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Abstract In this paper, the author computes canonical connections and Kobayashi-
Nomizu connections and their curvature on three-dimensional Lorentzian Lie groups with
some product structure. He defines algebraic Ricci solitons associated to canonical con-
nections and Kobayashi-Nomizu connections. He classifies algebraic Ricci solitons asso-
ciated to canonical connections and Kobayashi-Nomizu connections on three-dimensional
Lorentzian Lie groups with some product structure.
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1 Introduction

The concept of the algebraic Ricci soliton was first introduced by Lauret in Riemannian case
in [6], where the author studied the relation between solvsolitons and Ricci solitons on Rieman-
nian manifolds. More precisely, he proved that any Riemannian solvsoliton metric is a Ricci
soliton. The concept of the algebraic Ricci soliton was extended to the pseudo-Riemannian case
in [1], where Batat and Onda studied algebraic Ricci solitons of three-dimensional Lorentzian
Lie groups. They got a complete classification of algebraic Ricci solitons of three-dimensional
Lorentzian Lie groups and they proved that, contrary to the Riemannian case, Lorentzian Ric-
ci solitons needed not be algebraic Ricci solitons. In [7], Onda provided a study of algebraic
Ricci solitons in the pseudo-Riemannian case and obtained a steady algebraic Ricci soliton
and a shrinking algebraic Ricci soliton in the Lorentzian setting. In [5], Etayo and Santa-
maria studied some affine connections on manifolds with the product structure or the complex
structure. In particular, the canonical connection and the Kobayashi-Nomizu connection for a
product structure were studied. In this paper, we introduce a particular product structure on
three-dimensional Lorentzian Lie groups and we compute canonical connections and Kobayashi-
Nomizu connections and their curvatures on three-dimensional Lorentzian Lie groups with this
product structure. We define algebraic Ricci solitons associated to canonical connections and

Kobayashi-Nomizu connections. We classify algebraic Ricci solitons associated to canonical
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connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie groups
with this product structure.

In Section 2, we classify algebraic Ricci solitons associated to canonical connections and
Kobayashi-Nomizu connections on three-dimensional unimodular Lorentzian Lie groups with
the product structure. In Section 3, we classify algebraic Ricci solitons associated to canonical
connections and Kobayashi-Nomizu connections on three-dimensional non-unimodular

Lorentzian Lie groups with the product structure.

2 Algebraic Ricci Solitons Associated to Canonical Connections
and Kobayashi-Nomizu Connections on Three-dimensional
Lorentzian Lie Groups

Three-dimensional Lorentzian Lie groups have been classified in [2, 4] (see [1, Theorems 2.1—
2.2]). Throughout this paper, we shall by {G;}i—1.... 7, denote the connected, simply connected
three-dimensional Lie group equipped with a left-invariant Lorentzian metric g and having Lie
algebra {g}i=1... 7. Let V be the Levi-Civita connection of G; and R be its curvature tensor,

taken with the convention
R(X,Y)Z =VxVyZ - VyVxZ — Vixy 2. (2.1)
The Ricci tensor of (G, g) is defined by
p(X,)Y)=—g(R(X,e1)Y,e1) — g(R(X,e2)Y,e2) + g(R(X,e3)Y, e3), (2.2)

where {e1, €3, €3} is a pseudo-orthonormal basis, with ez timelike and the Ricci operator Ric is

given by
p(X,Y) = g(Ric(X),Y). (2.3)
We define a product structure J on G; by
Jey =e1, Jey=ey, Jez= —esz, (2.4)

then J? = Id and g(Je;, Je;) = g(ej,e;). By [5], we define the canonical connection and the

Kobayashi-Nomizu connection as follows:

V%Y =VxY — %(VXJ)JY, (2.5)
VY = VLY — %[(VyJ)JX — (Vv J)X]. (2.6)

We define
RUX,Y)Z =V VY Z - VYV Z = Vix v Z, (2.7)

