u
2
i dsg = sup

u∈H

∫

∂Σ

e(π−ε)u
2

dsg. (2.2)

Moreover, ui converges to some function uε weakly in W 1,2(Σ, g) and strongly in Lp(∂Σ, g) for

any p > 1. Then we have
∫

∂Σ
uε dsg = 0. According to the definition of weak convergence

and the Hölder’s inequality, we get ‖∇guε‖L2(Σ) ≤ lim
i→∞

‖∇gui‖L2(Σ), which gives ‖uε‖21,α ≤ 1.

From Lagrange’s mean value theorem, the Hölder’s inequality and (1.3), there holds

lim
i→∞

∣

∣

∣

∫

∂Σ

e(π−ε)u
2
i dsg −

∫

∂Σ

e(π−ε)u
2
εdsg

∣

∣

∣
= 0.
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In view of (2.2), we have
∫

∂Σ

e(π−ε)u
2
εdsg = sup

u∈H

∫

∂Σ

e(π−ε)u
2

dsg. (2.3)

Suppose ‖uε‖21,α < 1, then one gets

∫

∂Σ

e(π−ε)u
2
εdsg <

∫

∂Σ

e
(π−ε)( uε

‖uε‖1,α
)2

dsg ≤ sup
u∈H

∫

∂Σ

e(π−ε)u
2

dsg.

This result contradicts with (2.3). Hence ‖uε‖21,α = 1 holds and uε ∈ H.

By a direct calculation, we derive that uε satisfies the Euler-Lagrange equation














































∆guε + uε = 0 in Σ,

∂uε
∂n

=
1

λε
uεe

(π−ε)u2
ε + αuε −

µε
λε

on ∂Σ,

λε =

∫

∂Σ

u2εe
(π−ε)u2

εdsg,

µε =
1

ℓ(∂Σ)

(

∫

∂Σ

uεe
(π−ε)u2

εdsg − λε

∫

Σ

uε dvg

)

,

(2.4)

where ℓ(∂Σ) denotes the length of ∂Σ. Applying elliptic estimates to (2.4), we have uε ∈
H ∩ C∞(Σ). Then Lemma 2.1 follows.

Moreover, we have

lim
ε→0

∫

∂Σ

e(π−ε)u
2
εdsg = sup

u∈H

∫

∂Σ

eπu
2

dsg (2.5)

from Lebesgue’s dominated convergence theorem. It follows from (2.5) and the fact of et ≤ 1+tet

for any t ≥ 0 that

lim inf
ε→0

λε > 0. (2.6)

From (2.6) and uε ∈ H, one gets

∣

∣

∣

µε
λε

∣

∣

∣
≤ 1

λεℓ(∂Σ)

(

∫

{u∈∂Σ:|uε|≥1}

|uε|e(π−ε)u
2
εdsg +

∫

{u∈∂Σ:|uε|<1}

|uε|e(π−ε)u
2
εdsg

)

+ C

≤ 1

λεℓ(∂Σ)

(

∫

{u∈∂Σ:|uε|≥1}

u2εe
(π−ε)u2

εdsg +

∫

{u∈∂Σ:|uε|<1}

e(π−ε)u
2
εdsg

)

+ C

≤ 1

ℓ(∂Σ)
+

eπ

λε
+ C

≤ C. (2.7)

Step 2 Blow-up analysis.

Let us perform the blow-up analysis. Without loss of generality, we set cε = |uε(xε)| =
max
Σ

|uε|. If cε is bounded, by elliptic estimates, we complete the proof of Theorem 1.1(i). In

the following, we assume lim
ε→0

cε = lim
ε→0

uε(xε) = +∞ and xε → p as ε→ 0. Applying maximum

principle to (2.4), we have p ∈ ∂Σ. Then we have the following lemma.

Lemma 2.2 There hold uε ⇀ 0 weakly in W 1,2(Σ, g) and uε → 0 strongly in L2(∂Σ, g) as

ε→ 0. Furthermore, |∇guε|2dvg ⇀ δp in sense of measure, where δp is the usual Dirac measure

centered at p.
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Proof Since uε is bounded in W 1,2(Σ, g), there exists some function u0 such that uε ⇀ u0
weakly inW 1,2(Σ, g) and uε → u0 strongly in L2(∂Σ, g) as ε→ 0. Then we have

∫

∂Σ u0dsg = 0

and ‖u0‖21,α ≤ 1.

