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Abstract In this paper, the authors give a characterization theorem for the standard tori
S
1(a)× S

1(b), a, b > 0, as the compact Lagrangian ξ-submanifolds in the two-dimensional
complex Euclidean space C

2, and obtain the best version of a former rigidity theorem for
compact Lagrangian ξ-submanifold in C

2. Furthermore, their argument in this paper also
proves a new rigidity theorem which is a direct generalization of a rigidity theorem by Li
and Wang for Lagrangian self-shrinkers in C

2.
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1 Introduction

An m-dimensional submanifold x : Mm → Rm+p in the (m + p)-dimensional Euclidean

space Rm+p is called a self-shrinker (to the mean curvature flow) if its mean curvature vector

field H satisfies

H + x⊥ = 0, (1.1)

where x⊥ is the orthogonal projection of the position vector x to the normal space T⊥Mm of

x.

As we know, self-shrinkers play an important role in the study of the mean curvature flow. In

fact, they correspond to the self-shrinking solutions to the mean curvature flow, and describe all

possible Type I singularities of the flow (see [10, 12]). Up to now, various results of classification

or rigidity theorems on the self-shrinkers have been obtained (see [2, 14, 17]). In particular, there

are also interesting results about the Lagrangian self-shrinkers in the complex Euclidean m-

space Cm. For example, in [1], Anciaux gives new examples of self-shrinking and self-expanding

Lagrangian solutions to the mean curvature flow. In [3], the authors classify all Hamiltonian

stationary Lagrangian surfaces in the complex plane C2, which are self-similar solutions of the

mean curvature flow and, in [4], several rigidity results for Lagrangian mean curvature flow are
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obtained. In [5], Cheng-Hori-Wei obtain a complete classification for 2-dimensional complete

Lagrangian self-shrinkers in Euclidean space R4 with constant squared norm of the second

fundamental form. In 2017, Li and Wang prove a rigidity theorem (see [13]) which gives a new

characterization of the Clifford torus S1(1) × S1(1) as a Lagrangian self-shrinker, improving a

previous theorem by Castro and Lerma in [4], without the additional condition that the Gauss

curvature K of M2 is either non-negative or non-positive.

Theorem 1.1 (see [4, 13]) Let x : M2 → C
2 be a compact oriented Lagrangian self-shrinker

with h its second fundamental form. If |h|2 ≤ 2, then |h|2 = 2 and x(M2) is the Clifford torus

S1(1)× S1(1), up to a holomorphic isometry on C2.

On the other hand, the first author and one of his coauthors made in 2016 a natural gener-

alization of self-shrinkers to the concept of ξ-submanifolds (see [15]): An immersed submanifold

x : Mn → Rn+p is called a ξ-submanifold if there is a parallel normal vector field ξ such that

the mean curvature vector field H satisfies (see [15])

H + x⊥ = ξ. (1.2)

Obviously, the affine plane R2, the standard tori S1(a) × S1(b) for a, b > 0, and the circular

cylinders S
1(a) × R

1 are canonical examples of Lagrangian ξ-submanifold in C
2. Some other

examples of ξ-submanifolds can be seen in [16]. The variation characterization and the stability

properties of ξ-submanifolds were also systematically studied in [16]. In particular, a submani-

fold x : Mm → Rm+p is a ξ-submanifold if and only if its modified mean curvature is parallel

when viewed as a submanifold in the Gaussian space (Rm+p, e−
1

m
|x|2〈·, ·〉). Extending the result

of Theorem 1.1, we also proved in [15] the following rigidity theorem for Lagrangian ξ-surfaces

in C2.

Theorem 1.2 (see [15]) Let x : M2 → C2 be a compact oriented Lagrangian ξ-submanifold

with the second fundamental form h and mean curvature vector H. Assume that

|h|2 + |H − ξ|2 ≤ |ξ|2 + 4.