RYX,Y)Z =VxVyZ —VyVNZ = Vix v 2. (2.8)
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The Ricci tensors of (G, g) associated to the canonical connection and the Kobayashi-Nomizu

connection are defined by

pO(Xv Y) = _g(RO(Xv el)K 61) - g(RO(Xv eQ)Yv 62) + g(RO(Xv 63)Yv 63)7 (29)
PHX,Y) = —g(RY(X,e1)Y,e1) — g(RY (X, e2)Y, e2) + g(R' (X, e3)Y, e3). (2.10)

The Ricci operators Ric® and Ric! is given by

P’ (X,Y) = g(Ric’(X),Y), p'(X,Y) =g(Ric'(X),Y). (2.11)

Let
P Y = PPXY) ;rpO(Y’X)7 FX,Y) = pl(X,Y);rpl(Y,X) (2.12)

and
P(X,Y) = g(Ric (X),Y), p'(X.Y)=g(Ric (X),Y), (2.13)

Definition 2.1 (G;,g,J) is called the first (resp. second) kind algebraic Ricci soliton asso-

ciated to the connection YV if it satisfies
-0 —0
Ric’ =cld+ D (resp. Ric = cId + D), (2.14)
where ¢ is a real number, and D is a derivation of g, that is
D[X,Y]=[DX,Y]+ [X,DY] for X,Y €g. (2.15)

(Gi,g,J) is called the first (resp. second) kind algebraic Ricci soliton associated to the connec-

tion V' if it satisfies
—1
Ric!' =cld + D (resp. Ric = cld + D). (2.16)

By [1, Lemma 3.1], we have that for Gy, there exists a pseudo-orthonormal basis {e1, €2, e3}

with e3 timelike such that the Lie algebra of G satisfies
[e1,e2] = e — Pes, [e1,e3] = —aer — Bea, [ea,e3] = Ber + aea + ez, a#£0. (2.17)

We recall (see [1, 3]) that the Levi-Civita connection V of Gy is given by

Ve, e1 = —aeg — ez, Ve = 568 Ve,e1 = 562
Veieo = aer — Ses, Veea = aes,  Veer = —gen —aes, (2.18)

Ve, €3 = —aep — 562, Ve, €3 = 561 + aez, Ve,e3 = —aes.
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By (2.4) and (2.18), we have that for G, the following equalities hold
Ve, (J)er = —2aes, Ve, (J)ea = —fes, Ve, (J)es = 2aer + Pea,
Ve, (J)er = Pes, Ve, (J)es =2aes, Ve, (J)es = —fe1 — 2aes, (2.19)

Ves(J)er =0, Ve, (J)es = —2ae3, Ve, (J)es = 2aes.
By (2.4)—(2.5) and (2.18)—(2.19), we have the following.
The canonical connection V° of (Gy,J) is given by
Vglel = —qeo, V21e2 = aeq, v2163 =0,
V2261 =0, V2262 =0, V2263 =0, (2.20)

B B
Vgsel == 562, VSSGQ = —561, v23€3 =0.

By (2.7) and (2.20), we have that the curvature RY of the canonical connection V° of (G, J)

is given by
0 (2 P 0 _ 5 B 0 _
R%(e1,ea)er = (a” + 5 e R%(e1,e2)es = —(a +5)en R¥(e1,e2)e3 =0,
R%e1,e3)er = —a?es, RY(e1,e3)es = a’e;, RY(e1,e3)es =0, (2.21)
R%(ea,e3)er = a—zﬁem R%(ea,e3)e0 = —%617 R%(ea, e3)es = 0.
By (2.9), (2.11) and (2.21), we get
€1 —(a2 + %2) 0 ) 0 €1
Ric’ | ex | = 0 —(2+2) 0 e (2.22)
€3 @ a? 0 €3

If (G1,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = ¢Id + D, so
62
De; = —(a2 + > —i—c)el,
52
Desy = —(a2 + 0} + 0)62, (2'23)

af
Degz = 761 + ey — ces.

