
Chin. Ann. Math. Ser. B

43(4), 2022, 523–548
DOI: 10.1007/s11401-022-0344-3

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2022

Mean Field Games with Common Noises and Conditional

Distribution Dependent FBSDEs∗

Ziyu HUANG1 Shanjian TANG2

Abstract In this paper, the authors consider the mean field game with a common noise
and allow the state coefficients to vary with the conditional distribution in a nonlinear
way. They assume that the cost function satisfies a convexity and a weak monotonicity
property. They use the sufficient Pontryagin principle for optimality to transform the mean
field control problem into existence and uniqueness of solution of conditional distribution
dependent forward-backward stochastic differential equation (FBSDE for short). They
prove the existence and uniqueness of solution of the conditional distribution dependent
FBSDE when the dependence of the state on the conditional distribution is sufficiently
small, or when the convexity parameter of the running cost on the control is sufficiently
large. Two different methods are developed. The first method is based on a continuation
of the coefficients, which is developed for FBSDE by [Hu, Y. and Peng, S., Solution of
forward-backward stochastic differential equations, Probab. Theory Rel., 103(2), 1995,
273–283]. They apply the method to conditional distribution dependent FBSDE. The
second method is to show the existence result on a small time interval by Banach fixed
point theorem and then extend the local solution to the whole time interval.
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1 Introduction

Mean field games (MFGs for short) were proposed by Lasry and Lions in a serie of papers

(see [14–16]) and also independently by Huang, Caines and Malhamé [10], under the different

name of Nash certainty equivalence. They are sometimes approached by symmetric, non-

cooperative stochastic differential games of interacting N players. To be specific, each player

solves a stochastic control problem with the cost and the state dynamics depending not only

on his own state and control but also on other players’ states. The interaction among the

players can be weak in the sense that one player is influenced by the other players only through

the empirical distribution. In view of the theory of McKean-Vlasov limits and propagation of

chaos for uncontrolled weakly interacting particle systems (see [22]), it is expected to have a

convergence for N -player game Nash equilibria by assuming independence of the random noise

in the players’ state processes and some symmetry conditions of the players. The literature
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in this area is huge. See [3] for a summary of a series of Lions’ lectures given at the Collége

de France. Carmona and Delarue approached the MFG problem from a probabilistic point of

view (see [4–6]). There are rigorous results about construction of ε-Nash equilibria for N -player

games, see for example [4, 8, 11–13].

In most studies mentioned above, the noises in each player’s state dynamic are assumed to

be independent and the empirical distribution of players’ states is deterministic in the limit.

See [7] on a model of inter-bank borrowing and lending, where noises of players are dependent.

The presence of a common noise clearly adds extra complexity to the problem as the em-

pirical distribution of players’ state becomes stochastical in the limit. Following a PDE ap-

proach, Pham and Wei [21] studied the dynamic programming for optimal control of stochastic

McKean-Vlasov dynamics; in particular, Pham [20] solved the optimal control problem for a

linear conditional McKean-Vlasov equation with a quadratic cost functional. Carmona and

Delarue [4] consider the mean field game without common noises. They use a probabilistic

approach based on the stochastic maximum principle (SMP for short) within a linear-convex

framework. Nonetheless, their arguments of using Schauder fixed-point theorem to a compact

subset of deterministic flows of probability measures, is difficult to be adapted to the case of

common noises. Yu and Tang [24] considered mean field games with degenerate state- and

distribution-dependent noise. Ahuja [1] studied a simple linear model of the mean field games

in the presence of common noise with the terminal cost being convex and weakly monotone.

The statistics of the state process occurs in the McKean-Vlasov forward-backward stochastic

differential equation (FBSDE for short) arising from the stochastic maximum principle as the

distribution conditioned on the common noise. Ahuja et al. [2] further consider a system of

FBSDEs with monotone functionals and then solve the mean field game with a common noise

within a linear-convex setting for weakly monotone cost functions. However, their state dy-

namics do not depend on the statistics of the state. The monotone condition usually fails to

hold for the conditional distribution dependent FBSDE if the state dynamic depends on the

conditional distribution of the state.

In this paper, we consider the mean field game with a common noise and allow the state

coefficients to vary with the conditional distribution in a nonlinear way. We use the sufficient

Pontryagin principle for optimality to transform the mean field control problem into existence

and uniqueness of solution of conditional distribution dependent FBSDE. We prove the exis-

tence and uniqueness of solution of the conditional distribution dependent FBSDE when the

dependence of the state coefficient on the conditional distribution is sufficiently small, or when

the convexity parameter of the running cost on the control is sufficiently large. To accomplish

this, we assume that the terminal cost and the running cost are convex and weakly monotone.

We develop two different methods to show the existence and uniqueness result.

The first method is based on a continuation of the coefficients, which is developed for FBSDE

by Hu and Peng [9]. With this method, Carmona and Delarue [5] solve a linear case without

common noises and Ahuja et al. [2] solve that mean field games with common noises within a

linear-convex setting when the state dynamic is independent of the conditional distribution of

state.

The second method, inspired by [1], is first to show the existence result on a small time

interval by Banach fixed point theorem and then to extend the local solution to the whole time.

Ahuja [1] showed the existence and uniqueness result for the particular MFG with common
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noises for the linear state dXt = αtdt + σdWt + σ̃dW̃t, where αt is the control, (W, W̃ ) is a

two-dimensional standard Brownian motion and (σ, σ̃) is constant. We shall consider a more

general model. All the coefficients of our state equation are allowed to depend on the control,

the state and the conditional distribution of state. More assumptions in the second method

are required to derive the existence result, while the probabilistic properties as well as the

sensitivity of the FBSDEs have their own interests.

The paper is organized as follows. In Section 2, we introduce our model and formulate

the main problem. In Section 3, we use the sufficient Pontryagin principle for optimality to

transform the control problem into an existence and uniqueness problem of a conditional distri-

bution dependent FBSDE. The existence and uniqueness result of the conditional distribution

dependent FBSDE is stated and proved with different methods in Sections 4–5. Appendices

containing the proofs of main lemmas are attached.

2 Problem Formulation

In this section, we describe our stochastic differential game model, and then formulate the

limit problem of the N -player game as a MFG with a common noise.

2.1 Notations

Let F (Ω,F , {Ft, 0 ≤ t ≤ T },P) denote a complete filtered probability space augmented

by all the P-null sets on which a one-dimensional Brownian motion {Wt, 0 ≤ t ≤ T} is defined.

Let F̃ = {F̃t, 0 ≤ t ≤ T } be a subfiltration of F . L(·|F̃t) is the law conditioned at F̃t for

t ∈ [0, T ].

Let L2
Ft

denote the set of all Ft-measurable square-integrable R-valued random variables.

Let L2
F
(0, T ) denote the set of all Ft-progressively-measurableR-valued processes α = (αt)0≤t≤T

such that

E

[ ∫ T

0

|αt|
2dt

]
< +∞.

Let S2
F
(0, T ) denote the set of all Ft-progressively-measurableR-valued processes β = (βt)0≤t≤T

such that

E

[
sup

0≤t≤T

|βt|
2
]
< +∞.

We define similarly the spaces LF (s, t) and S2
F
(s, t) for any 0 ≤ s < t ≤ T .

Let P(R) denote the space of all Borel probability measures on R, and P2(R) denote the

space of all probability measures m ∈ P(R) such that

∫
x2dm(x) < ∞.