Suppose u0 6≡ 0, then one has
∫

Σ
(|∇gu0|2 + u20)dvg > 0 and

1 ≥ ‖u0‖21,α ≥
(

1− α

λ1(∂Σ)

)

∫

Σ

(|∇gu0|2 + u20)dvg > 0.

Then we obtain ‖∇g(uε − u0)‖22 → 1 − ‖u0‖21,α as ε → 0. Letting ζ = 1 − ‖u0‖21,α, one has

0 ≤ ζ < 1. For sufficiently small ε, there holds

‖∇g(uε − u0)‖22 ≤ ζ + 1

2
< 1. (2.8)

From the Hölder’s inequality, (1.3) and (2.8), we get e(π−ε)u
2
ε is bounded in Lq(∂Σ, g) for

sufficiently small ε. Applying the elliptic estimate to (2.4), one gets that uε is uniformly bounded,

which contradicts cε → +∞. That is to say u0 ≡ 0.

Suppose |∇guε|2dvg ⇀ µ 6= δp in sense of measure. Then there exists some positive number

r > 0 such that lim
ε→0

∫

Br(p)
|∇guε|2dvg = η < 1, where Br(p) is a geodesic ball centered at p with

radius r. Moreover, we obtain
∫

Br(p)
|∇guε|2dvg ≤ η+1

2 < 1 for sufficiently small ε. We choose a

cut-off function ρ ∈ C1
0 (Br(p)), which is equal to 1 in B r

2
(p) and

∫

Br(p)
|∇g(ρuε)|2dvg ≤ η+3

4 < 1

for sufficiently small ε. Hence there holds

∫

B r
2
(p)∩∂Σ

eq(π−ε)u
2
εdsg ≤

∫

Br(p)∩∂Σ

eq(π−ε)(ρuε)
2

dsg

≤
∫

Br(p)∩∂Σ

e
q(π−ε) η+3

4
(ρuε)2

∫
Br(p) |∇g(ρuε)|2dvg dsg

for some q > 1. In view of (1.3), we obtain e(π−ε)u
2
ε is bounded in Lq(B r

2
(p) ∩ ∂Σ, g) for

sufficiently small ε. Applying the elliptic estimate to (2.4), we get that uε is uniformly bounded

in B r
4
(p) ∩ ∂Σ, which contradicts cε → +∞. Therefore, Lemma 2.2 follows.

Now we analyse the asymptotic behavior of uε near the concentration point p. Let

rε =
λε

c2εe
(π−ε)c2ε

. (2.9)

Following [31, Lemma 4], we can take an isothermal coordinate system (U, φ) near x0, such that

φ(x0) = 0, φ(U) = B
+
r and φ(U ∩∂Σ) = ∂R2

+∩Br for some fixed r > 0, where B+
r = {(x1, x2) ∈

R
2 : x21 + x22 ≤ r2, x2 > 0} and R

2
+ = {x = (x1, x2) ∈ R

2 : x2 > 0}. In such coordinates, the

metric g has the representation g = e2f (dx21 + dx22) and f is a smooth function with f(0) = 0.

Denote uε = uε ◦ φ−1, xε = φ(xε) and Uε = {x ∈ R
2 : xε + rεx ∈ φ (U)}. Define two blowing

up functions in Uε,

ψε(x) =
uε(xε + rεx)

cε
(2.10)

and

ϕε(x) = cε(uε(xε + rεx)− cε). (2.11)
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In view of (2.4) and (2.9)–(2.11), for any fixed R > 0, we obtain











−∆R2ψε = e2f(xε+rεx)r2εψε in B
+
R,

∂ψε
∂v

= −ef(xε+rεx)
(

c−2
ε ψεe

(π−ε)(ψε+1)ϕε + αrεψε −
rεµε
cελε

)

on ∂R2
+ ∩ BR

(2.12)

and










−∆R2ϕε = e2f(xε+rεx)r2ε(ϕε + c2ε) in B
+
R,

∂ϕε
∂v

= −ef(xε+rεx)
(

ψεe
(π−ε)(ψε+1)ϕε + αc2εrεψε −

cεrεµε
λε

)

on ∂R2
+ ∩ BR,

(2.13)

where ∆R2 denotes the Laplace operator on R
2, v denotes the outward unit normal vector on

∂R2
+, Br = {x ∈ R

2 : dist(x, 0) ≤ r} and B
+
r = {x = (x1, x2) ∈ Br : x2 > 0} for any r > 0.