By (2.15) and (2.23), we get a® + ¢ =0, 8 = 0. Then we have the following theorem.

Theorem 2.1 (G1,g,J) is the first kind algebraic Ricci soliton associated to the connection

VO if and only if > +c =0, 3 =0, a # 0. In particular,

el —a? 0 0 e el 0 O 0 e
Ric|ex | =] 0 —a® 0 e ], Dlea]| =0 0 0 es | (2.24)
e3 0 a® 0 es e3 0 o a? es
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By (2.12)—(2.13) and (2.22), we have

2 «
0 €1 _(a2 + %) 0 R _Tf €1
Ric | es | = 0 —(on ;|_ '87) e e |. (2.25)
S A AT

If (Gy,g,J) is the second kind algebraic Ricci soliton associated to the connection V°, then

Ric =cld+ D, so

2
Delz—(012+%+0)61—a—

4 €3,
2 2
Dey = —(a2 + % + 0)62 — %63, (2.26)
af a?
Des = Tel + 762 — ces.

By (2.15) and (2.26), we get 0‘72 +c¢=0, §=0. Then we have the following theorem.

Theorem 2.2 (G4, g, J) is the second kind algebraic Ricci soliton associated to the connec-

tion VO if and only if 0‘72 +c=0, =0, a#0. In particular,

A —a? 0 O2 el

Ric [ e | = 0 —a? -5 e |,
€3 0 0‘72 0 €3
€1 _%2 02 02 €1

Dle|=| 0 -2 —2|(e]. (2.27)
€3 0 %22 047; €3

By (2.6) and (2.19)—(2.20), we have that the Kobayashi-Nomizu connection V! of (Gy,.J)

is given by
Vie =—aey, V!e= Vies=0
e €1 = 2, e €2 = @€y, e €3 =Y,
1 1 1
Ve,e1=0, Ve =0, Ve3=aes, (2.28)
0 1 1
Ve,e1 = aer + Bea, Ve, €2 = —aea — Beq, Ve,e3 =0.

By (2.8) and (2.28), we have that the curvature R! of the Kobayashi-Nomizu connection
V! of (Gy,J) is given by

R'(e1,ez)er = afer + (a® + f%)ea, R'(er,ez)es = —(a? + %)er — afBes,

R1(61,€2)€3 =0, Rl(el,eg)el = —3a%es, R1(61,€3)€2 = —a?ey,
R'(e1,e3)es = afBes, R'(ea,e3)er = —a’ey, (2:29)
Rl(eg,e3)es = a’es, R'(ez,e3)es = —a’es.
By (2.10)—(2.11) and (2.29), we get
el —(a*+57) o o el
Ric' [ ey | = af —(a?+p%) —a? e | . (2.30)

€3 0 0 0 €3
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If (G1,g,J) is the first kind algebraic Ricci soliton associated to the connection V!, then
Ric! = ¢Id + D, so
Dey = —(a? + % + ¢)ey + aBes + afes,
Des = afer — (a? + B2 + c)ea — a’es, (2.31)
Des = —ces.

By (2.15) and (2.31), we get 8 =0, ¢ = 0. Then we have the following theorem.

Theorem 2.3 (G1,g,J) is the first kind algebraic Ricci soliton associated to the connection

VY if and only if B =0, c =0, a # 0. In particular,

e1 —a? 0 0 el
Ric! ey | = 0 —a? —a? es |,
e 0 0 0 e
’ ’ (2.32)
e1 —a? 0 0 el
D] e | = 0 —a? —a? ey | .
es 0 0 0 es
By (2.12)—(2.13) and (2.30), we have
(e —(a? + %) ap a_2/32 el
Ric | es | = af —(2+ 5 -% es | . (2.33)

If (G1,g,J) is the second kind algebraic Ricci soliton associated to the connection V!, then
—1
Ric =cld+ D, so

o
De; = —(a2 +3%+ c)er + afles + —ﬁ€3,

2
o2
Dey = afle; — (a? + % + c)es — = (2.34)
Dea= B, o a?
€3 = D) €1 5 €9 ces.