Then |h|2 + |H − ξ|2 ≡ |ξ|2 + 4 and x(M2) = T 2 is a topological torus.

Furthermore, if 〈H, ξ〉 is constant and one of the following four conditions holds:

(1) |h|2 ≥ 2, (2) |H |2 ≥ 2, (3) |h|2 ≥ 〈H,H − ξ〉, (4) 〈H, ξ〉 ≥ 0, (1.3)

then, up to a holomorphic isometry on C2, x(M2) must be a standard torus S1(a)×S1(b), where

a and b are positive numbers satisfying a2 + b2 ≥ 2a2b2.

Then we obtain the following corollary.

Corollary 1.1 (see [15]) Let x : M2 → C2 be a compact oriented Lagrangian self-shrinker.

If

|h|2 + |H |2 ≤ 4,

then |h|2 + |H |2 ≡ 4 and x(M2) = S1(1)× S1(1) up to a holomorphic isometry on C2.
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This corollary gives a new rigidity theorem for self-shrinkers that is parallel to Theorem 1.1.

Clearly, ξ-submanifolds are also an extension to higher codimension of the concept of λ-

hypersurface which were introduced in [8] by Cheng and Wei. According to [8], a hypersurface

x : Mm → Rm+1 is called a λ-hypersurface if its scalar mean curvature H satisfies

H + 〈x, n〉 = λ (1.4)

for some constant λ, where n is the unit normal vector of x. Some rigidity or classification

results for λ-hypersurfaces are obtained, for example, in [6–7, 11], and more recently, [9].

Note that the conditions in Theorem 1.2 seem rather tedious anyway. Thus it is interesting

if one can make some simplification of the theorem. In the present paper, we are able to greatly

improve Theorem 1.2 by proving the following best version of it, giving a new characterization

of the standard tori as the compact Lagrangian ξ-submanifolds in C2.

Theorem 1.3 Let x : M2 → C2 be a compact oriented Lagrangian ξ-submanifold with the

second fundamental form h and mean curvature vector H. If

|h|2 + |H − ξ|2 ≤ |ξ|2 + 4,

then |h|2 + |H − ξ|2 ≡ |ξ|2 + 4 and, up to a holomorphic isometry on C2, x(M2) must be a

standard torus S1(a)× S1(b) for some positive numbers a and b.

Furthermore, by a careful check of our argument in the proof of Theorem 1.3, one easily sees

that the following interesting theorem also holds, which is apparently a direct generalization of

the rigidity theorem by Li and Wang mentioned above (Theorem 1.1).

Theorem 1.4 Let x : M2 → C2 be a compact oriented Lagrangian ξ-submanifold with the

second fundamental form h and mean curvature vector H. If

|h|2 − 〈H, ξ〉 ≤ 2,

then |h|2 − 〈H, ξ〉 ≡ 2 and, up to a holomorphic isometry on C2, x(M2) must be a standard

torus S1(a)× S1(b) for some positive numbers a and b with

ξ =
(1

a
− a

)

n1 +
(1

b
− b

)

n2,

where n1, n2 are the inwards unit normals of S1(a) ⊂ C1 and S1(b) ⊂ C1, respectively.

2 Lagrangian Submanifolds in Cm

Let Cm be the complex Euclideanm-space with the canonical complex structure J . Through

out this paper, x : Mm → Cm always denotes an m-dimensional Lagrangian submanifold, and

∇, D, ∇⊥ denote, respectively, the Levi-Civita connections on Mm, Cm, and the normal

connection on the normal bundle T⊥Mm. Then the formulas of Gauss and Weingarten are

respectively given by

DXY = ∇XY + h(X,Y ), DXη = −AηX +∇⊥
Xη,
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where X , Y are tangent vector fields on Mm and η is a normal vector field of x. The Lagrangian

condition implies that

∇⊥
XJY = J∇XY, AJXY = −Jh(X,Y ) = AJY X,

where h and A are the second fundamental form and the shape operator of x, respectively. In

particular, 〈h(X,Y ), JZ〉 is totally symmetric as a 3-form, namely,

〈h(X,Y ), JZ〉 = 〈h(X,Z), JY 〉 = 〈h(Y, Z), JX〉. (2.1)

From now on, we agree with the following convention on the ranges of indices:

1 ≤ i, j, · · · ≤ m, m+ 1 ≤ α, β, · · · ≤ 2m, 1 ≤ A,B, · · · ≤ 2m, i∗ = m+ i.

