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1 Introduction

Let S be the sphere spectrum localized at an odd prime p and A be the mod p Steenrod

algebra. To determine the stable homotopy groups of spheres π∗S is one of the central problems

in homotopy theory. Up to now, several methods have been found to approach it. For example,

we have the classical Adams spectral sequence (ASS for short) (see [1]) Exts,tA (Zp,Zp) based on

the Eilenberg-Maclane spectrum KZp, whose E2-term is the cohomology of A. Thus in order to

compute the stable homotopy groups of spheres with the classical ASS, we need to compute the

E2-term of the Adams spectral sequence. We also have the Adams-Novikov spectral sequence

(ANSS for short) (see [1, 11]) based on the Brown-Peterson spectrum BP .

From [8], we know that Ext1,∗A (Zp,Zp) has Zp-basis consisting of a0 ∈ Ext1,1A (Zp,Zp), hi ∈

Ext1,p
iq

A (Zp,Zp) for all i ≥ 0 and Ext2,∗A (Zp,Zp) has Zp-basis consisting of α2, a
2
0, a0hi (i > 0),

gi (i ≥ 0), ki (i ≥ 0), bi (i ≥ 0) and hihj (j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1,

2, piq + 1, q(pi+1 + 2pi), q(2pi+1 + pi), pi+1q and q(pi + pj), respectively. Aikawa [2] gave the

generators of Ext3,∗A (Zp,Zp) for p > 2.

Let q = 2(p− 1) and M be the mod p Moore spectrum given by the cofibration

S
p

−→ S
i0−→ M

j0
−→ ΣS. (1.1)
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Let α :
∑q

M → M be the Adams map and V (1) be its cofibre given by the cofibration

ΣqM
α

−→ M
i1−→ V (1)

j1
−→ Σq+1M. (1.2)

Let V (2) be the cofibre of β :
∑(p+1)q

V (1) → V (1) given by the cofibration

Σ(p+1)qV (1)
β

−→ V (1)
i2−→ V (2)

j2
−→ Σ(p+1)q+1V (1). (1.3)

Let V (3) be the cofibre of γ :
∑(p2+p+1)q

V (2) → V (2) given by the cofibration

Σ2(p3−1)V (2)
γ

−→ V (2)
i3−→ V (3)

j3
−→ Σ2p3−1V (2). (1.4)

Especially, the composite

S(1+p)q → Σ(p+1)qV (1)
β

−→ V (1) → Σq+1M → Σq+2S (1.5)

is β1 ∈ πpq−2S. In [3], Cohen showed that h0bn−1 survives to E∞ in the Adams spectral

sequence and converges to a non-trivial element ζn ∈ πpnq+q−3S. By the method of ANSS, Lee

[4] showed that βp−1
1 ζn is a non-trivial element of π∗S for n ≥ 1, i.e., bp−1

0 h0bn is a permanent

cycle in the Adams spectral sequence and converges non-trivially to βp−1
1 h0bn.

For s ≥ 1, we define the α-element αs = j0α
si0 ∈ πsq−1S, the β-element βs = j0j1β

si1i0 ∈

πq(sp+(s−1))−2S and the γ-element γs = j0j1j2γ
si2i1i0 ∈ πq(sp2+(s−1)p+(s−2))−3S. In [13], it was

shown that these three families of elements are represented by the n-th Greek letter elements

α
(n)
s in the Adams spectral sequence, where α

(n)
s is

α(n)
s = ĩ ∧ ṽn ∧ · · · ∧ ṽn︸ ︷︷ ︸

s

∧j̃ ∈ Ext∗,∗A (Zp,Zp), (1.6)

where ∧ denotes the Yoneda product and ĩ = 1[ ]1 ∈ Ext0,∗A (E(n−1),Zp), j̃ = Q0 · · ·Qn−1[ ]1 ∈

Ext0,∗A (Zp, E(n − 1)). By sending α
(n)
s back to the E1-term of the May spectral sequence, we

see that

α(n)
s =

s!

(s− n)!
as−n
n hn,0hn−1,1 · · ·h1,n−1, (1.7)

where s!
(s−n)! 6≡ 0 for s 6≡ 0, 1, · · · , n− 1 (mod p).

Based on the above results, we should naturally ask that whether the product element α
(n)
s x

for some x ∈ Ext∗,∗A (Zp,Zp) converges to a nontrivial element of π∗S or not. In [12], it was shown

that the product β̃sh0bn−1 (n ≥ 2, 2 ≤ s ≤ p− 1) is a permanent cycle in the Adams spectral

sequence and converges to a nontrivial element of order p in π∗S. In [13], Wang-Zheng verified

the convergences of β̃sh0hn (p ≥ 5, 2 ≤ s ≤ p−1, n ≥ 2) and γ̃sh0hn (p ≥ 7, 3 ≤ s ≤ p−1, n ≥ 3).

Recently, in [5–6], Liu verified the convergences of β̃sh0hnb0 (p > 3, n ≥ 3, 1 < s < p− 2) and

γ̃sh0hnb0 (p ≥ 7, n ≥ 4, 3 ≤ s < p− 2). In order to detect more nontrivial product elements in

π∗S, we will apply a more effective computation method to generalize the corresponding results

in [5–7, 13–14] to obtain four families of nontrivial homotopy elements in π∗S. Our main results

are stated as follows.