By (2.15) and (2.34), we get 0‘72 +c¢=0, §=0. Then we have the following theorem.

Theorem 2.4 (G1,g,J) is the second kind algebraic Ricci soliton associated to the connec-

tion V' if and only if 0‘72 +c¢=0, =0, a#0. In particular,

. e1 —Oé2 0 02 el
Ric | ex | = 0 —a? % es |,

€3 0 “72 0 €3

a? 0 0 (2.35)

el 2 5 5 el

Dle | = 0 -5 —-F €2
2 2
€3 0 % % €3

By [1, Lemma 3.5], we have that for G5, there exists a pseudo-orthonormal basis {e1, €2, e3}

with es timelike such that the Lie algebra of G5 satisfies

le1, ea] = vea — Bes, le1,e3] = —Bes — vyes, |es,e3] = ae;, v #0. (2.36)
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Similar to the case of G1, we have the following theorem.

Theorem 2.5 (1) (Ga,g,J) is the first kind algebraic Ricci soliton associated to the con-
nection VY if and only if « = 3 =0, v2 4+ ¢ =0, v # 0. In particular,

e1 —72 0 0 e1 e1 0 0 O e1
Ric[ex | =] 0 —2 0 e2|, Dle]|=[0 0 0 ez | . (2.37)
es 0 0 0 es es 0 0 ~? es

(2) (Ga,g,J) is the second kind algebraic Ricci soliton associated to the connection VO if

and only if a = 8 =0,v%+¢c =0, v # 0. In particular,

o [e —72 0 0 el e1 0 0 O e1
Ric [ ey | = 0 -2 0 ea |, Dfea]=({0 0 0 es | . (2.38)
e3 0 0 0 e3 e3 0 0 72 e3

(3) (Ga,g,J) is the first kind algebraic Ricci soliton associated to the connection V' if and

onlyifa=8=0,v2+c=0,v+#0. In particular,

e1 —72 0 0 e1 e1 0 0 O e1
Ric!'|ex ] =] 0 —2 0 e2|, Dle]|=[0 0 0 ez | . (2.39)
es 0 0 0 es es 0 0 ~? es

(4) (Ga,g,J) is the second kind algebraic Ricci soliton associated to the connection V! if

and only if a = =0, 7%+ ¢ =0, v # 0. In particular,

., [e —72 0 0 el el 0 0 O e1
Ric [ es | = 0 -2 0 ea |, Dfea]=({0 0 0 €s (2.40)
es 0 0 0 es es 0 0 +2 es
Proof The canonical connection VY of (Ga, J) is given by
V20e1=0, Voees=0, V. e3=0,
V0 er=—ves, Vles=ner, Ves=0, (2.41)
e Q@
Vgsel = 562, VSSGQ = —561, Vgseg =0.

By (2.7) and (2.41), we have that the curvature R? of the canonical connection V of (Ga, J)

is given by

af
O(e1, e2)e 72+ )62, R'(e1,e0)es = —(72 + —)61, R°(e1,e2)e3 =0,

( 2
«

“(e1,es)e (77 - ﬁ7)62, R%(e1,e3)eq = —(77 — ﬁ’Y)el, R%(eq, e3)es = 0, (2.42)
R (62763) 0, R%e2,e3)e2 =0, R(es,ez)es =0.

By (2.9), (2.11) and (2.42), we get for (Ga, V°),

€1 ~(r*+ %) 0 0 el
Ric® | ey | = 0 ~(+L) 0| e|. (2.43)
€3 0 py—5 0 €3
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If (Go,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = ¢Id + D, so

De, = —(72 + % —l—c)el,

Dey = —(72 + % + 6)82, (2.44)
Des = (ﬁ’y — %)62 — ces.