For a Lagrangian submanifold x : Mm → Cm, there are orthonormal frame fields of the form

{ei, ei∗} for C
m along x, where ei ∈ TMm and ei∗ = Jei. Such a frame is called an adapted

Lagrangian frame field in the literature. The dual frame field is always denoted by {θi, θi
∗

},

where θi
∗

= −Jθi. Write

h =
∑

hk∗

ij θ
iθjek∗ , where hk∗

ij = 〈h(ei, ej), ek∗〉,

or equivalently,

h(ei, ej) =
∑

hk∗

ij ek∗ .

Then (2.1) is equivalent to

hk∗

ij = hi∗

kj = h
j∗

ik . (2.2)

If θji and θ
j∗

i∗ denote the connection forms of ∇ and ∇⊥, respectively, then the components hk∗

ij,l,

hk∗

ij,lp of the covariant derivatives of h are given respectively by

∑

hk∗

ij,lθ
l = dhk∗

ij −
∑

hk∗

lj θ
l
i −

∑

hk∗

il θ
l
j +

∑

hm∗

ij θk
∗

m∗ ; (2.3)
∑

hk∗

ij,lpθ
p = dhk∗

ij,l −
∑

hk∗

pj,lθ
p
i −

∑

hk∗

ip,lθ
p
j −

∑

hk∗

ij,pθ
p
l +

∑

h
p∗

ij,lθ
k∗

p∗ . (2.4)

Moreover, the equations of motion are as follows:

dx =
∑

θiei, dei =
∑

θ
j
i ej +

∑

hk∗

ij θ
jek∗ , (2.5)

dek∗ = −
∑

hk∗

ij θ
jei +

∑

θl
∗

k∗el∗ . (2.6)

Let Rijkl and Ri∗j∗kl denote the components of curvature operators of ∇ and ∇⊥, respec-

tively. Then the equations of Gauss, Codazzi and Ricci are as follows:

Rmijk =
∑

(hl∗

mkh
l∗

ij − hl∗

mjh
l∗

ik), (2.7)

hk∗

ij,l = hk∗

il,j , (2.8)

Ri∗j∗kl =
∑

(hi∗

mlh
j∗

mk − hi∗

mkh
j∗

ml). (2.9)
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The scalar curvature of ∇ is

R = |H |2 − |h|2 with |H |2 =
∑

k

(

∑

hk∗

ii

)2

, |h|2 =
∑

i,j,k

(hk∗

ij )
2, (2.10)

where the mean curvature vector field H is defined by

H =
∑

Hk∗

ek∗ =
∑

hk∗

ii ek∗ .

Combining (2.2) and (2.8), we know that hk∗

ij,l is totally symmetric, namely,

hk∗

ij,l = hi∗

jl,k = h
j∗

lk,i = hl∗

ki,j , (2.11)

and the Ricci identities are as follows:

hk∗

ij,lp − hk∗

ij,pl =
∑

hk∗

mjRimlp +
∑

hk∗

imRjmlp +
∑

hm∗

ij Rk∗m∗lp. (2.12)

Note that, with respect to the adapted Lagrangian frame {ei, ei∗}, the connection forms

θi∗j∗ = θij . It follows that

Rm∗i∗jk = Rmijk. (2.13)

Furthermore, the first and second derivatives Hk∗

,i , Hk∗

,ij of the mean curvature vector field

H are given as

Hk∗

,i =
∑

hk∗

jj,i, Hk∗

,ij =
∑

hk∗

ll,ij . (2.14)