The Wasserstein distance is defined on P2(R) by

W2(m1,m2) =
(

inf
γ∈Γ(m1,m2)

∫

R2

|x(ω1)− x(ω2)|
2dγ(ω1, ω2)

) 1

2

, m1,m2 ∈ P2(R),
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where Γ(m1,m2) denotes the collection of all probability measures on R
2 with marginals m1

and m2. The space (P2(R),W2) is a complete separable metric space. Let M2(C[0, T ]) denote

the space of all probability measures m on C[0, T ] such that

M2(m) :=

∫
sup

0≤t≤T

|x(t)|2dm(x) < ∞.

The measure on it is defined by

D2(m1,m2)=
(

inf
γ∈Γ(m1,m2)

∫

R2

sup
0≤t≤T

|x(t, ω1)− x(t, ω2)|
2dγ(ω1, ω2)

) 1

2

, m1,m2∈M2(C[0, T ]).

The space (M2(C[0, T ]), D2) is a complete separable metric space.

2.2 N-Player stochastic differential games

Let T > 0 be a fixed terminal time, W̃ = {W̃t, 0 ≤ t ≤ T } and W i = {W i
t , 0 ≤ t ≤ T },

i = 1, 2, · · · , N are one-dimensional independent Brownian motions defined on a complete
probability space (Ω,P) satisfying the usual conditions. Consider a stochastic dynamic game
of N players. The i-th player regulates his/her own state process X i

t in R governed by

{
dXi

t = b(t,Xi

t , u
i

t,m
N

t )dt+ σ(t,Xi

t , u
i

t, m
N

t )dW i

t + σ̃(t,Xi

t , u
i

t,m
N

t )dW̃t, t ∈ (0, T ], 1 ≤ i ≤ N ;
Xi

0 = ξi0

via the control process ui = {ui
t, 0 ≤ t ≤ T } ∈ L2

Fi(0, T ), where

b, σ, σ̃ : [0, T ]× R× R× P2(R) → R,

F i is the natural filtration of (ξi0,W
i, W̃ ), and mN

t is the empirical distribution of {X i
t , 1 ≤

i ≤ N}, i.e.,

mN
t =

1

N

N∑

i=1

δXi
t
(dx), t ∈ [0, T ].

We assume that {ξi0, 1 ≤ i ≤ N} are independent and identically distributed, independent of

all Brownian motions and satisfy E[|ξi0|
2] < ∞ for all 1 ≤ i ≤ N . We call W̃ a common noise

and W i an individual noise of the i-th player.

Given the other players’ strategies, the i-th player selects a control ui ∈ L2
Fi(0, T ) to

minimize his/her expected cost

J i(ui|(uj)j 6=i) := E

[ ∫ T

0

f(t,X i
t , u

i
t,m

N
t )dt+ g(X i

T ,m
N
T )

]
,

where (uj)j 6=i denotes a strategy profile of other players excluding the i-th player, and

f : [0, T ]× R× R× P2(R) → R, g : R× P2(R) → R

are assumed to be identical for all players.

Note that the strategies of other players have an effect on the i-th player through mN
t , which

is the main feature that makes this set up a game. We are seeking a type of equilibrium solution

widely used in game theory setting called Nash equilibrium.
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Definition 2.1 A set of strategies (ui)1≤i≤N is a Nash equilibrium if ui is optimal for the

i-th player given the other players’ strategies (uj)j 6=i. In other words,

J i(ui|(uj)j 6=i) = min
u∈L2

Fi (0,T )
J i(u|(uj)j 6=i), 1 ≤ i ≤ N.

Solving for a Nash equilibrium of an N -player game is impractical when N is large due to

the curse of dimensionality. So we formally take the limit as N → ∞ and consider the limit

problem instead.

2.3 Formulation of the problem

We now formulate the MFG with a common noise by taking the limit of N -player stochastic

differential games as N → ∞. When considering the limiting problem, we assume that each

player adopts the same strategy. Therefore, the players’ distribution can be represented by a

conditional law of a single representative player given a common noise. In other words, we

formulate the MFG with a common noise as a stochastic control problem for a single player

with an equilibrium condition involving a conditional law of the state process given a common

noise.

Let T > 0 be a fixed terminal time, W = {Wt, 0 ≤ t ≤ T } and W̃ = {W̃t, 0 ≤ t ≤ T } be

one-dimensional independent Brownian motions defined on a complete probability space (Ω,P)

satisfying the usual conditions. Let ξ0 be a square-integrable random variable. We assume that

F = {Ft, 0 ≤ t ≤ T } is the natural filtration of (ξ0,W, W̃ ) and F̃ = {F̃t, 0 ≤ t ≤ T } is the

natural filtration of W̃ . Both of them are augmented by all the P-null sets. The problem of

MFG with a common noise is defined as follows.

Problem 2.1 For given measurable functions b, σ, σ̃, f : [0, T ]× R × R × P2(R) → R and

g : R× P2(R) → R, find an optimal control û ∈ L2
F
(0, T ) for the stochastic control problem





û ∈ argmin
u∈L2

F
(0,T )

J(u|m) := E

[ ∫ T

0

f(t,Xu
t , ut,mt)dt+ g(Xu

T ,mT )
]
;

Xu
t = ξ0 +

∫ t

0

b(s,Xu
s , us,ms)ds+

∫ t

0

σ(s,Xu
s , us,ms)dWs

+

∫ t

0

σ̃(s,Xu
s , us,ms)dW̃s, t ∈ [0, T ];

mt = L(X û
t |F̃t), ξ0 ∈ L2

F0
.

3 Stochastic Maximum Principle

In this section, we discuss the stochastic maximum principle for MFG with a common noise.

The stochastic maximum principle gives optimality conditions satisfied by an optimal control.

It gives sufficient and necessary conditions for the existence of an optimal control in terms

of solvability of the adjoint process as a backward stochastic differential equation (BSDE for

short). For more details about stochastic maximum principle, we refer to [19] or [22]. In our

case, Problem 2.1 is associated to a conditional distribution dependent FBSDE with the help

of the sufficient Pontryagin principle for optimality.

We begin with discussing the stochastic maximum principle given an F̃t-progressively-

measurable stochastic flow of probability measures m = {mt, 0 ≤ t ≤ T } ∈ M2(C[0, T ]).
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We define the generalized Hamiltonian

H(t, x, p, q, q̃, u,m) := b(t, x, u,m)p+ σ(t, x, u,m)q + σ̃(t, x, u,m)q̃ + f(t, x, u,m),

(t, x, p, q, q̃, u,m) ∈ [0, T ]× R
5 × P2(R).

Now we state the first set of assumptions to ensure that the stochastic control problem is

uniquely solvable given m. For notational convenience, we use the same constant L for all the

conditions below.

(H1) The drift b and the volatility σ, σ̃ are linear in x and u. They read

φ(t, x, u,m) = φ0(t,m) + φ1(t)x+ φ2(t)u, φ = b, σ, σ̃, φi = bi, σi, σ̃i

for some measurable deterministic functions φ0 : [0, T ] × P2(R) → R satisfying the following

linear growth:

|φ0(t,m)| ≤ L
(
1 +

(∫

R

|x|2dm(x)
) 1

2

)
,

and φ1, φ2 : [0, T ] → R being bounded by a positive constant L. Further, (σ2, σ̃2) is bounded

by a positive constant Bu. For notational convenience, we can assume that Bu ≤ L by setting

L = max{L,Bu}.