Theorem 1.1 (1) Let p > 5, k > 0, n ≥ 3 and s > 1. Then β̃sh0hnb
k
0 (3 < s+ 2k + 2 < p)

and β̃sh0bn−1b
k
0 (4 < s+ 2k + 3 < p) are permanent cycles in the Adams spectral sequence and

converge to nontrivial elements in π∗S.
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(2) Let p > 7, k > 0, n ≥ 4 and s > 2. Then γ̃sh0hnb
k
0 (4 < s + 2k + 2 < p) and

γ̃sh0bn−1b
k
0 (5 < s + 2k + 3 < p) are permanent cycles in the Adams spectral sequence and

converge to nontrivial elements in π∗S.

This paper is organized as follows. In Section 2, after recalling some knowledge on the May

spectral sequence, we introduce a better method which is used to compute the generators of

E1-term of the May spectral sequence. Then in Section 3, we use this method to give some

important results on Ext-groups which are then applied to give the proof of our main Theorem

1.1.

2 Detecting Generators in E1-Term of MSS

It is well known that the most successful method for computing Ext∗,∗A (Zp,Zp) is the May

spectral sequences. Let A∗ denote the dual algebra of mod p Steenrod algebra A. Milnor [10]

showed that, as a Hopf algebra

A∗ = P [ξ1, ξ2, · · · ]⊗ E[τ0, τ1, · · · ],

where P [ ] is the polynomial algebra and E[ ] is the exterior algebra. The secondary degrees

of ξi and τi are 2(pi − 1) and 2(pi − 1) + 1, respectively. The coproduct ∆: A∗ → A∗ ⊗A∗ is

given by

∆(ξn) = ξn ⊗ 1 + 1⊗ ξn +

n−1∑

i=1

ξp
i

n−i ⊗ ξi

and

∆(τn) = τn ⊗ 1 + 1⊗ τn +

n−1∑

i=0

ξp
i

n−i ⊗ τi.

Let ε : A∗ → Z/p be the argumentation homomorphism and A∗ =Ker ε which is called the

argumentation ideal of A∗. It then follows a bigraded cochain complex (C∗,∗(H∗S), d) =

(C∗,∗(Z/p), d), where C∗,∗(Z/p) is the cobar construction with s-filtration

Cs,∗(Z/p) = A∗ ⊗ · · · ⊗ A∗︸ ︷︷ ︸
s

and the differential d: Cs,t(Z/p) → Cs+1,t(Z/p) is given by

d(α1 ⊗ · · · ⊗ αs) =

s∑

i=1

(−1)λ(i)+1α1 ⊗ · · · ⊗ (∆(αi)− αi ⊗ 1− 1⊗ αi)⊗ · · · ⊗ αs, (2.1)

where λ(i) is the total degree of α1 ⊗ · · · ⊗ α
′

i if ∆(αi) − αi ⊗ 1− 1 ⊗ αi = Σα
′

i ⊗ α
′′

i (refer to

[9]). For example, we have differentials d(ξp
i

2 ) = ξp
i+1

1 ⊗ ξp
i

1 and d(ξ2p
i

1 ) = 2ξp
i

1 ⊗ ξp
i

1 .

According to the above statements, the cohomology of C∗,∗(Z/p) is

Hs,t(C∗,∗(Z/p), d) = Exts,tA (Z/p,Z/p),

which is the E2-term of the ASS. From [8] we know that

a0 = {τ0}, hi = {ξp
i

1 }, α̃2 = {2ξ1 ⊗ τ1 + ξ21 ⊗ τ0},
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gi =
{
ξp

i

2 ⊗ ξp
i

1 +
1

2
ξp

i+1

1 ⊗ ξ2p
i

1

}
, ki =

{
ξp

i+1

1 ⊗ ξp
i

2 +
1

2
ξ2p

i+1

1 ⊗ ξp
i

1

}

bi =
{ p−1∑

j=1

(
p

j

)/
p(ξ

pi(p−j)
1 ⊗ ξp

ij
1 )

}

are generators of Exts,tA (Z/p,Z/p).

Based on [11, Theorem 3.2.5], we can set a May filtration on A∗ by letting M(τi−1) =

M(ξp
j

i ) = 2i− 1. It induces a corresponding filtration

F 0 ⊆ F 1 ⊆ · · · ⊆ FM−1 ⊆ FM ⊆ · · · ⊆ A∗. (2.2)

It was shown that for the associated bigraded Hopf algebra

E0A∗ =
⊕

(FM/FM−1),

there is an isomorphism

E0A∗
∼= E[τi|i ≥ 0]⊗ T [ξi,j |i > 0, j ≥ 0],

where T [ ] denotes the truncated polynomial algebra of height p on the indicated generators,

τi and ξi,j are the projections of τi and ξp
i

i , respectively. Applying the filtration (2.2) to the

cobar construction C∗,∗(Z/p), we obtain a filtration

F ∗,∗,0 ⊆ F ∗,∗,1 ⊆ · · · ⊆ F ∗,∗,M−1 ⊆ F ∗,∗,M ⊆ · · · ⊆ C∗,∗(Z/p). (2.3)

It follows an tri-graded exact couple which induces the so-called May spectral sequence (MSS

for short)

{Es,t,M
r , dr} =⇒ Ext∗,∗A (Z/p,Z/p),

where dr : E
s,t,M
r → Es+1,t,M−r

r is the rth differential of the MSS. Since the MSS converges to

the E2-term of the ASS, the nontriviality of the elements in Ext∗,∗A (Z/p,Z/p) is equivalent to

showing that its representation in the MSS is an infinite cycle.