For any smooth function f on Mm, the covariant derivatives f,i, f,ij of f , the Laplacian of

f are respectively defined as follows:

df =
∑

f,iθ
i,

∑

f,ijθ
j = df,i −

∑

f,jθ
j
i , △f =

∑

i

f,ii. (2.15)

The well-known operator L acting on smooth functions is defined by (see [10])

L = △− 〈x,∇·〉 = e
|x|2

2 div (e−
|x|2

2 ∇·), (2.16)

which has been proven to be one of the most effect tools in the study of self-shrinkers and, more

generally, of λ-hypersurfaces.

3 Proof of Main Theorem

Let x : Mm → Cm be a Lagrangian ξ-submanifold. Then, with respect to an orthonormal

frame field {ei}, the defining equation (1.2) is equivalent to

Hk∗

= −〈x, ek∗〉+ ξk
∗

, 1 ≤ k ≤ m, (3.1)

where ξ =
∑

ξk
∗

ek∗ is a parallel normal vector field. By a direct computation using (3.1) we

can get the following lemma.
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Lemma 3.1 (see [13]) Let x : M2 → C
2 be a Lagrangian ξ-submanifold. Then

Hk∗

,i =
∑

hk∗

ij 〈x, ej〉, (3.2)

Hk∗

,ij =
∑

hk∗

im,j〈x, em〉+ hk∗

ij −
∑

(H − ξ)p
∗

hk∗

imh
p∗

mj , (3.3)

H l∗

,ijk =
∑

hl∗

im,jk〈x, em〉+
∑

hl∗

im,j〈ek, em〉 −
∑

hl∗

im,jh
p∗

mk(H − ξ)p
∗

+ hl∗

ij,k

−
∑

hl∗

imh
p∗

mjH
p∗

,k −
∑

(H − ξ)p
∗

hl∗

im,kh
p∗

mj −
∑

(H − ξ)p
∗

hl∗

imh
p∗

mj,k. (3.4)

The following two lemmas are also obtained by direct computations, see also [15].

Lemma 3.2 (see [15]) Let K be the Gauss curvature of the induce metric on M2 via x.

Then it holds that

1

2
L|h|2 = |∇h|2 + |h|2 +K(3|h|2 − 2|H |2 + 〈H,H − ξ〉)

−
∑

Hk∗

hk∗

ij h
l∗

ij(H − ξ)l
∗

; (3.5)

1

2
L(|H |2) = |∇⊥H |2 + |H |2 −

∑

hk∗

ij h
l∗

ijH
k∗

(H − ξ)l
∗

. (3.6)

Lemma 3.3 (see [15]) It holds that

1

2
L(|h|2 + |H − ξ|2)

= |∇h|2 + |∇⊥H |2 + |h|2 +K(3|h|2 − 2|H |2 + 〈H,H − ξ〉)

+ 〈H,H − ξ〉 −
∑

hk∗

ij h
l∗

ij(H − ξ)k
∗

(H − ξ)l
∗

−
∑

hk∗

ij h
l∗

ijH
k∗

(H − ξ)l
∗

. (3.7)

The following two propositions are important in the proof of Theorem 1.3, which are also

key to the argument in [15].

Proposition 3.1 (see [15]) Let x : M2 → C2 be an oriented and compact Lagrangian

ξ-submanifold. If

|h|2 + |H − ξ|2 ≤ |ξ|2 + 4,

then

|h|2 + |H − ξ|2 ≡ |ξ|2 + 4 (3.8)

and x(M2) is a topological torus.