(H2) The function f(t, 0, 0,m) satisfies a quadratic growth condition in m. The function

f(t, ·, ·,m) : R × R → R is differentiable for all (t,m) ∈ [0, T ] × P2(R), with the derivatives

(fx, fu)(t, x, u,m) satisfying a linear growth in (x, u,m). Similarly, the function g(0,m) satisfies

a quadratic growth condition in m. The function g(·,m) : R → R is differentiable for all

m ∈ P2(R), with the derivative gx(x,m) satisfying a linear growth in (x,m). That is,

max{|f(t, 0, 0,m)|, |g(0,m)|} ≤ L
(
1 +

∫

R

|x|2dm(x)
)
, m ∈ P2(R);

max{|fx(t, x, u,m)|, |fu(t, x, u,m)|, |gx(x,m)|} ≤ L
(
1 + |x|+ |u|+

( ∫

R

|x|2dm(x)
) 1

2

)
,

(t, x, u,m) ∈ [0, T ]× R× R× P2(R).

(H3) The function f is of the form

f(t, x, u,m) = f0(t, x, u) + f1(t, x,m), (t, x, u,m) ∈ [0, T ]× R× R× P2(R).

The function f0 is differentiable with respect to (x, u) and the function f1 is differentiable with

respect to x. The derivatives (f0x, f0u)(t, ·, ·) : R × R → R × R are L-Lipschitz continuous

uniformly in t ∈ [0, T ]. The derivative f1x(t, ·,m) : R → R is L-Lipschitz continuous uniformly

in (t,m) ∈ [0, T ]×P2(R). The derivative gx(·,m) : R → R is L-Lipschitz continuous uniformly

in m ∈ P2(R).

(H4) The functions f1(t, ·,m) and g(·,m) are convex for all (t,m) ∈ [0, T ]× P2(R), in such

a way that

(f1x(t, x
′,m)− f1x(t, x,m))(x′ − x) ≥ 0, t ∈ [0, T ], x, x′ ∈ R, m ∈ P2(R);

(gx(x
′,m)− gx(x,m))(x′ − x) ≥ 0, x, x′ ∈ R, m ∈ P2(R).
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The function f0(t, x, u) is jointly convex in (x, u) with a strict convexity in u for all t ∈ [0, T ],

in such a way that, for some Cf > 0,

f0(t, x
′, u′)− f0(t, x, u)− (f0x, f0u)(t, x, u) · (x

′ − x, u′ − u) ≥ Cf |u
′ − u|2,

t ∈ [0, T ], x, x′, u, u′ ∈ R.

The linear growth condition (H2) and Lipschitz condition (H3) are standard assumptions to

ensure the existence of a strong solution. The linear-convex conditions (H1) and (H4) ensure

that the Hamiltonian is strictly convex, so that there is a unique minimizer in the feedback

form. The separability condition in (H3) ensures that the feedback control is independent of

m. The following result is borrowed from [4, Lemma 1].

Lemma 3.1 Under assumptions (H1)–(H4), given m ∈ P2(R), for all (t, x, p, q, q̃) ∈ [0, T ]×

R × R × R × R, there exists a unique minimizer û(t, x, p, q, q̃) of the Hamiltonian. Moreover,

the map (t, x, p, q, q̃) 7→ û(t, x, p, q, q̃) is measurable, locally bounded and L(2Cf )
−1-Lipschitz

continuous in (x, p) and Bu(2Cf )
−1-Lipschitz continuous in (q, q̃), uniformly in t ∈ [0, T ].

In fact, under assumptions (H1)–(H4), if we take derivative of H with respect to u, we know

that û(t, x, p, q, q̃) satisfies

b2(t)p+ σ2(t)q + σ̃2(t)q̃ + f0u(t, x, û(t, x, p, q, q̃)) = 0, t ∈ [0, T ], x, p, q, q̃ ∈ R. (3.1)

We know from Lemma 3.1 that û is Lipschitz continuous with respect to (x, p, q, q̃) uniformly

in t ∈ [0, T ]. We define

û0(t) := û(t, 0, 0, 0, 0), t ∈ [0, T ].

Now we give a bound of û0(t). From (3.1) we know that û0(t) satisfies

f0u(t, 0, û
0(t)) = 0.

Using the convex assumption (H4), we have that

f0(t, 0, û
0(t))− f0(t, 0, 0)− f0u(t, 0, 0)û

0(t) ≥ Cf |û
0(t)|2,

f0(t, 0, 0)− f0(t, 0, û
0(t)) + f0u(t, 0, û

0(t))û0(t) ≥ Cf |û
0(t)|2,

which imply

−f0u(t, 0, 0)û
0(t) ≥ 2Cf |û

0(t)|2.

The above estimate and assumption (H2) show that

|û0(t)| ≤ L(2Cf)
−1. (3.2)

We are ready to state the stochastic maximum principle for a given stochastic flow of

probability measures m = {mt, 0 ≤ t ≤ T } ∈ M2(C[0, T ]). We define the control problem Pm:





û ∈ argmin
u∈L2

F
(0,T )

E

[ ∫ T

0

f(t,Xu
t , ut,mt)dt+ g(Xu

T ,mT )
]
,

Xu
t = ξ0 +

∫ t

0

b(s,Xu
s , us,ms)ds+

∫ t

0

σ(s,Xu
s , us,ms)dWs +

∫ t

0

σ̃(s,Xu
s , us,ms)dW̃s,

t ∈ (0, T ], ξ0 ∈ L2
F0

.
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Note that Pm is a classical control problem with the random coefficients (b, σ, σ̃, f)(t, ·, ·,mt)

for t ∈ [0, T ] and g(·,mT ). We have the following stochastic maximum principle.

Theorem 3.1 Suppose that assumptions (H1)–(H4) hold. For a given flow of probability

measures m = {mt, 0 ≤ t ≤ T } ∈ M2(C[0, T ]) and ξ0 ∈ L2
F0

, if the following FBSDE





dXt = b(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dt+ σ(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dWt

+σ̃(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dW̃t, t ∈ (0, T ];

dpt = −∂xH(t,Xt, pt, qt, q̃t, û(t,Xt, pt, qt, q̃t),mt)dt+ qtdWt + q̃tdW̃t, t ∈ [0, T );

X0 = ξ0, pT = gx(XT ,mT )

(3.3)

has an adapted solution {(X̂t, p̂t, q̂t, ̂̃qt), 0 ≤ t ≤ T } such that

E

[
sup

0≤t≤T

|(X̂t, p̂t)|
2 +

∫ T

0

|(q̂t, ̂̃qt)|2dt
]
< ∞, (3.4)

then, û = {û(t, X̂t, p̂t, q̂t, ̂̃qt), 0 ≤ t ≤ T } is an optimal control of the control problem Pm.

Furthermore, for any u ∈ L2
F
(0, T ), we have the following estimate

J(û|m) + CfE

[ ∫ T

0

|ut − ût|
2dt

]
≤ J(u|m). (3.5)

In particular, û is the unique optimal control.

Proof The proof is standard and we refer to [19, Theorem 6.4.6]. The estimate (3.5)

requires strict convexity in u of f0. The proof can be found in [4, Theorem 2.2].

We now show FBSDE (3.3) is uniquely solvable, which implies that problem Pm is uniquely

solvable. We state the slightly more general result for a random terminal function and an

arbitrary initial and terminal time, which will arise in a subsequent section. It is an immediate

consequence of [18, Theorem 2.3], concerning the existence and uniqueness of a solution to a

monotone FBSDE.