By (2.15) and (2.44), we get « = 8 =0, v? + ¢ = 0. Then case (1) holds. The other three cases
hold similarly.
By [1, Lemma 3.8], we have that for G3, there exists a pseudo-orthonormal basis {e1, €2, e3}

with e3 timelike such that the Lie algebra of G3 satisfies
le1,e2] = —ves, [e1,e3] = —fez, [e2,e3] = aer. (2.45)

Theorem 2.6 (1) (Gs,q,J) is the first kind algebraic Ricci soliton associated to the con-
nection VO if and only if

(i) « = B =~ = 0. In particular,

e1 — 0 0 el
Dle]|=10 —c 0 e | . (2.46)
e3 0 0 —c es

(ii) a = B8 =0, v* = c. In particular,

e1 _77 0 0 e1
Dfe | = 0 —772 0 €2
€3 0 0 _,.)/2 €3
(iii) «a A0 or 8 #£0, v =0, ¢ =0. In particular,
€1 0O 0 O €1
D €9 = 0O 0 O €9
€3 0 0 O €3
(iv)a£0o0rB#£0,y=a+ 8, c=0. In particular,
€1 0O 0 O €1
D €9 = 0 0 0 €9
€3 0 0 O €3

(2) (Gs,g,J) is the first kind algebraic Ricci soliton associated to the connection V' if and

only if
(i) a8 #0, v=0, ¢c=0. In particular,

(&1 0O 0 O €1
Dfje|=10 00 €2
€3 0O 0 0 €3
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(ii) a=pF=~v=0, ¢c#£0. In particular,

el — 0 0 el
D]e | = 0 —c O es
e3 0 0 —c es

€1 0 0 0 €1
Dle | =10 —c O es
es 0 0 -—c es

e1 —c 0 0 el
Dfe |=(0 0 0 e
es 0 0 —c e3

Proof The canonical connection VY of (G, J) is given by
Vglel = 0, Vgleg = O, Vgleg = 0,
0 _ 0, _ 0, _
ve2€1 = 0, V6262 = O, ve263 = 0, (247)
V2361 = asey, v23€2 = —aseq, v23€3 =0.
By (2.7) and (2.47), we have the curvature R° of the canonical connection VO of (G3, J) is
given by
R%(e1,e2)er = yagez, R°(e1, ez)ea = —yager, R°(e1, ez)es =0,
Ro(el, 63)61 = 0, Ro(el, 63)62 = 0, Ro(el, 63)63 = 0, (248)
R%(eg,e3)er =0, R%(ez,e3)ea =0, R(ez,e3)e3 = 0.

By (2.9), (2.11) and (2.48), we get for (G3,V?),

e —yas 0 0 e
Ric’ | ez | = 0 —yaz O e | . (2.49)
€3 0 0 0 €3

If (Gs,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric’ = cId + D, so

Dey = —(yasz + ¢)eq,
Dey = —(vas + ¢)ea, (2.50)

Des = —ces.
By (2.15) and (2.50), we get the case (1). Similarly the case (2) holds.

By [1, Lemma 3.11], we have that for G4, there exists a pseudo-orthonormal basis {e1, e3, €3}

with es timelike such that the Lie algebra of G4 satisfies

le1,e2] = —ea+ (2n— Bles, n=Llor—1, J[e1,e3s]=—Fes+e3, [ea,e3]=cae;. (2.51)
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Theorem 2.7 (1) (Gy4,g,J) is the first kind algebraic Ricci soliton associated to the con-
nection VO if and only if

(i)a=0,8=1,c=0,n=1. In particular,

€1 0O 0 O €1
Dle | =10 00 €2 (2.52)
€3 0 0 O €3
(i) « =0, c= —1, B = 2n. In particular,
€1 0 0 0 €1
D]lea] =10 0 0 es | . (2.53)
es 0 —m 1 es

(2) (G4,9,J) is the second kind algebraic Ricci soliton associated to the connection V° if

and only if « =0, B =mn, c=0. In particular,

€1 0O 0 O €1
Dflex]|=(0 0 0] [e]. (2.54)
€3 0O 0 O €3

(3) (Ga,g,J) is not the first kind algebraic Ricci soliton associated to the connection V1.