Proposition 3.2 (see [15]) Let x : Mm → Nm be a Lagrangian submanifold in a Kähler

manifold Nm with the second fundamental form h. If both Mm and Nm are flat, then around

each point p ∈ Mm, there exists an orthonormal frame field {ei, ei∗} with ei∗ = Jei (1 ≤ i ≤ m)

such that, at the point p,

hk∗

ij := 〈h(ei, ej), ek∗〉 = λk∗

i δij , 1 ≤ i, j, k ≤ m. (3.9)

Now we are in the position to give the proof of Theorem 1.3.
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Firstly, by Proposition 3.1,

|h|2 + |H − ξ|2 ≡ |ξ|2 + 4 = constant. (3.10)

So, with respect to any local orthonormal frame field {e1, e2}, it holds that

∑

hk∗

ij h
k∗

ij,l +
∑

(Hk∗

− ξk
∗

)Hk∗

,l = 0, l = 1, 2. (3.11)

Secondly, it is much more convenient for us to simply consider the following two cases.

Case 1: ξ = 0.

In this case, Theorem 1.3 reduces to Corollary 1.1.

Case 2: ξ 6= 0.

In this case, we easily find that the normal bundle T⊥M2 has an orthonormal parallel frame

field {e3, e4}, say, we can take e3 to be parallel to ξ. It follows that the immersion x : M2 → C2

is of flat normal bundle. Since x is Lagrangian, its tangent bundle TM2 must also be flat

(i.e. K ≡ 0) because the complex structure J : TM2 → T⊥M is a bundle isomorphism which

preserves both the bundle metric and the bundle connection. Then it follows from the Gauss

equation that |h|2 ≡ |H |2. Consequently, for any local orthonormal frame field {ei, ei∗}, we

have |h|2i ≡ |H |2i , i = 1, 2, and L(|h|2) = L(|H |2). Equivalently,

∑

hk∗

ij h
k∗

ij,l =
∑

Hk∗

Hk∗

,l , l = 1, 2 (3.12)

and

|∇h|2 ≡ |∇⊥H |2, (3.13)

by (3.5)–(3.6) and the fact that

K = |H |2 − |h|2 ≡ 0. (3.14)

To proceed, we need to prove the following proposition.

Proposition 3.3 Let x : M2 → C2 be a flat Lagrangian ξ-submanifold in C2. Then for

any orthonormal frame field {e1, e2}, we have

1

2
L(|∇h|2) = |∇2h|2 + 2|∇h|2 − 2

∑

h
p∗

ij,kh
p∗

ij,lh
q∗

kl (H − ξ)q
∗

−
∑

h
p∗

ij,kh
p∗

il h
q∗

jk,l(H − ξ)q
∗

−
∑

h
p∗

ij,kh
p∗

il h
q∗

jl H
q∗

,k . (3.15)

Proof Since x is flat and Lagrangian, the normal bundle T⊥M2 is also flat. So by (2.2),

(2.11) and Ricci identities, ∇rh is totally symmetric for any r ≥ 0. It then follows from (3.4)

that

1

2
L(|∇h|2) =

1

2
∆(|∇h|2)−

1

2
〈x,∇(|∇h|2)〉

= |∇2h|2 +
∑

h
p∗

ij,kh
p∗

ij,kll − 〈x, el〉
∑

h
p∗

ij,kh
p∗

ij,kl

= |∇2h|2 +
∑

h
p∗

ij,kH
p∗

,ijk − 〈x, el〉
∑

h
p∗

ij,kh
p∗

ij,kl
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= |∇2h|2 +
∑

hl∗

ij,kh
l∗

im,jk〈x, em〉+
∑

hl∗

ij,kh
l∗

im,j〈ek, em〉

−
∑

hl∗

ij,kh
l∗

im,jh
p∗

mk(H − ξ)p
∗

+
∑

hl∗

ij,kh
l∗

ij,k −
∑

hl∗

ij,kh
l∗

imh
p∗

mjH
p∗

,k

−
∑

(H − ξ)p
∗

hl∗

ij,kh
l∗

im,kh
p∗

mj −
∑

(H − ξ)p
∗

hl∗

ij,kh
l∗

imh
p∗

mj,k

− 〈x, el〉
∑

h
p∗

ij,kh
p∗

ij,kl

= |∇2h|2 + 2|∇h|2 − 2
∑

hl∗

ij,kh
l∗

im,jh
p∗

mk(H − ξ)p
∗

−
∑

hl∗

ij,kh
l∗

imh
p∗

mjH
p∗

,k −
∑

(H − ξ)p
∗

hl∗

ij,kh
l∗

imh
p∗

mj,k. (3.16)

Thus Proposition 3.3 is proved.