The E0-term of the MSS is C∗,∗(E0A∗) =
⊕

(F ∗,∗,M/F ∗,∗,M) and the E1-term E1 =

H∗(E0A∗, d0) is isomorphic to

E[hi,j |i > 0, j ≥ 0]⊗ P [bi,j |i > 0, j ≥ 0]⊗ P [ai|i ≥ 0],

where

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1

and

ai ∈ E
1,2(pi−1)+1,2i+1
1 .

In the filtrated cobar complexes, hi,j , bi,j and ai are represented by

ξp
j

i ,

p−1∑

k=1

(
p

k

)/
pξkp

j

i ⊗ ξ
(p−k)pj

i and τi,

respectively. It is known that the generators h1,i, b1,i and a0 converge to hi, bi, a0 ∈

Ext∗,∗A (Z/p,Z/p), respectively. In the May spectral sequence, one has the r-th May differentail

dr(xy) = dr(x)y + (−1)sxdr(y)
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for x ∈ Es,t,M
r and y ∈ Es′,t′,M ′

r . The first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

There exists the graded commutativity in the E1-term of MSS:

x · y = (−1)(s+t)(s′+t′)y · x for x ∈ Es,t,∗
1 and y ∈ Es′,t′,∗

1 .

For each element x ∈ Es,t,M
1 , we define dim x = s, deg x = t. Then we have





dim hi,j = dim ai = 1, dim bi,j = 2,
deg hi,j = 2(pi − 1)pj = q(pi+j−1 + · · ·+ pj),
deg bi,j = 2(pi − 1)pj+1 = q(pi+j + · · ·+ pj+1),
deg ai = 2pi − 1 = q(pi−1 + · · ·+ 1) + 1,
deg a0 = 1,

(2.4)

where i ≥ 1, j ≥ 0.

In the follows, we introduce a new method to compute the generators of the E1-term of

MSS. According to [15], we denote ai, hi,j and bi,j by x, y and z, respectively. By the graded

commutativity of E∗,∗,∗
1 , we consider a generator

g = (x1, · · · , xb)(y1, · · · , ym)(z1, · · · , zl) ∈ Eb+m+2l,t+b,∗
1 ,

where t = (c0 + c1p+ · · ·+ cnp
n)q with 0 ≤ ci < p (cn > 0), 0 < b < q.

We define the polynomial algebra

Ẽ∗,∗,∗
1 = P [hi,j |i > 0, j ≥ 0]⊗ P [bi,j |i > 0, j ≥ 0]⊗ P [ai|i ≥ 0].

Then there is the obvious identification E∗,∗,∗
1 = Ẽ∗,∗,∗

1 /(h2
i,j). Furthermore, if bi,j is replaced

by hi,j+1, then we get

F ∗,∗,∗
1 = P [ai|i ≥ 0]⊗ P [hi,j |i > 0, j ≥ 0].

By the graded commutativity of F ∗,∗,∗
1 , we can consider a generator

g = (x1, · · · , xb)(y1, · · · , ym) ∈ F b+m,t+b,∗
1 ,

where t = (c0 + c1p+ · · ·+ cnp
n)q with 0 ≤ ci < p (cn > 0), 0 < b < q. Note that the degrees

of xi and yi can be uniquely expressed as:

deg xi = q(xi,0 + xi,1p+ · · ·+ xi,np
n) + 1,

deg yi = q(yi,0 + yi,1p+ · · ·+ yi,np
n).

Then the generator g determines a matrix

A B



x1,0 · · · xb,0 y1,0 · · · ym,0

x1,1 · · · xb,1 y1,1 · · · ym,1

...
. . .

...
...

. . .
...

x1,n · · · xb,n y1,n · · · ym,n




c0
c1
...
cn,

(2.5)
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where (xi,0, xi,1, · · · , xi,n) is of the form (1, · · · , 1, 0, · · · , 0) and the transposition (

i︷ ︸︸ ︷
1, · · · , 1, 0, · · · ,

0)T represents ai in part A. Meanwhile, (yi,0, yi,1, · · · , yi,n) is of the form (0, · · · , 0, 1, · · · , 1, 0,

· · · , 0) and (

j︷ ︸︸ ︷
0, · · · , 0,

i︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)T represents hi,j in part B.

By the graded commutativity of F ∗,∗,∗
1 , matrix (2.5) can always be transformed into a new

one by the interchange of columns in part A and B respectively, and the entries xi,j , yi,j in the

new matrix satisfy the following conditions:

(1) x1,j ≥ x2,j ≥ · · · ≥ xb,j , xi,0 ≥ xi,1 ≥ xi,n for i ≤ b and j ≤ n.

(2) If yi,j−1 = 0 and yi,j = 1, then for all k < j, yi,k = 0.

(3) If yi,j = 1 and yi,j+1 = 0, then for all k > j, yi,k = 0. (2.6)

(4) y1,0 ≥ y2,0 ≥ · · · ≥ ym,0.

(5) If yi,0 = yi+1,0, yi,1 = yi+1,1, · · · , yi,j = yi+1,j , then yi,j+1 ≥ yi+1,j+1.