Theorem 3.2 Let 0 ≤ s < τ ≤ T and ξ ∈ L2
Fs

. Suppose that (H1)–(H4) hold. Suppose that

v : R × Ω → R is an Fτ -measurable Cv-Lipschitz continuous function satisfying the following

monotonicity condition

(v(x′, ω)− v(x, ω))(x′ − x) ≥ 0, x, x′ ∈ R, ω ∈ Ω. (3.6)

Then, for a given flow of probability measures m = {mt, s ≤ t ≤ τ} ∈ M2(C[s, τ ]), there exists

a unique adapted solution {(Xt, pt, qt, q̃t), s ≤ t ≤ τ} to FBSDE




dXt = b(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dt+ σ(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dWt

+σ̃(t,Xt, û(t,Xt, pt, qt, q̃t),mt)dW̃t, t ∈ (s, τ ];

dpt = −∂xH(t,Xt, pt, qt, q̃t, û(t,Xt, pt, qt, q̃t),mt)dt+ qtdWt + q̃tdW̃t, t ∈ [s, τ);

Xs = ξ, pτ = v(Xτ )

such that

E

[
sup

s≤t≤τ

|(X̂t, p̂t)|
2 +

∫ τ

s

|(q̂t, ̂̃qt)|2dt
]
≤ C(E[|ξ|2 + |v(0)|2 +M2(m)] + 1) (3.7)

for some constant C depending on (L, T, Cf , Cv).
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Note that this theorem implies that there exist a unique adapted solution {(Xt, pt, qt, q̃t), 0 ≤

t ≤ T } to FBSDE (3.3) by setting s = 0, τ = T and v(x) = gx(x,mT ). Assumptions (H3)

and (H4) ensure that gx(x,mT ) is L-Lipschitz continuous with respect to x and satisfies the

monotonicity condition (3.6). If we further assume that E[M2(m)] < ∞, then from (3.7) and

the linear growth assumption (H2), we have the estimate (3.4). Then, as a consequence of

Theorems 3.1, problem Pm has a unique optimal control given by ût = û(t,Xt, pt, qt, q̃t).

Now we turn to Problem 2.1. It states that given the stochastic flow of probability measures

m ∈ M2(C[0, T ]), the state process Xum

corresponding to the optimal control um of the

problem Pm satisfies the following consistency

mt = L(Xum

t |F̃t).

Plugging this into Theorem 3.1, we have the stochastic maximum principle for Problem 2.1.

Theorem 3.3 Suppose that assumptions (H1)–(H4) hold. For ξ0 ∈ L2
F0

, if the following

FBSDE




dXt = b(t,Xt, û(t,Xt, pt, qt, q̃t),L(Xt|F̃t))dt+ σ(t,Xt, û(t,Xt, pt, qt, q̃t),

L(Xt|F̃t))dWt + σ̃(t,Xt, û(t,Xt, pt, qt, q̃t),L(Xt|F̃t))dW̃t,

t ∈ (0, T ];

dpt = −∂xH(t,Xt, pt, qt, q̃t, û(t,Xt, pt, qt, q̃t),L(Xt|F̃t))dt+ qtdWt + q̃tdW̃t,

t ∈ [0, T );

X0 = ξ0, pT = gx(XT ,L(XT |F̃T ))

(3.8)

has an adapted solution {(X̂t, p̂t, q̂t, ̂̃qt), 0 ≤ t ≤ T } such that

E

[
sup

0≤t≤T

|(X̂t, p̂t)|
2 +

∫ T

0

|(q̂t, ̂̃qt)|2dt
]
< ∞, (3.9)

then, ût = û(t, X̂t, p̂t, q̂t, ̂̃qt) is an optimal control of Problem 2.1.

In the rest of this paper, we discuss the existence and uniqueness of the solution of FBSDE

(3.8). We will give two different methods under the following additional conditions on the

dependence of (b0, σ0, σ̃0, f1x, gx) on the measure variable m.

(H5) (Lipschitz continuity in m) The functions (b0, σ0, σ̃0)(t, ·) : P2(R) → R are Lm-

Lipschitz continuous uniformly in t ∈ [0, T ]. The function f1x(t, x, ·) : P2(R) → R is L-Lipschitz

continuous uniformly in (t, x) ∈ [0, T ] × R. The function gx(x, ·) : P2(R) → R is L-Lipschitz

continuous uniformly in x ∈ R. That is,

|b0(t,m
′)− b0(t,m)|+ |σ0(t,m

′)− σ0(t,m)|+ |σ̃0(t,m
′)− σ̃0(t,m)|

≤ LmW2(m,m′), t ∈ [0, T ], m,m′ ∈ P2(R);

|f1x(t, x,m
′)− f1x(t, x,m)|+ |gx(x,m

′)− gx(x,m)|

≤ LW2(m,m′), t ∈ [0, T ], x ∈ R, m,m′ ∈ P2(R).

For notational convenience, we assume that Lm ≤ L by setting L = max{L,Lm}.

(H6) (Weak monotonicity in m) For any γ ∈ P2(R
2) with marginals m and m′,

∫

R2

[(f1x(t, x,m)− f1x(t, y,m
′))(x− y)]γ(dx, dy) ≥ 0, t ∈ [0, T ], m,m′ ∈ P2(R);
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∫

R2

[(gx(x,m)− gx(y,m
′))(x− y)]γ(dx, dy) ≥ 0, m,m′ ∈ P2(R).

Equivalently, for any square-integrable random variables ξ and ξ′ on the same probability space,

E[(f1x(t, ξ
′,L(ξ′))− f1x(t, ξ,L(ξ)))(ξ

′ − ξ)] ≥ 0, t ∈ [0, T ];

E[(gx(ξ
′,L(ξ′))− gx(ξ,L(ξ)))(ξ

′ − ξ)] ≥ 0.

4 Solvability of FBSDE (3.8): Method One

In this section, we give the existence and uniqueness result of the solution to FBSDE (3.8)

by the method of continuation in coefficients. We have the following main result.

Theorem 4.1 Suppose that assumptions (H1)–(H6) hold and ξ0 ∈ L2
F0

. There exists δ > 0

depending only on (L, T ) such that FBSDE (3.8) is uniquely solvable when LmC−1
f ≤ δ.

In this section, we always suppose that assumptions (H1)–(H6) hold. To prove the above

theorem, a natural and simple strategy consists in modifying the coefficients in a linear way

and proving that there is the existence and uniqueness when coefficients in the FBSDE are

slightly perturbed. To avoid heavy notations, we use the following conventions. The notation

{θt, 0 ≤ t ≤ T } denotes a process {(Xt, ut,mt), 0 ≤ t ≤ T } with mt = L(Xt|F̃t). The notation

{Θt, 0 ≤ t ≤ T } stands for a process of the form {(θt, pt, qt, q̃t), 0 ≤ t ≤ T }. We denote by S the

space of processes {Θt, 0 ≤ t ≤ T } such that {(Xt, ut, pt, qt, q̃t), 0 ≤ t ≤ T } is Ft-progressively-

measurable, and

‖Θ‖S :=
(
E

[
sup

0≤t≤T

|(Xt, pt)|
2 +

∫ T

0

|(ut, qt, q̃t)|
2dt

]) 1

2

< +∞.

We call an input for FBSDE (3.8) a five-tuple

I = ((Ib
t , I

σ
t , I

σ̃
t , I

f
t )0≤t≤T , I

g
T )

with (Ib
t , I

σ
t , I

σ̃
t , I

f
t )0≤t≤T being four square-integrable progressively-measurable processes and

Ig
T being a square-integrable FT -measurable random variable. Such an input is specifically

designed to be injected into the dynamics of FBSDE (3.8). Denote by I the space of all inputs,

endowed with the norm

‖I‖I := E

[
|Ig

T |
2 +

∫ T

0

|(Ib
t , I

σ
t , I

σ̃
t , I

f
t )|

2dt
] 1

2

.