Now, from (3.11) and (3.12) we find

∑

hk∗

ij h
k∗

ij,l =
∑

Hk∗

Hk∗

,l =
1

2

∑

Hk∗

,l ξk
∗

, l = 1, 2. (3.17)

Next we are to prove that h is parallel, i.e., ∇h ≡ 0. For this end we first assume the contrary.

Then |∇h|2 must be positive at some point on M2. Let p ∈ M2 be the point such that

|∇h|2(p) = max
M2

|∇h|2.

Then we have that |∇h|2(p) > 0 and

∇(|∇h|2)(p) = 0, L(|∇h|2)(p) ≤ 0. (3.18)

Furthermore, by Proposition 3.2, we can choose an orthonormal frame field {ei, ei∗} such that

hk∗

ij = λk∗

i δij at p. (3.19)

Since hk∗

ij is totally symmetric in i, j, k, we know that

hk∗
ij (p) = 0 if (i, j, k) 6= (1, 1, 1) or (i, j, k) 6= (2, 2, 2). (3.20)

This with (3.2) shows that

H
j∗

,i (p) =
∑

h
j∗

ik (p)〈x, ek〉(p) = 0, i 6= j.

Therefore

h1
∗

11,2 + h1
∗

22,2 = 0, h2
∗

11,1 + h2
∗

22,1 = 0 (3.21)

at p.

On the other hand, from (3.12), (3.17) and (3.20), we obtain at p

h1
∗

11h
1
∗

111 + h2
∗

22h
2
∗

221 = h1
∗

11(h
1
∗

111 + h1
∗

221) + h2
∗

22(h
2
∗

111 + h2
∗

221),

h1
∗

11h
1
∗

112 + h2
∗

22h
2
∗

222 = h1
∗

11(h
1
∗

112 + h1
∗

222) + h2
∗

22(h
2
∗

112 + h2
∗

222),

2h1
∗

11h
1
∗

111 + 2h2
∗

22h
2
∗

221 = ξ1
∗

(h1
∗

111 + h1
∗

221) + ξ2
∗

(h2
∗

111 + h2
∗

221),

2h1
∗

11h
1
∗

112 + 2h2
∗

22h
2
∗

222 = ξ1
∗

(h1
∗

112 + h1
∗

222) + ξ2
∗

(h2
∗

112 + h2
∗

222).
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It then follows from (2.11) and (3.21) that, at p,

h1
∗

11h
2
∗

112 + h2
∗

22h
2
∗

111 = 0, −h1
∗

11h
2
∗

111 + h2
∗

22h
2
∗

112 = 0, (3.22)

2h1
∗

11h
1
∗

111 − 2h2
∗

22h
2
∗

111 = ξ1
∗

(h1
∗

111 + h2
∗

112), (3.23)

2h1
∗

11h
2
∗

111 + 2h2
∗

22h
2
∗

222 = ξ2
∗

(h2
∗

112 + h2
∗

222). (3.24)

Noting that

|h|2(p) = (h1
∗

11(p))
2 + (h2

∗

22(p))
2 6= 0 (3.25)

due to (3.10), we find from (2.11) and (3.21)–(3.22) that at p,

hk∗

ij,l = 0 if (i, j, k, l) 6= (1, 1, 1, 1) or (i, j, k, l) 6= (2, 2, 2, 2). (3.26)

It follows that

H1
∗

,1 (p) = h1
∗

11,1(p), H2
∗

,2 (p) = h2
∗

22,2(p). (3.27)

Inputting (3.26) into (3.23) and (3.24), we obtain at p,

h1
∗

111(2h
1
∗

11 − ξ1
∗

) = 0, h2
∗

222(2h
2
∗

22 − ξ2
∗

) = 0. (3.28)

Without loss of generality, by the contrary assumption we can assume that h1
∗

11,1(p) 6= 0.