Applying elliptic estimates to (2.12), we have lim
ε→0

ψε = ψ in C1(B+
R
2

) for any fixed R > 0 with

ψ(0) = 1. According to (2.4), (2.7) and (2.9), we get lim
ε→0

∂ψε

∂v
= 0 on ∂R2

+ ∩ BR
2
. Then there

holds

lim
ε→0

ψε = 1 in C1
loc(R

2
+). (2.14)

Using the same argument for (2.13) as above, we obtain

lim
ε→0

ϕε = ϕ in C1
loc(R

2
+), (2.15)

where ϕ satisfies


















∆R2ϕ = 0 in B
+
R,

∂ϕ

∂v
= −e2πϕ on ∂R2

+ ∩ BR,

ϕ(0) = supϕ = 0.

It is not difficult to check that
∫

∂R2
+∩BR

e2πϕdx1 ≤ lim inf
ε→0

∫

∂Σ∩BRrε (xε)

1

λε
u2εe

(π−ε)u2
εdsg ≤ 1

for any fixed R > 0, that is to say
∫

∂R2
+
e2πϕdx1 ≤ 1. By a result of Li-Zhu [16], we obtain

ϕ(x) = − 1

2π
ln(π2x21 + (1 + πx2)

2). (2.16)

A direct calculation gives
∫

∂R2
+

e2πϕdx1 = 1. (2.17)

Next we discuss the convergence behavior of uε away from p. Denote uε, β = min{βcε, uε} ∈
W 1,2(Σ, g) for any real number 0 < β < 1. Following [29, Lemma 4.7], we can easily get

lim
ε→0

‖∇guε, β‖22 = β. (2.18)
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Lemma 2.3 Letting λε be defined by (2.4), we obtain

lim sup
ε→0

∫

∂Σ

e(π−ε)u
2
εdsg = ℓ(∂Σ) + lim

ε→0

λε
c2ε

(2.19)

and

lim
ε→0

λε
c2ε

= lim
R→+∞

lim
ε→0

∫

φ−1(BRrε(xε))∩∂Σ

e(π−ε)u
2
ε dsg. (2.20)

Proof Recalling (2.4) and (2.18), one gets
∫

∂Σ

e(π−ε)u
2
εdsg − ℓ(∂Σ)

=

∫

{x∈∂Σ:uε≤βcε}

(e(π−ε)u
2
ε − 1) dsg +

∫

{x∈∂Σ:uε>βcε}

(e(π−ε)u
2
ε − 1) dsg

≤
∫

∂Σ

(e(π−ε)u
2
ε, β − 1) dsg +

1

β2c2ε

∫

{x∈∂Σ:uε>βcε}

u2εe
(π−ε)u2

ε dsg

≤
∫

∂Σ

e(π−ε)u
2
ε, β (π − ε)u2ε dsg +

λε
β2c2ε

≤
(

∫

∂Σ

er(π−ε)u
2
ε, βdsg

)
1
r
(

∫

∂Σ

(π − ε)su2sε dsg

)
1
s

+
λε
β2c2ε

for any real number 0 < β < 1 and some r, s > 1 with 1
r
+ 1

s
= 1. From (1.3) and (2.18),

e(π−ε)u
2
ε, β is bounded in Lr(∂Σ, g). Letting ε→ 0 first and then β → 1, we obtain

lim sup
ε→0

∫

∂Σ

e(π−ε)u
2
εdsg − ℓ(∂Σ) ≤ lim

ε→0

λε
c2ε
. (2.21)

According to cε = max
Σ

uε, (2.4) and Lemma 2.2, we have

∫

∂Σ

e(π−ε)u
2
εdsg − ℓ(∂Σ) ≥ λε

c2ε
−
∫

∂Σ

u2ε
c2ε

dsg,

that is to say

lim sup
ε→0

∫

∂Σ

e(π−ε)u
2
εdsg − ℓ(∂Σ) ≥ lim

ε→0

λε
c2ε
. (2.22)

Combining (2.21) with (2.22), one gets (2.19).