By the properties of the p-adic number and the reason of the second degree, we have the

following equations






x1,0 + · · ·+ xb,0 + y1,0 + · · ·+ ym,0 = c0 + λ1p = c0
x1,1 + · · ·+ xb,1 + y1,1 + · · ·+ ym,1 = c1 − λ1 + λ2p = c1

...
x1,n−1 + · · ·+ xb,n−1 + y1,n−1 + · · ·+ ym,n−1 = cn−1 − λn−1 + λnp = cn−1,
x1,n + · · ·+ xb,n + y1,n + · · ·+ ym,n = cn − λn = cn,

(2.7)

where λi ≥ 0, the integer sequence c = (c0, c1, · · · , cn) is determined by (c0, c1, · · · , cn) and the

carry sequence λ = (λ1, λ2, · · · , λn).

We want to get the solutions of (2.7) which satisfy the conditions (2.6). Unfortunately,

the matrix solutions do not always detect generators of Eb+m,t+b,∗
1 . In order to achieve our

object, we introduce the following diagram which shows our manipulation during computing

the generators of E1-term:

F b+m̃
1

∗1
ff
ff
ff
ff
ff
ff
ff
f

ssffff
ff
ff
ff
ff
ff
f ∗1

kk
kk
kk
kk
k

uukkk
kk
kk
k

∗1

��

∗1

RR
RR

RR
RR

))R
RR

RR
RR

RR

F b+m̃
1

//

∗2
XX

XX
XX

XX
XX

XX
XX

X

++XXX
XX

XX
XX

XX
XX

XX
X

F b+m̃+1
1

//

∗2
TT

TT
TT

TT

))TT
TT

TT
TT

TT

· · · // F b+m̃+k
1

//

∗2

��

· · · // F s
1 ,

∗2
kk
kk
kk
kk
k

uukk
kk
kk
kk
k

Es
1

(2.8)

where ∗1 denotes the resolution hi,j → hi−k,j+khk,j and ai → ai−jhj,i−j , ∗2 denotes the

replacement hi,j+1 → bi,j, k ≥ 0, m̃ ≤ s− b.

From the discussion above, the determination of Es,t+b,∗
1 is reduced to the following steps:

S1: Express t
q
by the p-adic number, and then t = (c0 + c1p+ · · ·+ cnp

n)q.

S2: List up all the possibles of sequence λ in the corresponding sequence c.

S3: For each sequence c, we can solve (2.7) which satisfy the conditions (2.6). Thus, we get

all generators of F b+m̃,t+b,∗
1 .
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S4: Through replacement hi,j+1 → bi,j and resolution

hi,j → hi−k,j+khk,j or ai → ai−jhj,i−j ,

we can get all generators of Es,t+b,∗
1 .

In what follows, we will apply the above method to compute the generators of certain E1-

terms of MSS. For convenience, we write t1 = pnq + (s+ k)pq + sq and t2 = pnq + sp2q + (s+

k − 1)pq + (s− 1)q with k > 0.

Proposition 2.1 Let p > 5 and n ≥ 3. Then we have

(1) for s > 1, 3 < s+ 2k + 2 < p and 1 ≤ r ≤ s+ 2k + 2, there is

E
s+2k+2−r,t1+(s−2)−(r−1),∗
1 = 0;

(2) for s > 1, 4 < s+ 2k + 3 < p and 1 ≤ r ≤ s+ 2k + 3, there is

E
s+2k+3−r,t1+(s−2)−(r−1),∗
1 =

{
Zp{a

s−2
2 h2,0h1,1h1,0h1,nb

k
1,0}, r = 1;

0, others.

Proof (1) Consider the generator g ∈ E
s+2k+2−r,t1+(s−2)−(r−1),∗
1 for 1 ≤ r ≤ s + 2k + 2,

where t1 = pnq + (s+ k)pq + sq with

(c0, · · · , cn) = (s, s+ k, 0, · · · , 0, 1).

Then we have dim g = s+ 2k + 2− r and deg g = t1 + (s− r − 1).

If s− 1 < r ≤ s+ 2k + 2, then s− r − 1 < 0. So there are at least (s− r − 1 + q) a
′

is in g,

by the reason of dimension, this is impossible. Now, we can assume that 1 ≤ r ≤ s− 1, which

follows s− r − 1 ≥ 0.

Since s+2k+2−r < s−r−1+q, the number of xi in g is (s−r−1). Consider the generator

g = x1 · · ·xs−r−1y1 · · · ym. From (2.7), one easily gets that the sequence λ = (λ1, λ2, · · · , λn)

equals (0, 0, · · · , 0) and the corresponding c = (s, s+ k, 0, · · · , 1).

Case 1.1 r = 1. Solve (2.7) by virtue of (2.6), we get the following matrix:

s− 2 s+ k



1 · · · 1 1 1 0 · · · 0 0 0
1 · · · 1 1 1 1 · · · 1 1 0
0 · · · 0 0 0 0 · · · 0 0 0
0 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
...

... · · ·
...

...
...

0 · · · 0 0 0 0 · · · 0 0 0
0 · · · 0 0 0 0 · · · 0 0 1




s
s+ k
0
0
...
0
1.

It detects the generator as−2
2 h2,0h2,0h

k
1,1h1,n ∈ F

s+k+1,t1+(s−2),∗
1 . By the replacement hk

11 →

bk10, we get the generator as−2
2 h2,0h2,0b

k
1,0h1,n, which is zero for h2

2,0 = 0 in E
s+2k+1,t1+(s−2),∗
1 .

Case 1.2 r ≥ 2. Similar to Case 1.1, we detect the generator

as−r−1
2 hr+1

2,0 hk
1,1h1,n ∈ F

s+k+1,t1+(s−2),∗
1 .
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By the replacement hk
11 → bk10, we get the generator as−r−1

2 hr+1
2,0 bk1,0h1,n, which is zero due to

h2
2,0 = 0 in E

s+2k+1,t1+(s−2),∗
1 .