Definition 4.1 For any (γ, ξ) ∈ [0, 1]× L2
F0

and any input I ∈ I, denote by E(γ, ξ, I) the

FBSDE
{
dXt = (γb(t, θt) + Ib

t )dt+ (γσ(t, θt) + Iσ
t )dWt + (γσ̃(t, θt) + I σ̃

t )dW̃t, t ∈ (0, T ];

dpt = −(γHx(t,Θt) + If
t )dt+ qtdWt + q̃tdW̃t, t ∈ [0, T )

(4.1)

with mt = L(Xt|F̃t),

ut = û(t,Xt, pt, qt, q̃t), t ∈ [0, T ], (4.2)

X0 = ξ (initial condition) and pT = γgx(XT ,mT ) + Ig
T (terminal condition).
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Whenever {(Xt, pt, qt, q̃t), 0 ≤ t ≤ T } is a solution, {(Xt, ut,mt, pt, qt, q̃t), 0 ≤ t ≤ T }

is referred to as the associated extended solution. Note that the forward and the backward

equations in (4.1) are coupled via the optimality condition (4.2). When γ = 1, I = 0 and

ξ = ξ0, the pair (4.1)–(4.2) coincides with FBSDE (3.8). For notational convenience, we set the

following deninition.

Definition 4.2 Given γ ∈ [0, 1], we say that property (Sγ) holds true if, for any ξ ∈ L2
F0

and any I ∈ I, FBSDE E(γ, ξ, I) has a unique extended solution in S.

Our aim is to show (S1) holds true. The following lemma is proved in Appendix A.

Lemma 4.1 Suppose that assumptions (H1)–(H6) hold. Let γ ∈ [0, 1] such that (Sγ) holds

true. Then, there exist δ > 0 depending only on (L, T ), and a constant C independent of γ,

such that for any ξ1, ξ2 ∈ L2
F0

and I1, I2 ∈ I, the respective extended solutions Θ1 and Θ2 of

E(γ, ξ1, I1) and E(γ, ξ2, I2) satisfy

‖Θ1 −Θ2‖S ≤ C([E|ξ1 − ξ2|2]
1

2 + ‖I1 − I2‖I),

when LmC−1
f ≤ δ.

We now give the following lemma, which plays a crucial role in the proof of Theorem 4.1.

Lemma 4.2 Suppose that assumptions (H1)–(H6) hold. There exist δ > 0 depending only

on (L, T ) and η0 > 0 such that, if LmC−1
f ≤ δ and (Sγ) holds true for some γ ∈ [0, 1), then

(Sγ+η) holds true for any η ∈ (0, η0] satisfying γ + η ≤ 1.

Proof The proof follows from the contraction of Picard’s mapping. Consider γ such that

(Sγ) holds true. For η > 0, any ξ ∈ L2
F0

and any I ∈ I, we aim to show that the FBSDE

E(γ + η, ξ, I) has a unique extended solution in S. To do so, we define a map Φ : S → S, whose

fixed points are solutions of E(γ + η, ξ, I).

The definition Φ is as follows. Given a process Θ ∈ S, we denote by Θ′ the extended solution

of the FBSDE E(γ, ξ, I ′) with

Ib,′

t = ηb(t, θt) + Ib
t , t ∈ [0, T ];

Iσ,′

t = ησ(t, θt) + Iσ
t , t ∈ [0, T ];

I σ̃,′

t = ησ(t, θt) + I σ̃
t , t ∈ [0, T ];

If,′

t = ηHx(t,Θt) + If
t , t ∈ [0, T ];

Ig,′

T = ηgx(XT ,mT ) + Ig
T .

From the assumption that (Sγ) holds true, Θ
′ is uniquely defined, and it belongs to S, so that

Φ : Θ 7→ Θ′ maps S into itself. It is then clear that a process Θ ∈ S is a fixed point of Φ if

and only if Θ is an extended solution of E(γ + η, ξ, I). So we only need to illustrate that Φ is

a contraction when η is small enough.

In fact, for any Θ1,Θ2 ∈ S, we know from Lemma 4.1 that

‖Φ(Θ2)− Φ(Θ1)‖S ≤ C‖I ′2 − I ′1‖I ≤ Cη‖Θ2 −Θ2‖S,

where C is independent of γ and η. So when η is small enough, Φ is indeed a contraction.



534 Z. Y. Huang and S. J. Tang

Proof of Theorem 4.1 In view of Lemma 4.2, we only need to prove that (S0) holds

true, which is obviously true since there is no coupling between the forward and the backward

equations when γ = 0.

5 Solvability of FBSDE (3.8): Method Two

In this section, we prove the existence and uniqueness of the solution of FBSDE (3.8) with

an alternative method. In the first subsection, we use the weak monotonicity assumption to

deduce the uniqueness result. And in the second subsection, we first show the existence result

on a small time interval [τ, T ] and then extend the local solution to the whole time interval

[0, T ]. More assumptions are required than the first method. However, the intermediate result

can better demonstrate the probabilistic properties as well as the sensitivity, which are worthy

of study.

5.1 Uniqueness

We have the following uniqueness of the solution of FBSDE (3.8).

Theorem 5.1 (Uniqueness) Suppose that (H1)–(H6) hold and ξ0 ∈ L2
F0

. There exists δ > 0

depending only on (L, T ) such that FBSDE (3.8) has at most one solution satisfying (3.9) when

LmC−1
f ≤ δ.

Proof Let {(X̂ i
t , p̂

i
t, q̂

i
t,
̂̃q
i

t), 0 ≤ t ≤ T } solve FBSDE (3.8) such that (3.9) holds with initial

ξ0 ∈ L2
F0

, for i = 1, 2. We set

mi
t = L(X̂ i

t |F̃t), i = 1, 2.

Recall that û1
t and û2

t satisfy

b2(t)p̂
i
t + σ2(t)q̂

i
t + σ̃2(t)̂̃q

i

t = −fu(t, X̂
i
t , û

i
t), t ∈ [0, T ], i = 1, 2. (5.1)

Let ∆X̂t = X̂2
t − X̂1

t and ∆p̂t = p̂2t − p̂1t for t ∈ [0, T ]. By using Itô’s lemma for ∆p̂t∆X̂t, we

get

E[∆p̂T∆X̂T ]−∆p̂0∆X̂0

= E

[ ∫ T

0

(b0(t, m̂
2
t )− b0(t, m̂

1
t ))∆p̂t + (σ0(t, m̂

2
t )− σ0(t, m̂

1
t ))∆q̂t

+ (σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t ))∆

̂̃qt + (b2(t)∆p̂t + σ2(t)∆q̂t + σ̃2(t)∆̂̃qt)∆ût

− (f0x(t, X̂
2
t , û

2
t )− f0x(t, X̂

1
t , û

1
t ))∆X̂t − (f1x(t, X̂

2
t , m̂

2
t )− f1x(t, X̂

1
t , m̂

1
t ))∆X̂tdt

]
. (5.2)

We know from (5.1) that

(b2(t)∆p̂t + σ2(t)∆q̂t + σ̃2(t)∆̂̃qt)∆ût − (f0x(t, X̂
2
t , û

2
t )− f0x(t, X̂

1
t , û

1
t ))∆X̂t

= −[(f0x, f0u)(t, X̂
2
t , û

2
t )− (f0x, f0u)(t, X̂

1
t , û

1
t )] · (∆X̂t,∆ût), t ∈ [0, T ]. (5.3)