Applying (2.4) and (2.9)–(2.11), we have
∫

φ−1(BRrε (xε))∩∂Σ

e(π−ε)u
2
εdsg =

∫

BR∩∂R2
+

rεe
(π−ε)c2εe(π−ε)(ψε+1)ϕεef(xε+rεx)dx1

=

∫

BR∩∂R2
+

λε
c2ε

e(π−ε)(ψε+1)ϕεef(xε+rεx)dx1.

From (2.14)–(2.17), (2.20) holds.

Next we consider the properties of cεuε. Combining Lemma 2.3 with [29, Lemma 4.9], we

obtain

1

λε
cεuεe

(π−ε)u2
εdsg ⇀ δp. (2.23)

Furthermore, one has the follwing lemma.
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Lemma 2.4 There hold










cεuε ⇀ G weakly in W 1,q(Σ, g), ∀1 < q < 2,

cεuε → G strongly in L2(∂Σ, g),

cεuε → G in C1
loc(Σ\{p}),

where G is a Green function satisfying



















∆gG+G = δp in Σ,

∂G

∂n
= αG− 1

ℓ(∂Σ)
on ∂Σ\{p},

∫

∂ΣGdsg = 0.

(2.24)

Proof From (2.4), there hold



























∆g(cεuε) + cεuε = 0 in Σ,

∂(cεuε)

∂n
=

1

λε
cεuεe

(π−ε)u2
ε + αcεuε − cε

µε
λε

on ∂Σ,
∫

∂Σ

cεuε dsg = 0.

(2.25)

Combining (2.4) with (2.23), we obtain

∣

∣

∣

cεµε
λε

∣

∣

∣
=

1

ℓ(∂Σ)

∣

∣

∣

∫

∂Σ

1

λε
cεuεe

(π−ε)u2
εdsg −

∫

Σ

cεuεdvg

∣

∣

∣

≤ C +

∫

Σ

|cεuε|dvg. (2.26)

Moreover, it follows from the Poincaré inequality that
∫

Σ

|cεuε − cεuε|dvg ≤ C||cεuε − cεuε||Lq(Σ) ≤ C||∇g(cεuε)||Lq(Σ),

where cεuε =
∫
Σ
cεuεdvg
|Σ| , then we have

∫

Σ

|cεuε|dvg ≤ C||∇g(cεuε)||Lq(Σ) + C. (2.27)

From the Hölder’s inequality and the Sobolev embedding theorem, one gets
∫

∂Σ

|cεuε|dsg ≤ C‖cεuε‖Lq(∂Σ) ≤ C‖∇g(cεuε)‖Lq(Σ) (2.28)

for some q > 1. It is well known (see for example [15, Proposition 3.5]) that
∫

Σ

|∇g(cεuε)|qdvg ≤ sup
‖Φ‖

W1,q′ (Σ,g)
=1

∫

Σ

∇gΦ∇g(cεuε)dvg, (2.29)

where 1
q
+ 1

q′
= 1. For any 1 < q < 2, the Sobolev embedding theorem implies that ‖Φ‖C0(Σ) ≤

C, where C is a constant depending only on (Σ, g). Using (2.23), (2.25)–(2.29) and the diver-

gence theorem, we have

‖∇g(cεuε)‖qLq(Σ) ≤
∫

Σ

∇gΦ∇g(cεuε)dvg
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≤
∫

∂Σ

Φ
1

λε
cεuεe

(π−ε)u2
εdsg + α

∫

∂Σ

Φcεuεdsg − cε
µε
λε

∫

∂Σ

Φdsg −
∫

Σ

Φcεuεdvg

≤ Φ(p) + C(α+ 1)‖∇g(cεuε)‖Lq(Σ) + C.

That is to say ‖∇g(cεuε)‖Lq(Σ) ≤ C. The Poincaré inequality implies that cεuε is bounded in

W 1,q(Σ, g) for any 1 < q < 2. Hence there exists some function G such that cεuε ⇀ G weakly

in W 1,q(Σ, g) and cεuε → G strongly in L2(∂Σ, g) as ε→ 0. By (2.25), we obtain (2.24).

For any fixed δ > 0, we choose a cut-off function η ∈ C∞(Σ) such that η ≡ 0 on Bδ(p) and

η ≡ 1 on Σ/B2δ(p). Using Lemma 2.2, we have lim
ε→0

‖∇g(ηuε)‖2 = 0. Hence e(π−ε)u
2
ε is bounded

in Ls(Σ/B2δ(p)) for any s > 1. It follows from (2.25) that ∂(cεuε)
∂n

∈ Ls0(Σ\B2δ(p)) for some

s0 > 2. Applying the elliptic estimate to (2.25), we get that cεuε is bounded in C1(Σ/B4δ(p)).