Combining Cases 1.1 and 1.2 gives the desired result.

(2) Similar to (1), we consider the generator

g = x1 · · ·xs−r−1y1 · · · ym ∈ E
s+2k+3−r,t1+(s−r−1),∗
1

for 1 ≤ r ≤ s+ 2k + 2, where t1 = pnq + (s+ k)pq + sq with

(c0, · · · , cn) = (s, s+ k, 0, · · · , 0, 1).

Then we have dim g = s+ 2k + 3− r and deg g = t1 + (s− r − 1). From (2.7), one can easily

get the carry sequence

λ = (λ1, λ2, · · · , λn) = (0, 0, · · · , 0)

and correspondingly c = (s, s+ k, 0, · · · , 0).

Case 2.1 r = 1. Solve (2.7) by virtue of (2.6), we get the generator

as−2
2 h2,0h2,0h

k
1,1h1,n ∈ F s+k+1,t1+s−2,∗

1 .

By the resolution h2,0 → h1,1h1,0, we get the generator

as−2
2 h2,0h1,0h

k+1
1,1 h1,n ∈ F s+k+2,t1+s−2,∗

1 .

By the replacement hk
1,1 → bk1,0, we get the generator

as−2
2 h2,0h1,0h1,1b

k
1,0h1,n ∈ Es+2k+2,t1+s−2,∗

1 .

Case 2.2 r ≥ 2. Similar to Case 2.1, we detect the generator as−r−1
2 hr+1

2,0 hk
1,1h1,n ∈

F
s+k+1,t1+(s−2),∗
1 . By the replacement hk

1,1 → bk1,0 and h2,0 → h1,1h1,0, we get the genera-

tor as−r−1
2 hr

2,0h1,1h1,0b
k
1,0h1,n, which is zero for h2

2,0 = 0 in E
s+2k+2,t1+(s−2),∗
1 .

Combining Case 2.1 with Case 2.2 gives the desired result.

Proposition 2.2 Let p > 7, n ≥ 4 and s > 2. Then we have

(1) for 4 < s+ 2k + 2 < p and 1 ≤ r ≤ s+ 2k + 2, there is

E
s+2k+2−r,t2+(s−3)−(r−1),∗
1 =

{
Zp{a

s−3
3 h3,0h2,1h1,2h1,1h1,0h1,nb

k−1
1,0 }, r = 1;

0, others.

(2) for 5 < s+ 2k + 3 < p and 1 ≤ r ≤ s+ 2k + 3, there is

E
s+2k+3−r,t2+(s−3)−(r−1),∗
1 =

{
Zp{a

s−3
3 h3,0h2,1h1,2h1,0h1,nb

k
1,0}, r = 1;

0, others,

Proof (1) Consider the generator g ∈ E
s+2k+2−r,t2+(s−r−2),∗
1 for 1 ≤ r ≤ s+2k+ 2. Then

we have

(c0, · · · , cn) = (s− 1, s+ k − 1, s, 0, · · · , 0, 1).

Meanwhile, we have dim g = s + 2k + 2 − r and deg g = t2 + (s − r − 2). One can easily get

s− r − 2 ≥ 0.
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Since s + 2k + 2 − r < s − r − 2 + q, the number of xi in g is (s − r − 2). Thus we

can consider the generator g = x1 · · ·xs−r−2y1 · · · ym. From (2.7), we get the carry sequence

λ = (λ1, λ2, · · · , λn) = (0, 0, · · · , 0) and the corresponding c = (s− 1, s+ k − 1, s, 0, · · · , 1).

Case 1.1 r = 1. Solving (2.7) by virtue of (2.6) deduces three possible k−1 rows as follows:

s− 3 s+ k − 1



1 · · · 1 1 · · · 1 1 1 1 1 0 0 0 0 · · · 0 0 · · · 0
1 · · · 1 1 · · · 1 1 1 1 1 1 1 1 1 · · · 1 1 · · · 1
1 · · · 1 1 · · · 1 1 1 1 1 1 0 0 0 · · · 0 0 · · · 0
1 · · · 1 1 · · · 1 1 0 1 1 1 1 0 0 · · · 0 0 · · · 0
1 · · · 1 1 · · · 1 0 0 1 1 1 1 1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 · · · 1 0 · · · 0 0 0 1 1 1 1 1 1 · · · 1 0 · · · 0




s− 1
s+ k − 1
s · · · (1)

· · · (2)
· · · (3)
...
· · · (k − 1).

If we choose (1) as the third row, then we obtain the following matrix:

s− 3 s+ k



1 · · · 1 1 1 0 0 · · · 0 0 0
1 · · · 1 1 1 1 1 · · · 1 1 0
1 · · · 1 1 1 1 0 · · · 0 0 0
0 · · · 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
... · · ·

...
...

...
0 · · · 0 0 0 0 0 · · · 0 0 0
0 · · · 0 0 0 0 0 · · · 0 0 1




s− 1
s+ k − 1
s
0
...
0
1.

It detects the generator

as−3
3 h3,0h3,0h2,1h

k−1
1,1 h1,n ∈ F

s+k,t2+(s−3),∗
1 .

By the resolution h3,0 → h1,2h2,0, we get the generator

as−3
3 h3,0h2,1h2,0h1,2h

k−1
1,1 h1,n ∈ F

s+k+1,t2+(s−3),∗
1 .