From the strict convexity of f0 as assumed in (H4), we have that for t ∈ [0, T ],

f0(t, X̂
2
t , û

2
t )− f0(t, X̂

1
t , û

1
t )− [f0x(t, X̂

1
t , û

1
t )∆X̂t + f0u(t, X̂

1
t , û

1
t )∆ût] ≥ Cf |∆ût|

2;

f0(t, X̂
1
t , û

1
t )− f0(t, X̂

2
t , û

2
t ) + [f0x(t, X̂

2
t , û

2
t )∆X̂t + f0u(t, X̂

2
t , û

2
t )∆ût] ≥ Cf |∆ut|

2.
(5.4)



Mean Field Games with Common Noises and FBSDEs 535

From (5.4), we have

[(f0x, f0u)(t, X̂
2
t , û

2
t )− (f0x, f0u)(t, X̂

1
t , û

1
t )] · (∆X̂t,∆ût) ≥ 2Cf |∆ût|

2, t ∈ [0, T ]. (5.5)

From the weak monotonicity assumption (H6), we know that

E[∆p̂T∆X̂T ] = E[(gx(X̂
2
T , m̂

2
T )− gx(X̂

1
T , m̂

1
T ))∆X̂T ] ≥ 0;

E[(f1x(t, X̂
2
t , m̂

2
t )− f1x(t, X̂

1
t , m̂

1
t ))∆X̂t] ≥ 0, t ∈ [0, T ].

(5.6)

Plugging (5.3), (5.5) and (5.6) into (5.2), using the Lipschitz continuity assumption (H5) and

the average inequality, we have

2CfE

[ ∫ T

0

|∆ût|
2
]
≤ E

[ ∫ T

0

(b0(t, m̂
2
t )− b0(t, m̂

1
t ))∆p̂t + (σ0(t, m̂

2
t )− σ0(t, m̂

1
t ))∆q̂t

+ (σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t ))∆

̂̃qtdt
]

≤
3LmT

2
E

[
sup

0≤t≤T

|∆X̂t|
2
]
+

Lm

2
E

[ ∫ T

0

|∆p̂t|
2 + |∆q̂t|

2 + |∆ ̂̃qt|2dt
]
, (5.7)

where we have used the following estimates

E[W2(m̂
1
t , m̂

2
t )

2] ≤ E[E[|∆X̂t|
2|F̃t]] = E[|∆X̂t|

2] ≤ E

[
sup

0≤t≤T

|∆X̂t|
2
]
, t ∈ [0, T ].

By standard estimates for SDEs and BSDEs, there exist two constants C1 > 0 and C2 > 0

depending only on (L, T ), such that

E

[
sup

0≤t≤T

|∆X̂t|
2
]
≤ C1E

[ ∫ T

0

|∆ût|
2dt

]
; (5.8)

E

[
sup

0≤t≤T

|∆p̂t|
2 +

∫ T

0

|∆q̂t|
2 + |∆̂̃qt|2dt

]
≤ C2E

[
sup

0≤t≤T

|∆X̂t|
2 +

∫ T

0

|∆ût|
2dt

]
. (5.9)

From (5.7)–(5.9), we have

4CfE

[ ∫ T

0

|∆ût|
2
]
≤ Lm(C2(1 + C1)(T + 1) + 3TC1)E

[ ∫ T

0

|∆ût|
2dt

]
.

The constant

δ := 2(C2(1 + C1)(T + 1) + 3TC1)
−1

depends only on (L, T ). If LmC−1
f ≤ δ, then û1 = û2 in L2

F
(0, T ).

5.2 Existence

Next, we prove the existence result of the solution of FBSDE (3.8). The idea is to show the

existence result on a small time interval [τ, T ] firstly and then extend the local solution to the

whole time interval [0, T ]. In this subsection, we always suppose that assumptions (H1)–(H6)

hold.

The lemma below is an immediate consequence of [2, Theorem 3]. Similar results can be

found in [17, Theorem 6.7] and [22, Theorem 1.1].
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Lemma 5.1 Let 0 ≤ s < τ ≤ T . Soppose that assumptions (H1), (H2) and (H5) hold.

Given û ∈ L2
F
(s, τ) and η ∈ L2

Fs
, there exists a unique solution {X̂t, s ≤ t ≤ τ} ∈ S2

F
(s, τ) to

SDE :

X̂t = η +

∫ t

s

b(r, X̂r, ûr, m̂r)dr +

∫ t

s

σ(r, X̂r, ûr, m̂r)dWr

+

∫ t

s

σ̃(r, X̂r, ûr, m̂r)dW̃r , t ∈ [s, τ ], (5.10)

where m̂t = L(X̂t|F̃t) for t ∈ [s, τ ].

We now construct a map so that it has a fixed point as a solution to FBSDE (3.8). Let

0 ≤ s < τ ≤ T , η ∈ L2
Fs

and v : R× L2
Fτ

× Ω → R satisfies, for P-a.s.,

(v(x′, ξ, ω)− v(x, ξ, ω))(x′ − x) ≥ 0, x, x′ ∈ R, ξ, ξ′ ∈ L2
Fτ

; (5.11)

|v(x′, ξ′, ω)− v(x, ξ, ω)|2 ≤ Cv[|x
′ − x|2 + E[(ξ′ − ξ)2|F̃τ ](ω)],

x, x′ ∈ R, ξ, ξ′ ∈ L2
Fτ

(5.12)

and

E[|v(0, 0, ·)|2] < +∞. (5.13)

We define Φs,τ,η,v : L2
F
(s, τ) → L2

F
(s, τ) as follows. Given û ∈ L2

F
(s, τ), Lemma 5.1 shows that

SDE (5.10) has a unique solution X̂ = {X̂t, s ≤ t ≤ τ} ∈ S2
F
(s, τ) with initial value η ∈ L2

Fs
.

We set m̂t = L(X̂t|F̃t) for t ∈ [s, τ ] and denote by {(Xt, pt, qt, q̃t), s ≤ t ≤ T } the solution of

the following FBSDE





dXt = b(t,Xt, ut, m̂t)dt+ σ(t,Xt, ut, m̂t)dWt + σ̃(t,Xt, ut, m̂t)dW̃t, t ∈ (s, τ ];

dpt = −∂xH(t,Xt, pt, qt, q̃t, ut, m̂t)dt+ qtdWt + q̃tdW̃t, t ∈ [s, τ);

Xs = η, pτ = v(Xτ , X̂τ )

(5.14)

with the optimality condition

ut = û(t,Xt, pt, qt, q̃t), t ∈ [s, τ ],

or equivalently,

b2(t)pt + σ2(t)qt + σ̃2(t)q̃t + f0u(t,Xt, ut) = 0, t ∈ [s, τ ],

such that

E

[
sup

s≤t≤τ

|(Xt, pt)|
2 +

∫ τ

s

|(qt, q̃t)|
2dt

]
< +∞. (5.15)

We set

Φs,τ,η,v(û) := u = (ut)s≤t≤τ .