Then there holds lim
ε→0

cεuε = G in C1
loc(Σ/{p}). This completes the proof of the lemma.

Applying the elliptic estimate to (2.24), we can decompose G near p,

G = − 1

π
ln r +Ap +O(r), (2.30)

where r = dist(x, p) and Ap is a constant depending only on α, p and (Σ, g).

Step 3 Upper bound estimate.

To derive an upper bound of sup
u∈H

∫

∂Σ
eπu

2

dsg, we use the capacity estimate, which was first

used by Li [13] in this topic and also used by Li-Liu [15].

Lemma 2.5 Under the hypotheses cε → +∞ and xε → p ∈ ∂Σ as ε→ 0, there holds

sup
u∈H

∫

∂Σ

eπu
2

dsg ≤ ℓ(∂Σ) + 2πeπAp . (2.31)

Proof We take an isothermal coordinate system (U, φ) near p such that φ(p) = 0, φ maps

U to R
2
+, and φ(U ∩ ∂Σ) ⊂ ∂R2

+. In such coordinates, the metric g has the representation

g = e2f (dx21 + dx22) and f is a smooth function with f(0) = 0. We claim that

lim
ε→0

λε
c2ε

≤ 2πeπAp . (2.32)

To confirm this claim, we set a = sup
∂Bδ∩R

2
+

uε and b = inf
∂BRrε∩R

2
+

uε for sufficiently small δ > 0

and some fixed R > 0, where uε = uε ◦ φ−1. It follows from (2.30) and Lemma 2.4 that on

∂Bδ ∩R
2
+, uε =

G+oε(1)
cε

, which leads to

a =
1

cε

( 1

π
ln

1

δ
+Ap + oδ(1) + oε(1)

)

,

where oδ(1) → 0, oε(1) → 0 as ε→ 0. According to (2.15)–(2.16), we have on ∂BRrε ∩ R
2
+,

uε(x) = cε +
ϕ(x) + oε(1)

cε
,

then there holds

b = cε +
1

cε

(

− 1

2π
ln(1 + π2R2) + oε(1)

)

.
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From a direct computation, there holds

π(a− b)2 = πc2ε + 2 ln δ − 2πAp − ln(1 + π2R2) + oδ(1) + oε(1). (2.33)

Define

Wa,b =
{

u ∈ W 1,2(B+
δ \ B+

Rrε
) : u|∂Bδ∩R

2
+
= a, u|∂BRrε∩R

2
+
= b,

∂u

∂v

∣

∣

∣

∂R2
+∩(Bδ\BRrε)

= 0
}

.

Suppose that inf
u∈Wa,b

∫

B
+
δ
\B+

Rrε

|∇R2u|2dx can be attained by some function m(x) ∈ Wa,b with

∆R2m(x) = 0. We can check that

m(x) =
a(ln |x| − ln(Rrε)) + b(ln δ − ln |x|)

ln δ − ln(Rrε)

and
∫

B
+
δ
\B+

Rrε

|∇R2m(x)|2dx =
π(a− b)2

ln δ − ln(Rrε)
. (2.34)

Recalling (2.4) and (2.9), we have

ln δ − ln(Rrε) = ln δ − lnR − ln
λε
c2ε

+ (π − ε)c2ε. (2.35)

Letting uε ∈Wa,b and u
∗
ε = max{a, min{b, uε}}, one gets |∇R2u∗ε| ≤ |∇R2uε| in B

+
δ \ B+

Rrε
for

sufficiently small ε. Further using ‖uε‖21,α = 1, we obtain

∫

B
+
δ
\B+

Rrε

|∇R2m(x)|2dx ≤
∫

B
+
δ
\B+

Rrε

|∇R2u∗ε(x)|2dx

≤
(

1 + α

∫

∂Σ

u2εdsg −
∫

Σ

u2εdvg

)

−
∫

Σ\φ−1(B+
δ
)

|∇guε|2dvg

−
∫

φ−1(B+
Rrε

)

|∇guε|2dvg. (2.36)

Now we compute
∫

Σ\φ−1(B+
δ
)
|∇guε|2dvg and

∫

φ−1(B+
Rrε

)
|∇guε|2dvg. In view of (2.30), we obtain

∫

Σ\φ−1(B+
δ
)

|∇gG|2dvg =
1

π
ln

1

δ
+Ap + α‖G‖2L2(∂Σ) + oε(1) + oδ(1).