(4) (G4, g,J) is not the second kind algebraic Ricci soliton associated to the connection V*.
Proof The canonical connection VY of (Gy, J) is given by
V0e1=0, Vies=0, V0e3=0,
V0 er=es V0er=—er, Vo e3=0, (2.55)
Vgsel = b362, v23€2 = —b3€1, Vgseg =0.

By (2.7) and (2.55), we have the curvature R° of the canonical connection VO of (Gy, J) is
given by

=

Oer,ea)er = [(B—2n)bs + 1]ea, R°(eq,e2)es = [b3(2n — B) — e,
Oer,e2)es =0, R%(er,ez)er = (B —bs)ea, R%(e1,e3)ea = (bs — Ber, (2.56)
0(61, 63)63 = 0, RO(EQ, 83)61 = 0, RO(EQ, 63)62 = 0, RO(BQ, 63)63 = 0

DN

v (2.9), (2.11) and (2.56), we get for (G4, V°),

€1 [b3(277 — ﬁ) — 1] 0 0 €1
Ric’ [ ey | = 0 [bs(2n—B)—1] 0 es | . (2.57)
€3 O b3 — B 0 €3

If (G4,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = cId + D, so

Dey = [b3(2n — B) — 1 — cle,
Deg = [b3(2n — 8) — 1 — cJeq, (2.58)
D63 = (b3 — 5)62 — Ce3.
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By (2.15) and (2.58), we get

(2n—pB)(2b3 =) —c—1=0,
(2b3(2n — B) =2 —¢)(2n = B) =0,
2(b3 — ) —cf =0,

ca = 0.

(2.59)

Solving (2.59), we get the case (1). The other cases hold similarly.

By [1, Lemma 4.1], we have that for G5, there exists a pseudo-orthonormal basis {e1, ea, €3}

with es timelike such that the Lie algebra of G5 satisfies
le1,ea] =0, [e1,e3] = aey + Bea, [ea,es3] =ver +dea, a+06#0, ay+p6=0. (2.60)

Theorem 2.8 (1) (Gs,q,J) is the first kind algebraic Ricci soliton associated to the con-

nection VY if and only if c = 0. In particular,

€1 0O 0 O €1
Dfe]|=(0 0 0]e]. (2.61)
€3 0 0 O €3

(2) (Gs,g,J) is the first kind algebraic Ricci soliton associated to the connection V' if and

only if c = 0. In particular,

€1 0O 0 O €1
D €9 = 0O 0 O €9 . (262)
€3 0 0 0 €3

Proof The canonical connection VO of (G5, .J) is given by

V2161 = O, Vgleg = 0, V2163 = O,

V2261 = O, v22€2 = 0, V2263 = O, (263)
B, B

0 - 0
5 2, V63€2 = ———€1, V63€3 =0.

0 _
v6361 = 5

By (2.7) and (2.63), we have that the curvature R of the canonical connection V° of (Gs,J)
is flat, that is R(e;, e;)ex = 0. So we get for (G5, V?),

€1 0O 0 O €1
Ric’ [ e | =0 0 0 es | . (2.64)
€3 0 0 O €3

If (Gs,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = ¢Id + D, so

Dey = —ceq,
Des = —ceo, (2.65)
Des = —ces.