By the replacement hk−1
1,1 → bk−1

1,0 , we get the generator

as−3
3 h3,0h2,1h2,0h1,2h1,nb

k−1
1,0 ∈ F

s+2k,t2+(s−3),∗
1 .

By the resolution h2,0 → h1,1h1,0, we get the generator

as−3
3 h3,0h2,1h1,1h1,0h1,2h1,nb

k−1
1,0 ∈ E

s+2k+1,t2+(s−3),∗
1 .

If we choose (2) as the third row, then we get the following matrix:

s− 3 s+ k



1 · · · 1 1 1 1 0 0 0 · · · 0 0
1 · · · 1 1 1 1 1 1 1 · · · 1 0
1 · · · 1 0 1 1 1 1 0 · · · 0 0
0 · · · 0 0 0 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 0 0 0 0 0 · · · 0 0
0 · · · 0 0 0 0 0 0 0 · · · 0 1




s− 1
s+ k − 1
s
0
...
0
1.
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It detects the generator

as−3
3 h3,0h3,0h2,0h2,0h

k−2
1,1 h1,n ∈ F

s+k,t2+(s−3),∗
1 .

By the resolution h2,0 → h1,1h1,0 and h3,0 → h2,1h1,0 or h1,2h2,0, we get the generator

as−3
3 h3,0h2,1h2,0h

k−1
1,1 h1,0h1,0h1,n ∈ F

s+k+2,t2+(s−3),∗
1

and

as−3
3 h3,0h

2
2,0h1,2h

k−1
1,1 h1,0h1,n ∈ F

s+k+2,t2+(s−3),∗
1 ,

which are both zeroes due to h2
1,0 = 0 and h2

2,0 = 0 in E
s+k+2,t2+(s−3),∗
1 . Thus such g is

impossible to exist.

Similarly, if we choose (3)–(k-1) as the third row, respectively, it is easy to know that g does

not exist either.

Case 1.2 r ≥ 2. Since
s−r−2∑
i=1

xi ≤ s− r − 2 ≤ s− 4 < c0 = s− 1, the first equation of (2.7)

has no solution. Thus such g is impossible to exist.

Combining Cases 1.1 and 1.2 gives the desired result.

(2) Consider the generator g ∈ E
s+2k+3−r,t2+(s−r−2),∗
1 for 1 ≤ r ≤ s+2k+2. Then we have

(c0, · · · , cn) = (s − 1, s+ k − 1, s, 0, · · · , 0, 1). Meanwhile, there is dim g = s+ 2k + 3 − r and

deg g = t2+(s− r− 2) with s− r− 2 ≥ 0. Since s+2k+3− r < s− r− 2+ q, we know that the

number of xi in g is (s− r − 2), thus we can consider the generator g = x1 · · ·xs−r−2y1 · · · ym.

From (2.7), one easily gets the carry sequence λ = (λ1, λ2, · · · , λn) = (0, 0, · · · , 0) and the

corresponding c = (s− 1, s+ k − 1, s, 0, · · · , 1).

Case 2.1 r = 1. Similar to Case 1.1 in Proposition 2.2(1), solving (2.7) by virtue of (2.6)

follows the generator

as−3
3 h3,0h3,0h2,1h

k−1
1,1 h1,n ∈ F

s+k,t2+(s−3),∗
1 .

By the resolution h3,0 → h1,2h2,0 → h1,1h1,0h1,2, we get the generator

as−3
3 h3,0h2,1h1,2h1,0h

k
1,1h1,n ∈ F

s+k+2,t2+(s−3),∗
1 .

By the replacement hk
1,1 → bk1,0, we get the generator

as−3
3 h3,0h2,1h1,2h1,0h1,nb

k
1,0 ∈ E

s+2k+2,t2+(s−3),∗
1 .

Case 2.2 r ≥ 2. Since
s−r−2∑
i=1

xi ≤ s− r − 2 ≤ s− 4 < c0 = s− 1, the first equation of (2.7)

has no solution. Thus such g does not exist.

Combining Case 2.1 with Case 2.2 gives the desired result.

3 Proof of Theorem 1.1

In this section, we give some results on Ext-groups which will be used in the proof of the

main theorem. For simplicity, we still let t1 = pnq + (s+ k)pq + sq and t2 = pnq + sp2q + (s+

k − 1)pq + (s− 1)q with k > 0.
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Lemma 3.1 Let p > 5, n ≥ 3 and s > 1. Then we have

(1) when 3 < s+2k+2 < p, then Ext
s+2k+2,t1+(s−2)
A (Zp,Zp) contains one nonzero element

h0hnb
k
0β̃s and Ext

s+2k+2−r,t1+(s−2)−(r−1)
A (Zp,Zp) becomes trivial for r ≥ 2;

(2) when 4 < s+2k+3 < p, then Ext
s+2k+3,t1+(s−2)
A (Zp,Zp) contains one nonzero element

h0bn−1b
k
0 β̃s and Ext

s+2k+3−r,t1+(s−2)−(r−1)
A (Zp,Zp) becomes trivial for r ≥ 2.

Proof (1) It is known that h1,0, h1,n(n ≥ 0), bk1,0,
s!

(s−2)!a
s−2
2 h2,0h1,1 ∈ E∗,∗,∗

1 are permanent

cocycles and converge nontrivially to h0, hn(n ≥ 0), bk0 and β̃s ∈ Ext∗,∗A (Zp,Zp), respectively. It

follows that

h1,0h1,nb
k
1,0

s!