Then from (3.28) we have

2h1
∗

11(p) = ξ1
∗

(p). (3.29)

We need to consider the following two cases separately:

(1) h2
∗

222(p) 6= 0.

In this case, we also have

2h2
∗

22(p) = ξ2
∗

(p). (3.30)

Thus

H(p) = h1
∗

11(p)e1∗(p) + h2
∗

22(p)e2∗(p) =
1

2
(ξ1

∗

(p)e1∗(p) + ξ2
∗

(p)e2∗(p)) =
1

2
ξ,

and thus H(p)− ξ(p) = − 1

2
ξ. It follows that

|h|2 = |H |2 = |H(p)− ξ(p)|2 =
1

4
|ξ|2,

which contradicts to (3.10).

(2) h2
∗

222(p) = 0.

In this case, we have

H
j∗

,i (p) = h
j∗

11,i + h
j∗

22,i = 0 if (i, j) 6= (1, 1). (3.31)

On the other hand, from (3.7), (3.10) and (3.13)–(3.14), we find

2|∇h|2 = −(|h|2 + 〈H,H − ξ〉) +
∑

hk∗

ij h
l∗

ij(H − ξ)k
∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ijH
k∗

(H − ξ)l
∗
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= −(|h|2 + |H − ξ|2)− 〈ξ,H − ξ〉+
∑

hk∗

ij h
l∗

ij(H − ξ)k
∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ijH
k∗

(H − ξ)l
∗

= −(|ξ|2 + 4)− 〈ξ,H − ξ〉+
∑

hk∗

ij h
l∗

ij(H − ξ)k
∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ijH
k∗

(H − ξ)l
∗

. (3.32)

Thus, using (3.32), we directly find

2|∇h|2,q = −〈ξ,H,q〉+ 2
(

∑

hk∗

ij h
l∗

ij,q(H − ξ)k
∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ij(H − ξ)k
∗

H l∗

,q

)

+
(

∑

hk∗

ij,qh
l∗

ijH
k∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ij,qH
k∗

(H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ijH
k∗

,q (H − ξ)l
∗

+
∑

hk∗

ij h
l∗

ijH
k∗

H l∗

,q

)

. (3.33)

Inserting (3.18), (3.26)–(3.27), (3.29) and (3.31) into (3.33), we obtain that

0 = 2|∇h|2,1(p) = −2h1
∗

11(p)h
1
∗

11,1(p)(1 + (h1
∗

11)
2(p)).

So that ξ1
∗

(p) = 2h1∗
11(p) = 0. This with (3.17), (3.26), (3.31), Proposition 3.3 and the assump-

tion that h2
∗

222(p) = 0 shows that

0 ≥ L(|∇h|2)(p) ≥ 2|∇h|2(p) + 2(h1
∗

11,1)
2(h1

∗

11)
2 = 2(h1

∗

11,1)
2 > 0.

This contradiction shows that ∇h ≡ 0.

Since M2 is flat, it is locally isometric to R
2. Therefore, the fact that ∇h ≡ 0 and (3.19)

guarantee that, each point p ∈ M2 has an open neighbourhood Up on which a parallel orthonor-

mal frame field {e1, e2} is defined such that the corresponding components hk∗

ij satisfy

hk∗

ij = λk∗

i δij (3.34)

on Up. Moreover, hk∗

ij are all constant.