By (2.15) and (2.65), we get the case (1). Similarly the case (2) holds.
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By [1, Lemma 4.3], we have that for Gg, there exists a pseudo-orthonormal basis {e1, 3, €3}
with e3 timelike such that the Lie algebra of Gg satisfies

[e1,e2] = ea + Pes, [e1,e3] = yea + des, [ea,e3] =0, a+dJ#0, ay—pF6=0. (2.66)

Theorem 2.9 (1) (Gg,g,J) is the first kind algebraic Ricci soliton associated to the con-
nection VO if and only if

(i) a=B=v=c¢=0,9#0. In particular,

(&1 0 0 O €1
Dles|=[0 0 0 e | . (2.67)
€3 0 0 O €3

(i) a#0,8=~v=0,a’2+c=0, a+ 3§ #0. In particular,

€1 0 0 0 €1
Dle|=[00 0]]e]. (2.68)
es3 0 0 o? es3
(iii) «#0, B#0,y=6=0, 2 =2a% ¢c=0. In particular,
€1 0O 0 O €1
Dle|l=(000][e]. (2.69)
€3 0 0 0 €3

(2) (Gg,g,J) is the second kind algebraic Ricci soliton associated to the connection VO if
and only if

(i) B=7=0,a2+c=0, a+6+#0. In particular,

€1 0 0 0 €1
D €9 = 0 0 0 €9 . (270)
e3 0 0 —c e3

(ii)y=0=c=0,a#0, B#0, 32 =2a% In particular,

€1 0O 0 O €1
D €9 = 0O 0 O €9 . (271)
€3 0 0 O €3

(3) (Gs,g,J) is the first kind algebraic Ricci soliton associated to the connection V' if and
only if
(i) a=p=c=0,6#0. In particular,

(] 0 0 O €1
Dfe]|=(0 0 0]e]. (2.72)
€3 0 0 O €3

(i) a#0,8=~v=0,a’2+c=0, a+ 3 #0. In particular,

€1 0 0O 0 €1
Dfes|=(0 0 o0 es | . (2.73)
es3 0 0 o? es3
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Proof The canonical connection VY of (Gg, J) is given by
0 0 0
Velel = 0, V6162 = 0, Veleg = 0,
0 0 0
Ve,e1 = —aea, Ve =ae;, V.e3=0, (2.74)
B— B—n
——e

v 0 _
52 Ve, €2 = 5 €L

By (2.7) and (2.74), we have that the curvature R of the canonical connection V° of (Gg, J)

is given by

0 _ 0 _
ve361 = V63€3 =0.

1 1
Ro(er,ex)er = [a2 = 88 = y)]eas R(erea)en = [ = a? + Z8(8 =) ex,
Ro(el, 62)63 = 0,
1 1
R%(e1, e3)er = {704 - 55(5 - 7)} ez, R%(e1,e3)es = {— Yo+ 55(5 - 7)]617 (2.75)
Ro(el, 63)63 = O,
R%(ez,e3)er =0, R%(ez,e3)ea =0, R%(ez,e3)e3 = 0.
By (2.9), (2.11) and (2.75), we get for (Gg, V°),
1803 _~) — 02
e s8(B—7)—«a 0 0 1
Ric? | ey | = 0 %ﬁ(ﬁ —y)—a® 0 e | . (2.76)
° 0 —ya+35(B-7) 0) \

If (Gg,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = ¢Id + D, so

De; = Eﬁ(ﬁ —v)—a® - 6}61,

Dey = {%ﬁ(ﬁ —y)—a? - c} €9, (2.77)

Des = [— ya + %(5(5 — ’7)}62 — ces.
By (2.15) and (2.77), we get
a[%ﬁ(ﬁ—y)—a"’ —c} —ﬁ[—vour%é(ﬁ—v)] =0,