(s− 2)!
as−2
2 h2,0h1,1 ∈ E

s+2k+2,t1+(s−2),∗
1

is a permanent cocycle in the May spectral sequence and converges to

h0hnb
k
0 β̃s ∈ Ext

s+2k+2,t1+(s−2)
A (Zp,Zp).

According to Proposition 2.1(1), we have

E
s+2k+1,t1+(s−2),∗
1 = 0,

which follows E
s+2k+1,t1+(s−2),∗
r is trivial for r ≥ 1. Thus the permanent cycle

h1,0h1,nb
k
1,0

s!

(s− 2)!
as−2
2 h2,0h1,1 ∈ Es+2k+2,t1+(s−2),∗

r

cannot be hit by any differential in the May spectral sequence. Thus

h0hnb
k
0 β̃s 6= 0 ∈ Ext

s+2k+2,t1+(s−2)
A (Zp,Zp).

When r ≥ 2, by Proposition 2.1(1), we see that E
s+2k+2−r,t1+(s−2)−(r−1),∗
1 is trivial. It

follows that

Ext
s+2k+2−r,t1+(s−2)−(r−1)
A (Zp,Zp) = 0.

(2) In the May spectral sequence h1,0, b1,n−1, b
k
1,0,

s!
(s−2)!a

s−2
2 h2,0h1,1 ∈ E∗,∗,∗

1 are permanent

cocycles and converge nontrivially to h0, bn−1, b
k
0 , β̃s ∈ Ext∗,∗A (Zp,Zp) for n ≥ 0, respectively. It

follows that

h1,0b1,n−1b
k
1,0

s!

(s− 2)!
as−2
2 h2,0h1,1 ∈ E

s+2k+3,t1+(s−2),∗
1

is a permanent cocycle in the May spectral sequence and converges to

h0bn−1b
k
0β̃s ∈ Ext

s+2k+3,t1+(s−2)
A (Zp,Zp).

According to Proposition 2.1(2), E
s+2k+2,t1+(s−2),∗
1 contains one generator

as−2
2 h2,0h1,0h1,1b

k
1,0h1,n.

Since

dr(a
s−2
2 h2,0h1,0h1,1b

k
1,0h1,n) = 0 for r ≥ 1,

the permanent cocycle h1,0b1,n−1b
k
1,0

s!
(s−2)!a

s−2
2 h2,0h1,1 ∈ Es+2k+2,∗,∗

r does not bound in the

May spectral sequence. It follows that h0bn−1b
k
0 is nonzero in the Ext

s+2k+3,t1+(s−2)
A (Zp,Zp).

When r ≥ 2, by Proposition 2.1(2), we see that E
s+2k+3−r,t1+(s−2)−(r−1),∗
1 is trivial. It

follows that

Ext
s+2k+3−r,t1+(s−2)−(r−1)
A (Zp,Zp) = 0.
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Lemma 3.2 Let p > 7, n ≥ 4 and s > 2. Then we have

(1) when 4 < s+2k+2 < p, then Ext
s+2k+2,t1+(s−3)
A (Zp,Zp) contains one nonzero element

h0hnb
k
0 γ̃s and Ext

s+2k+2−r,t1+(s−3)−(r−1)
A (Zp,Zp) becomes trivial for r ≥ 2;

(2) when 5 < s+2k+3 < p, then Ext
s+2k+3,t1+(s−3)
A (Zp,Zp) contains one nonzero element

h0bn−1b
k
0 γ̃s and Ext

s+2k+3−r,t1+(s−3)−(r−1)
A (Zp,Zp) becomes trivial for r ≥ 2.

Proof (1) It is known that h1,0, h1,n(n ≥ 0), bk1,0,
s!

(s−3)!a
s−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1 are per-

manent cocycles and converge nontrivially to h0, hn(n ≥ 0), bk0 and γ̃s ∈ Ext∗,∗A (Zp,Zp), respec-

tively. It follows that

h1,0h1,nb
k
1,0

s!

(s− 3)!
as−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1

is a permanent cocycle and converges to h0hnb
k
0 γ̃s ∈ Ext∗,∗A (Zp,Zp) in the May spectral se-

quence.

According to Proposition 2.2(1), there is one generator

as−3
3 h3,0h2,1h1,2h1,1h1,0h1,nb

k−1
1,0 ∈ E

s+2k+1,t2+(s−3),∗
1 .

Since

dr(a
s−3
3 h3,0h2,1h1,2h1,1h1,0h1,nb

k−1
1,0 ) = 0 for r ≥ 1,

the permanent cocycle h1,0h1,nb
k
1,0

s!
(s−3)!a

s−3
3 h3,0h2,1h1,2 ∈ Es+2k+2,∗,∗

r does not bound in the

May spectral sequence. It follows that

h0hnb
k
0 γ̃s 6= 0 ∈ Ext

s+2k+2,t2+(s−3)
A (Zp,Zp).

For r ≥ 2, according to Proposition 2.2(1), we have

E
s+2k+2−r,t2+(s−3)−(r−1),∗
1 = 0.

Thus

Ext
s+2k+2−r,t2+(s−3)−(r−1)
A (Zp,Zp) = 0.

(2) In the May spectral sequence h1,0, b1,n−1(n ≥ 0), bk1,0,
s!