Conditions (5.11)–(5.13) and Theorem 3.2 ensure that u is uniquely defined. Moreover, both

inequalities (5.15) and (3.2) and Lemma 3.1 yield that u ∈ L2
F
(s, τ). Thus, Φs,τ,η,v : û 7→ u

maps L2
F
(s, τ) into itself. Furthermore, the fixed point of Φ0,T,ξ0,gx is the solution of FBSDE

(3.8). The lemma below gives a solution on a small time interval.
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Lemma 5.2 Let 0 < τ ≤ T and v : R×L2
Fτ

×Ω → R satisfies (5.11)–(5.13). Suppose that

assumptions (H1)–(H5) hold. If

BuC
−1
f ≤ (24LCv)

−1,

then, there exists γ > 0 depending on (L, T, Cf , Cv) such that, for any non-negative s ∈ [τ−γ, τ)

and η ∈ L2
Fs

, there exists ûs,τ,η,v ∈ L2
F
(s, τ) such that

Φs,τ,η,v(ûs,τ,η,v) = ûs,τ,η,v.

The proof is given in Appendix B. Assumptions (H2)–(H5) ensure that gx satisfies conditions

(5.11)–(5.13). Suppose that

BuC
−1
f ≤ (24L2)−1. (5.16)

Then, there exists γ > 0 depending on (L, T, Cf) such that, for any non-negative t ∈ [T − γ, T )

and η ∈ L2
Ft

, there exists ût,T,η,gx ∈ L2
F
(t, T ) such that

Φt,T,η,gx(ût,T,η,gx) = ût,T,η,gx . (5.17)

Let Γ be the set of t ∈ [0, T ] such that the following statement holds: For any η ∈ L2
Ft

, there

exists ût,T,η,gx ∈ L2
F
(t, T ) satisfying (5.17). From the above we know that T − γ ∈ Γ. If 0 ∈ Γ,

then we have completed the proof of the existence of the solution of FBSDE (3.8). Suppose

not, let t0 = inf Γ (t0 can still be zero), γ0 > 0 be sufficiently small so that t0 + γ0 < T − γ
2 ,

and τ ∈ [t0, t0 + γ0) ∩ Γ.

Since τ ∈ Γ, for any initial η ∈ L2
Fτ

, there exists a fixed point û = {ûτ,T,η,gx
t , τ ≤ t ≤ T } ∈

L2
F
(τ, T ) of the map Φτ,T,η,gx . We denote by

{(X̂τ,T,η,gx
t , p̂τ,T,η,gx

t , q̂τ,T,η,gx
t , ̂̃q

τ,T,η,gx

t ), τ ≤ t ≤ T }

the solution of the following FBSDE,




dX̂τ,T,η,gx
t = b(t, X̂τ,T,η,gx

t , ûτ,T,η,gx
t , m̂τ,T,η,gx

t )dt

+ σ(t, X̂τ,T,η,gx
t , ûτ,T,η,gx

t , m̂τ,T,η,gx
t )dWt

+ σ̃(t, X̂τ,T,η,gx
t , ûτ,T,η,gx

t , m̂τ,T,η,gx
t )dW̃t, t ∈ (s, τ ];

dp̂τ,T,η,gx
t = −∂xH(t, X̂τ,T,η,gx

t , p̂τ,T,η,gx
t , q̂τ,T,η,gx

t , ̂̃q
τ,T,η,gx

t , ûτ,T,η,gx
t , m̂τ,T,η,gx

t )dt

+ q̂τ,T,η,gx
t dWt + ̂̃q

τ,T,η,gx

t dW̃t, t ∈ [s, τ);

X̂τ,T,η,gx
τ = η, p̂τ,T,η,gx

T = gx(X̂
τ,T,η,gx
T , m̂τ,T,η,gx

T ),

(5.18)

where

m̂τ,T,η,gx
t = L(X̂τ,T,η,gx

t |F̃t), τ ≤ t ≤ T,

and with the optimality condition

b2(t)p̂
τ,T,η,gx
t + σ2(t)q̂

τ,T,η,gx
t + σ̃2(t)̂̃q

τ,T,η,gx

t + f0u(t, X̂
τ,T,η,gx
t , ûτ,T,η,gx

t ) = 0, t ∈ [s, τ ],

such that

E

[
sup

τ≤t≤T

|(X̂τ,T,η,gx
t , p̂τ,T,η,gx

t )|2 +

∫ T

τ

|(q̂τ,T,η,gx
t , ̂̃q

τ,T,η,gx

t )|2dt
]
< +∞. (5.19)
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We then denote by

(Xτ,x,η, pτ,x,η, qτ,x,η, q̃τ,x,η) = {(Xτ,x,η
t , pτ,x,ηt , qτ,x,ηt , q̃τ,x,ηt ), τ ≤ t ≤ T }

∈ S2
F (τ, T )× S2

F (τ, T )× L2
F (τ, T )× L2

F (τ, T )

the solution of the following FBSDE




dXt = b(t,Xt, ut, m̂
τ,T,η,gx
t )dt+ σ(t,Xt, ut, m̂

τ,T,η,gx
t )dWt

+σ̃(t,Xt, ut, m̂
τ,T,η,gx
t )dW̃t, t ∈ (τ, T ];

dpt = −∂xH(t,Xt, pt, qt, q̃t, ut, m̂
τ,T,η,gx
t )dt+ qtdWt + q̃tdW̃t, t ∈ [τ, T );

Xτ = x, pT = gx(XT , m̂
τ,T,η,gx
T )

(5.20)

with the optimality condition

b2(t)pt + σ2(t)qt + σ̃2(t)q̃t + f0u(t,Xt, ut) = 0, t ∈ [τ, T ]. (5.21)

We define v : R× L2
Fτ

× Ω → R as

v(x, η, ω) = pτ,x,ητ (ω), x ∈ R, η ∈ L2
Fτ

.

From Theorem 3.2, {(Xτ,x,η
t , pτ,x,ηt , qτ,x,ηt , q̃τ,x,ηt ), τ ≤ t ≤ T } is uniquely defined, and thus v is

well-defined. We have the following estimates of v, whose proof is given in Appendix C.

Lemma 5.3 Let assumptions (H1)–(H6) and (5.16) be satisfied. Then, there exists δ > 0

depending only on (L, T ) such that v defined above satisfies, P-a.s.,

(v(x′, η)− v(x, η))(x′ − x) ≥ 0, x, x′ ∈ R, η, η′ ∈ L2
Fτ

; (5.22)

|v(x′, η′)− v(x, η)|2 ≤ Cv[|x
′ − x|2 + E[|η′ − η|2|F̃τ ]], x, x′ ∈ R, η, η′ ∈ L2

Fτ
, (5.23)

when LmC−1
f ≤ δ, with the constant Cv = CL,T

(
1 + 1

Cf

)4
, where CL,T is a constant depending

only on (L, T ).

We now attempt to extend the solution further. If we suppose that

BuC
−1
f (1 + C−1

f )4 ≤ min{(24L2)−1, (24LCL,T )
−1},

then we easily get

BuC
−1
f ≤ min{(24L2)−1, (24LCv)

−1}.

When LmC−1
f is small enough, Lemma 5.3 and (5.19) ensure that (5.11)–(5.13) hold. Let

s ∈ [0, τ) to be determined and η ∈ L2
Fs

. Consider the map Φs,τ,η,v as defined above. From

Lemma 5.2, there exists a constant γ′ > 0 depending only on (L, T, Cf) such that, for any

non-negative s ∈ [τ − γ′, τ), there exists ûs,τ,η,v ∈ L2
F
(s, τ) such that

Φs,τ,η,v(ûs,τ,η,v) = ûs,τ,η,v.