BIB(B ) — 20 — ] =0,
1 (2.78)
—ev+ [ —ra+ 308 )] (@=8) =0,

5[58(8 ) — > ] + B[ ~ra+ 558~ )] =0.
Solving (2.78), then the case (1) holds. The other cases hold similarly.
By [1, Lemma 4.5], we have that for G7, there exists a pseudo-orthonormal basis {e1, e3, €3}
with es timelike such that the Lie algebra of G7 satisfies
[e1,e2] = —aer — Bea — Pes, [e1,e3] = aer + Bea + Bes,

(2.79)
[e2,e3] = ve1 + dea + des, a4+ #0, ay=0.
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Theorem 2.10 (1) (G7,g,J) is the first kind algebraic Ricci soliton associated to the con-
nection VO if and only if
(i) a=y=c=0,8#£0,5#0. In particular,

€1 0O 0 O €1
Dle]=(00 0[e]. (2.80)
€3 0O 0 O €3
(i) B=~v=0,a®>+c=0, a+d#0. In particular,
€1 0 0 0 €1
D €9 = 0 0 0 €9 . (281)
es 0 o o €3

(2) (G7,g,J) is the second kind algebraic Ricci soliton associated to the connection VO if
and only if
(i) a=y=c¢=0,+#0. In particular,

€1 0 0 O €1
D €9 = 0 0 O €9 . (282)
€3 0 0 0 €3

(i) a£0, 8=v=0, "‘72+c:0,a—|—57$0. In particular,

S
(&1 , , €1
D e | = 0 —0‘7 —% e |. (283)
€3 o2 o2 €3
0 5 7

(3) (G7,g,J) is the first kind algebraic Ricci soliton associated to the connection V' if and
onlyif a #0, B=~v=0, a =25, c = —36%. In particular

€1 —62 0 0 €1
D €9 = 0 —52 —52 €9 . (284)
€3 0 352 352 €3

(4) (Gz,g,J) is the second kind algebraic Ricci soliton associated to the connection V' if
and only if a #0, B=v=0, a =25, a® +2c = 0. In particular

2

22 0 0
€1 €1
Dle|=| 0o - -« es | . (2.85)
€3 o2 o2 €3
L
Proof The canonical connection VO of (G7,.J) is given by
Vglel = aeq, Vgleg = —aeq, Vgleg =0,
0. _ 0, _ 0, _
ve2€1 = 662, V6262 = —661, ve2€3 = 0, (286)

V23€1 = —(ﬁ — %)62, V2362 = (6 — g)el, V2363 =0.
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By (2.7) and (2.86), we have that the curvature R of the canonical connection V° of (G7,J)

is given by
R%(e1,e0)e; = (on + ﬁ—;)eg, R%(e1,e0)eq = —(O<2 + B—;)el, R%(e1,e0)es =0,
R%(e1,e3)e; = —(on + ﬁ—;)ez, R%(e1,e3)es = (a2 + B—;)el, R%(e1,e3)e3 =0, (2.87)
R%(eq,e3)e; = —(”yoz + %Y)eg, R%(ea,e3)eq = (”yoz + %Y)el, R%(eq, e3)e3 = 0.

By (2.9), (2.11) and (2.87), we get for (G7,V?),

—(a2 + ﬁQ—'y) 0 0
el €1
Ric” | ez | = 0 —(@2+5%) o |e |- (2.88)
- ~(a+%) (*+Z) o) \T

If (G7,g,J) is the first kind algebraic Ricci soliton associated to the connection V°, then
Ric® = ¢Id + D, so

De; = —(a2 + % —i—c)el,

Dey = —(a2 + % + 0)62, (2.89)

0
Des = —(*ya + 77)61 + (O<2 + 6—;)62 — ces.

By (2.15) and (2.89), we get

2, P MY _
a(a +7+c) —ﬁ(*yoH—?) =0,
B(20® + By +¢) =0,

et (- 0)(ra+ ) =0, (2.90)

(a2+6—;+c)5+ﬁ(m+%7) —0.

Solving (2.90), we get the case (1). The other cases hold similarly.
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