(s−3)!a
s−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1 are

permanent cocycles and converge nontrivially to h0, bn−1(n ≥ 0), bk0 and γ̃s ∈ Ext∗,∗A (Zp,Zp),

respectively. It follows that

h1,0b1,n−1b
k
1,0

s!

(s− 3)!
as−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1

is a permanent cocycle and converges to h0bn−1b
k
0 γ̃s ∈ Ext∗,∗A (Zp,Zp) in the May spectral

sequence.

According to Proposition 2.2(2), there is one generator

as−3
3 h3,0h2,1h1,2h1,0h1,nb

k
1,0 ∈ E

s+2k+3,t2+(s−3),∗
1 .

Since

dr(a
s−3
3 h3,0h2,1h1,2h1,0h1,nb

k
1,0) = 0 for r ≥ 1,
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the permanent cocycle h1,0b1,n−1b
k
1,0

s!
(s−3)!a

s−3
3 h3,0h2,1h1,2 ∈ Es+2k+3,∗,∗

r does not bound in the

May spectral sequence. It follows that

h0bn−1b
k
0 γ̃s 6= 0 ∈ Ext

s+2k+3,t2+(s−3)
A (Zp,Zp).

For r ≥ 2, according to Proposition 2.2(2), we have

E
s+2k+3−r,t2+(s−3)−(r−1),∗
1 = 0.

Thus

Ext
s+2k+3−r,t2+(s−3)−(r−1)
A (Zp,Zp) = 0.

In what follows, we give the proof of our main theorem.

Proof of Theorem 1.1 (1) It is well known that b0 ∈ Ext2,pqA (Zp,Zp) is a permanent cycle

in the Adams spectral sequence and converges nontrivially to the β-element β1 = j0j1βi1i0 ∈

πpq−2S. From [3], (i0)∗(h0hn) ∈ Ext2,p
nq+q

A (H∗M,Zp) is a permanent cycle in the Adams

spectral sequence and converges to a non-trivial element ξn ∈ πpnq+q−2(M). Therefore the

following composite

Σpnq+kpq+q−2−2kS
ξnβ

k
1
// M

i1
// V (1)

βs

// Σ−s(p+1)qV (1)
j0j1

// Σ−s(p+1)q+q+2S

is represented up to nonzero scalar by

(j0j1β
si1i0)∗(h0hn)b

k
0 ∈ Ext

s+2k+2,t1+(s−2)
A (Zp,Zp)

in the Adams spectral sequence.

By using the Yoneda products, we know that the composite

Ext0,∗A (Zp,Zp)
(i1i0)∗

// Ext0,∗A (H∗V (1),Zp)
(j0j1)∗(β

s)∗
// Ext

s,∗+spq+(s−1)q+(s−2)
A (Zp,Zp)

is a multiplication by

β̃s ∈ Ext
s,spq+(s−1)q+(s−2)
A (Zp,Zp).

Hence (j0j1β
si1i0)∗(h0hn)β

k
1 is represented by

h0hnb
k
0β̃s ∈ Ext

s+2k+2,t1+(s−2)
A (Zp,Zp)

in the Adams spectral sequence.

Moreover, from Lemma 3.1(1) Ext
s+2k+2−r,t1+(s−2)−(r−1)
A (Zp,Zp) = 0 (r ≥ 2), it follows

that h0hnb
k
0 β̃s can not be hit by any differential in the Adams spectral sequence. Thus h0hnb

k
0β̃s

survives non-trivially to a homotopy element of π∗S.

Similarly, by the virtue of the convergence of h0bn−1 (see [3]) and Lemma 3.1(1), we can

get that h0bn−1b
k
0β̃s survives non-trivially to a homotopy element of π∗S.

(2) Consider the following composite

Σpnq+kpq+q−2−2kS
ξnβk

1
// M

i2i1
// V (2)

γs

// Σ−s(p2+p+1)qV (2)
j0j1j2

// Σ−s(p2+p+1)q+(p+2)q+3S

is represented up to nonzero scalar by

(j2j0j1γ
si2i1i0)∗(h0hn)b

k
0 ∈ Ext

s+2k+2,t2+(s−3)
A (Zp,Zp)



472 L. N. Zhong, J. G. Hong and H. Zhao

in the Adams spectral sequence. By using the Yoneda products, we know that the composite

Ext0,∗
A

(Zp,Zp)
(i2i1i0)∗

// Ext0,∗
A

(H∗V (1),Zp)
(j0j1j2)∗(γ

s)∗
// Ext

s,∗+sp2q+(s−1)pq+(s−2)q+s−3
A

(Zp,Zp)

is a multiplication by

γ̃s ∈ Ext
s,sp2q+(s−1)pq+(s−2)q+s−3
A (Zp,Zp).

Hence the composite (j0j1j2γ
si2i1i0)∗(h0hn)β

k
1 is represented by

h0hnb
k
0 γ̃s ∈ Ext

s+2k+2,t2+(s−3)
A (Zp,Zp)

in the Adams spectral sequence.

Moreover, from Lemma 3.2(1) Ext
s+2k+2−r,t2+(s−2)−(r−1)
A (Zp,Zp) = 0 (r ≥ 2), it follows

that h0hnb
k
0 γ̃s can not be hit by any differential in the Adams spectral sequence. Thus h0hnb

k
0 γ̃s

survives non-trivially to a homotopy element of π∗S.

By virtue of the convergence of h0bn−1 (see [3]) and Lemma 3.2(2), we see that h0bn−1b
k
0 γ̃s

survives non-trivially to a homotopy element of π∗S.
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