Hence we have by Lemma 2.4,
∫

Σ\φ−1(B+
δ
)

|∇guε|2dvg =
1

c2ε

( 1

π
ln

1

δ
+Ap + α‖G‖2L2(∂Σ) + oε(1) + oδ(1)

)

. (2.37)

According to (2.11), (2.15) and (2.16), one gets
∫

φ−1(B+
Rrε

)

|∇guε|2dvg =
1

c2ε

( 1

π
lnR+

1

π
ln
π

2
+ oε(1) + oR(1)

)

, (2.38)

where oR(1) → 0 as R→ +∞. In view of (2.33)–(2.38), we obtain

ln
λε
c2ε

≤ ln (2π) + πAp + o(1),
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where o(1) → 0 as ε → 0 first, then R → +∞ and δ → 0. Hence (2.32) follows. Combining

(2.5), (2.32) with Lemma 2.3, we finish the proof of the lemma.

Step 4 Existence result.

In this step, we always assume that 0 ≤ α < λ1(∂Σ). We take an isothermal coordinate

system (U, φ) near p such that φ(p) = 0, φ maps U to R
2
+, and φ(U ∩ ∂Σ) ⊂ ∂R2

+. In such

coordinates, the metric g has the representation g = e2f (dx21 +dx22) and f is a smooth function

with f(0) = 0. Set a cut-off function ξ ∈ C∞
0 (φ−1(B+

2Rε)) with ξ = 1 on φ−1(B+
Rε) and

‖∇gξ‖L∞ = O
(

1
Rε

)

. Denote β = G + 1
π
ln r − Ap for any r > 0, where G is defined by (2.30).

Let R = ln2 ε, then R → +∞ and Rε → 0 as ε → 0. We construct a blow-up sequence of

functions

vε =































(

c− 1

2πc
ln
π2x21 + (πx2 + ε)2

ε2
+
B

c

)

◦ φ, x ∈ φ−1(B+
Rε),

G− ξβ

c
, x ∈ φ−1(B+

2Rε\B+
Rε),

G

c
, x ∈ Σ\φ−1(B+

2Rε)

(2.39)

for some constants B, c to be determined later, such that

∫

Σ

(|∇gvε|2 + (vε − vε)
2)dvg − α

∫

∂Σ

(vε − vε)
2dsg = 1 (2.40)

and vε − vε ∈ H, where vε =
∫
∂Σ

vεdsg
ℓ(∂Σ) .

Note that
∫

∂Σ
Gdsg = 0, one has vε = O(Rε ln2(Rε)), and then



















∫

∂Σ

|vε − vε|2dsg =
‖G‖2L2(∂Σ)

c2
+O(Rε ln2(Rε)),

∫

Σ

|vε − vε|2dvg =
∫

Σ\BRε(p)

G2

c2
dvg +O(Rε ln2(Rε)).

(2.41)

A delicate calculation shows

∫ arcsin 1
πR

0

ln sin θdθ =

∫ 1
πR

0

ln t√
1− t2

dt ≤ C

∫ 1
πR

0

ln tdt = O
( lnR

R

)

(2.42)

and
∫

φ−1(B+
Rε)

|∇gvε|2dvg

=
1

4π2c2

∫

Q(R)

|∇R2 ln(π2x21 + π2x22)|2dx1dx2

=
1

4π2c2

∫ π−arcsin 1
πR

arcsin 1
πR

dθ

∫ R

1
π sin θ

|∇R2 ln(π2R2)|2rdr

=
1

π2c2

(

π ln(πR) +

∫ π

0

ln sin θ dθ − 2

∫ arcsin 1
πR

0

ln sin θ dθ +O
( lnR

R

))

=
1

πc2

(

lnR+ ln
π

2
+O

( lnR

R

))

, (2.43)
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where Q(R) =
{

(x1, x2) : x
2
1 + x22 ≤ R2, x2 ≥ 1

π

}

. According to (2.37) and (2.39), one has

∫

Σ\φ−1(B+
Rε

)

|∇gvε|2dvg

=
1

c2

(

Ap + α‖G‖2L2(∂Σ) −
1

π
ln(Rε)−

∫

Σ\BRε(p)