Now let

ẽ1 = e1 cos θ − e2 sin θ, ẽ2 = e1 sin θ + e2 cos θ

be another oriented frame field such that the corresponding components h̃k∗

ij also satisfy (3.34).

Then a direct computation shows that we obtain

0 = h̃1
∗

12 = sin θ cos θ(h1
∗

11 cos θ + h2
∗

22 sin θ), 0 = h̃2
∗

12 = sin θ cos θ(h1
∗

11 sin θ − h2
∗

22 cos θ) (3.35)

and

h̃1
∗

11 = h1
∗

11 cos
3 θ − h2

∗

22 sin
3 θ, h̃2

∗

22 = h1
∗

11 sin
3 θ + h2

∗

22 cos
3 θ, (3.36)

h̃1
∗

11h̃
2
∗

22 = (sin θ cos θ)3((h1
∗

11)
2 − (h2

∗

22)
2) + h1

∗

11h
2
∗

22(cos
6 θ − sin6 θ). (3.37)

Since |h|2 = (h1
∗

11)
2 +(h2

∗

22)
2 6= 0 by (3.10), we see from (3.35) that sin 2θ = 0, namely, θ = 0, or

π
2
or π. Then it follows from (3.36)–(3.37) that, by choosing θ = π, we can change the sign of

both h1
∗

11 and h2
∗

22; while by choosing θ = π
2
, we can change the sign of h1

∗

11h
2
∗

22. Thus, without
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loss of generality, we can always assume that h1
∗

11 > 0 and h2
∗

22 ≥ 0. This shows that the frame

field {e1, e2} satisfying (3.34) and h1
∗

11 > 0, h2
∗

22 ≥ 0 can be uniquely determined and, therefore,

the neighbourhood Up can be extended to the total space M2.

Let {ω1, ω2} be the dual frame of {e1, e2}. Then we have

dx∗(e1) = h1
∗

11ω
1e1∗ , de1∗ = −h1

∗

11ω
1x∗(e1),

dx∗(e2) = h2
∗

22ω
2e2∗ , de2∗ = −h2

∗

22ω
2x∗(e2).

(3.38)

We claim that h2
∗

22 > 0. In fact, if h2
∗

22 = 0, then x∗(e2) is a constant vector in C2 along

M2 which means that x(M) contains a family of parallel straight lines, contradicting to the

compactness of M .

Define

V1 = Span
R
{x∗(e1), e1∗}, V2 = Span

R
{x∗(e2), e2∗}.

Then (3.38) shows that V1, V2 are two orthogonal and constant complex line bundles on M2,

corresponding to two orthogonal, one dimensional complex subspaces of C2. So, up to some

holomorphic isometry of C2, we can identify both V1 and V2 with C1. Due to the flatness of

M2, the isometric immersion x can be locally represented by x ≡ (γ1, γ2) : (a1, b1)× (a2, b2) →

C1 × C1 ≡ C2, where

γ1 : (a1, b1) → C
1, γ2 : (a2, b2) → C

1

are two unit-speed curves (i.e., with arc-length parameters). Moreover, as plane curves, the

curvatures of γ1 and γ2 are respectively the constants h1
∗

11 > 0 and h2
∗

22 > 0. So both γ1(a1, b1)

and γ2(a2, b2) are circle arcs of radius a := (h1
∗

11)
−1 and b := (h2

∗

22)
−1, respectively.

Finally, by the compactness of M2, we obtain that x(M2) = S1(a) × S1(b). Therefore,

Theorem 1.3 is proved.

Proof of Theorem 1.4:

Case (1): ξ = 0. In this case, the theorem reduces to the theorem of Li and Wang (Theorem

1.1).

Case (2): ξ 6= 0. In this case, (3.14) still holds and thus the inequality |h|2 − 〈H, ξ〉 ≤ 2 is

equivalent to that |h|2 + |H − ξ|2 ≤ |ξ|2 + 4. Therefore, Theorem 1.4 is equivalent to Theorem

1.3 in the present case.
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