G2dvg +O(Rε ln2(Rε))
)

. (2.44)

In view of (2.40)–(2.44), there holds

c2 = Ap +
1

π
ln
( π

2ε

)

+O
( lnR

R

)

+O(Rε ln2(Rε)). (2.45)

Moreover, in order to assure that vε ∈W 1,2(Σ, g), we obtain

c2 − 1

2π
ln(π2R2) +B +O

( 1

R

)

= − 1

π
ln(Rε) +Ap,

which is equivalent to

c2 =
1

π
lnπ − 1

π
ln ε−B +Ap +O

( 1

R

)

. (2.46)

According to (2.45)–(2.46), one gets

B =
1

π
ln 2 +O

( lnR

R

)

+O(Rε ln2(Rε)).

It follows that in ∂Σ ∩BRε(p),

π(vε − vε)
2 ≥ ln(2π) + πAp − ln

(ε2 + π2x21
ε

)

+O
( lnR

R

)

+O(Rε ln2(Rε)).

Hence

∫

∂Σ∩φ−1(B+
Rε

)

eπ(vε−vε)
2

dsg ≥ 2πeπAp +O
( lnR

R

)

+O(Rε ln2(Rε)). (2.47)

On the other hand, from the fact et ≥ t+ 1 for any t > 0 and (2.39), we get

∫

∂Σ\φ−1(B+
Rε)

eπ(vε−vε)
2

dsg ≥
∫

∂Σ\φ−1(B+
Rε)

(1 + π(vε − vε)
2) dsg

≥ ℓ(∂Σ) +
π‖G‖2L2(∂Σ)

c2
+O(Rε ln2(Rε)). (2.48)

From (2.47)–(2.48) and R = ln2 ε, there holds

∫

∂Σ

eπ(vε−vε)
2

dsg > ℓ(∂Σ) + 2πeπAp (2.49)

for sufficiently small ε > 0. The contradiction between (2.31) and (2.49) indicates that cε must

be bounded. Then Theorem 1.1 follows.
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3 Higher Order Eigenvalue Cases

In this section, we will prove Theorem 1.3 involving higher order eigenvalues through blow-

up analysis. Let k be a positive integer and Ek(∂Σ) be defined by (1.10). Denote the dimension

of Ek(∂Σ) by sk. From [4, Theorem 9.31], it is known that sk is a finite constant only depending

on k. Then we can find a set of normal orthogonal basis {ei}ski=1 ∈ C∞(Σ) of Ek(∂Σ) satisfying


























∫

∂Σ

eidsg = 0,

∆gei + ei = 0 in Σ,

∂ei
∂n

= λk0(∂Σ)ei on ∂Σ,

(3.1)

where k0 ≤ k is a positive integer.

3.1 Blow-up analysis

Let λk+1(∂Σ) and S be defined by (1.9) and (1.12), respectively. In view of Lemma 2.1 and

(3.1), we have the following lemma.

Lemma 3.1 Let 0 ≤ α < λk+1(∂Σ) be fixed. For any 0 < ε < π, the supremum

sup
u∈S

∫

∂Σ

e(π−ε)u
2

dsg

is attained by some function uε ∈ S ∩C∞(Σ). Moreover, the Euler-Lagrange equation of uε is


























































∆guε + uε = 0 in Σ,

∂uε
∂n

=
1

λε
uεe

(π−ε)u2
ε + αuε −

µε
λε

−
sk
∑

i=1

βε,i
λε

ei on ∂Σ,

λε =

∫

∂Σ

u2εe
(π−ε)u2

εdsg,

µε =
1

ℓ(∂Σ)

(

∫

∂Σ

uεe
(π−ε)u2

εdsg − λε

∫

Σ

uεdvg

)

,

βε,i =

∫

∂Σ

uεe
(π−ε)u2

εeidsg.

(3.2)

Without loss of generality, we set cε = |uε(xε)| = max
Σ

|uε|. We first assume that cε is

bounded, which together with elliptic estimates completes the proof of Theorem 1.3. In the

remainder of Section 3, we assume

lim
ε→0

cε = lim
ε→0

uε(xε) = +∞

and xε → p as ε → 0. Applying maximum principle to (3.2), we have p ∈ ∂Σ. Similar to

Lemma 4, we get the following lemma.

Lemma 3.2 There hold cεuε ⇀ G weakly in W 1,q(Σ, g) (∀1 < q < 2), cεuε → G strongly

in L2(∂Σ, g) and cεuε → G in C1
loc(Σ\{p}) as ε→ 0, where G is a Green function satisfying































∆gG+G = δp in Σ,

∂G

∂n
= αG − 1

ℓ(∂Σ)
−

sk
∑

i=1

eiei(p) on ∂Σ\{p},
∫

∂Σ

Gdsg = 0.
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Moreover, G near p can be decomposed into

G = − 1

π
ln r +Ap +O(r), (3.3)

where r = dist(x, p) and Ap is a constant depending only on α, p and (Σ, g). Analogous to

Lemma 2.5, using the capacity estimate, we derive an upper bound of the supremum (1.13):

sup
u∈S

∫

∂Σ

eπu
2

dsg ≤ ℓ(∂Σ) + 2πeπAp . (3.4)

3.2 Existence result

We always assume that cε → +∞ as ε → 0. Take an isothermal coordinate system (U, φ)

near p such that φ(p) = 0, φ maps U to R
2
+, and φ(U ∩ ∂Σ) ⊂ ∂R2

+. In such coordinates, the

metric g has the representation g = e2f (dx21 + dx22) and f is a smooth function with f(0) = 0.

Set a cut-off function ξ ∈ C∞
0 (φ−1(B+

2Rε)) with ξ = 1 on φ−1(B+
Rε) and ‖∇gξ‖L∞ = O

(

1
Rε

)

.

Denote β = G + 1
π
ln r − Ap, where G is defined by (3.3). Let R = ln2 ε, then R → +∞ and

Rε→ 0 as ε→ 0. We construct a blow-up sequence of functions

vε =



































(

c− 1

2πc
ln
π2x21 + (πx2 + ε)2

ε2
+
B

c

)

◦ φ, x ∈ φ−1(B+
Rε),

G− ξβ

c
, x ∈ φ−1(B+

2Rε\B+
Rε),

G

c
, x ∈ Σ\φ−1(B+

2Rε)

for some constants B, c to be determined later, such that
∫

Σ

(|∇gvε|2 + (vε − vε)
2)dvg − α

∫

∂Σ

(vε − vε)
2dsg = 1

and vε−vε ∈ S, where vε =
∫
∂Σ

vεdsg
ℓ(∂Σ) . Analogous to Subsection 2.4, we determine the constants

B =
1

π
ln 2 +O

( lnR

R

)

+O(Rε ln2(Rε))

and

c2 = Ap +
1

π
ln
( π

2ε

)

+O
( lnR

R

)

+O(Rε ln2(Rε)).

Then we get

∫

∂Σ

eπ(vε−vε)
2

dsg ≥ 2πeπAp + ℓ(∂Σ) +
π‖G‖2L2(∂Σ)

c2
+O(Rε ln2(Rε)) +O

( lnR

R

)

. (3.5)

Setting

v∗ε = (vε − vε)−
sk
∑

i=1

ei

∫

∂Σ

(vε − vε)ei dsg ∈ E⊥
k ,

one gets
∫

∂Σ
v∗ε dsg = 0 and

∫

Σ

(|∇gv
∗
ε |2 + (v∗ε )

2)dvg − α

∫

∂Σ

(v∗ε )
2dsg = 1 +O

( 1

R2

)

.
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It is easy to verify Vε = v∗ε/‖v∗ε‖21,α ∈ S. In view of (3.5) and R = ln2 ε, we have

∫

∂Σ

eπV
2
ε dsg ≥

(

1 +O
( 1

R2

))

∫

∂Σ

eπ(vε−vε)
2

dsg

≥ 2πeπAp + ℓ(∂Σ) +
π‖G‖2L2(∂Σ)

c2
+O(Rε ln2(Rε)) +O

( lnR

R

)

> 2πeπAp + ℓ(∂Σ) (3.6)

for sufficiently small ε > 0. The contradiction between (3.4) and (3.6) indicates that the

assumption of lim
ε→0

cε = lim
ε→0

uε(xε) = +∞ is not true. Then cε must be bounded and Theorem

1.3 follows from the elliptic estimate.
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[6] Cherrier, P., Une inégalité de Sobolev sur les variétés Riemanniennes, Bull. Sci. Math., 103, 1979, 353–374.
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