We denote by {X̂s,τ,η,v
t , s ≤ t ≤ τ} ∈ S2

F
(s, τ) the state process corresponding to ûs,τ,η,v. We

construct the following control ûs,T,η,gx by letting

ûs,T,η,gx
t =

{
ûs,τ,η,v
t , if s ≤ t < τ ;

û
τ,T,X̂s,τ,η,v

τ ,gx
t , if τ ≤ t ≤ T.
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Since ûs,τ,η,v ∈ L2
F
(s, τ) and ûτ,T,X̂s,τ,η,v

τ ,gx ∈ L2
F
(τ, T ), we have ûs,T,η,gx ∈ L2

F
(s, T ). From

the definition of Φ, we have

Φs,T,η,gx(ûs,T,η,gx) = ûs,T,η,gx .

We have shown that s ∈ Γ. From Lemmas 5.2–5.3, we know that γ′ depends only on

(L, T, Cf), which is independent of τ . Therefore, we can select γ0 sufficiently small and moreover

γ0 < γ′, so that τ − γ′ ≤ t0 + γ0 − γ′ < t0. Thus, we can select s to be strictly less than t0 or

s = 0 to give a contradiction to our assumption that 0 /∈ Γ and t0 = inf Γ. Therefore 0 ∈ Γ,

and we have the following existence theorem.

Theorem 5.2 (Existence) Suppose that assumptions (H1)–(H6) hold and ξ0 ∈ L2
F0

. Then,

there exists δ > 0 depending only on (L, T ), such that FBSDE (3.8) has a solution satisfying

(3.9) when

max{BuC
−1
f (1 + C−1

f )4, LmC−1
f } ≤ δ.

Appendices

A Proof of Lemma 4.1

We set ∆Xt = X2
t − X1

t . The differences ∆ut, ∆pt, ∆qt and ∆q̃t are defined in a similar

way. Then, {(∆Xt,∆pt,∆qt,∆q̃t), 0 ≤ t ≤ T } satisfy the following FBSDE




d∆Xt = [γ((b0(t,m
2
t )− b0(t,m

1
t )) + b1(t)∆Xt + b2(t)∆ut) + ∆Ib

t ]dt

+[γ((σ0(t,m
2
t )− σ0(t,m

1
t )) + σ1(t)∆Xt + σ2(t)∆ut) + ∆Iσ

t ]dWt

+[γ((σ̃0(t,m
2
t )− σ̃0(t,m

1
t )) + σ̃1(t)∆Xt + σ̃2(t)∆ut) + ∆I σ̃

t ]dW̃t, t ∈ (0, T ];

d∆pt = −[γ(b1(t)∆pt + σ1(t)∆qt + σ̃t∆q̃t + (fx(t,X
2
t , u

2
t ,m

2
t )− fx(t,X

1
t , u

1
t ,m

1
t ))

+∆If
t ]dt+∆qtdWt +∆q̃tdW̃t, t ∈ [0, T );

∆X0 = ∆ξ, ∆pT = γ(gx(X
2
T ,m

2
T )− gx(X

1
T ,m

1
T )) + ∆Ig

T

with the condition

b2(t)∆pt + σ2(t)∆qt + σ̃(t)∆q̃t + (f0u(t,X
2
t , u

2
t )− f0u(t,X

1
t , u

1
t )) = 0, t ∈ [0, T ]. (A.1)

First we note the fact that

E[W2(m
1
t ,m

2
t )

2] ≤ E[E[|∆Xt|
2|F̃t]] = E[|∆Xt|

2] ≤ E

[
sup

0≤t≤T

|∆Xt|
2
]
, t ∈ [0, T ]. (A.2)

Under assumptions (H1), (H3), (H5) and the estimates (A.2), by standard estimates for SDEs

and BSDEs, there exist two constants C1 > 0 and C2 > 0 depending only on (L, T ), such that

E

[
sup

0≤t≤T

|∆Xt|
2
]
≤ C1E

[
|∆ξ|2 +

∫ T

0

γ|∆ut|
2 + |(∆Ib

t ,∆Iσ
t ,∆I σ̃

t )|
2dt

]
; (A.3)

E

[
sup

0≤t≤T

|∆pt|
2 +

∫ T

0

|(∆qt,∆q̃t)|
2dt

]

≤ C2E

[
γ sup

0≤t≤T

|∆Xt|
2 + |∆Ig

T |
2 +

∫ T

0

γ|∆ut|
2 + |∆If

t |
2dt

]
. (A.4)
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Applying Itô’s lemma on ∆pt∆Xt and taking expection, we have

E[∆pT∆XT ]− E[∆p0∆ξ]

= E

[ ∫ T

0

γ[(b0(t,m
2
t )− b0(t,m

1
t ))∆pt + (σ0(t,m

2
t )− σ0(t,m

1
t ))∆qt

+ (σ̃0(t,m
2
t )− σ̃0(t,m

1
t ))∆q̃t]

+ γ[(b2(t)∆pt + σ2(t)∆qt + σ̃2(t)∆q̃)∆ut

− (fx(t,X
2
t , u

2
t ,m

2
t )− fx(t,X

1
t , u

1
t ,m

1
t ))∆Xt]

+ (∆pt∆Ib
t +∆qt∆Iσ

t +∆q̃t∆I σ̃
t −∆Xt∆If

t )dt
]
. (A.5)

By using the Lipschitz-continuity assumption (H5) and the average inequality, we have

E

[ ∫ T

0

γ[(b0(t,m
2
t )− b0(t,m

1
t ))∆pt + (σ0(t,m

2
t )− σ0(t,m

1
t ))∆qt

+ (σ̃0(t,m
2
t )− σ̃0(t,m

1
t ))∆q̃t]dt

]

≤ E

[ ∫ T

0

γLmW2(m
1
t ,m

2
t )(|∆pt|+ |∆qt|+ |∆q̃t|)dt

]

≤
3TLmγ

2
E

[
sup

0≤t≤T

|∆Xt|
2
]
+

TLmγ

2
E

[
sup

0≤t≤T

|∆pt|
2
]

+
Lmγ

2
E

[ ∫ T

0

|∆qt|
2 + |∆q̃t|

2dt
]
. (A.6)

From (A.1) and the convex assumption (H4), we have

(b2(t)∆pt + σ2(t)∆qt + σ̃(t)∆q̃t)∆ut − (f0x(t,X
2
t , u

2
t )− f0x(t,X

1
t , u

1
t ))∆Xt

≤ −2Cf |∆ût|
2, t ∈ [0, T ]. (A.7)

From the weak monotonicity assumption (H6) and the fact that mi
t = L(X i

t |F̃t), we have

E[(f1x(t,X
2
t ,m

2
t )− f1x(t,X

1
t ,m

1
t ))∆Xt]

= E[E[(f1x(t,X
2
t ,m

2
t )− f1x(t,X

1
t ,m

1
t ))∆Xt|F̃t]] ≥ 0, t ∈ [0, T ]; (A.8)

E[∆pT∆XT ] = E[γ(gx(X
2
T ,m

2
T )− gx(X

1
T ,m

1
T ))∆XT +∆XT∆Ig

T ] ≥ E[∆XT∆Ig
T ].

Plugging (A.6)–(A.8) into (A.5), and using the average inequality, we have for any ε > 0,

2CfγE
[ ∫ T

0

|∆ut|
2dt

]

≤ E

[
|∆p0‖∆ξ|+ |∆XT ‖∆Ig

T |+

∫ T

0

(∆pt∆Ib
t +∆qt∆Iσ

t +∆q̃t∆I σ̃
t −∆Xt∆If

t )dt
]

+
3TLmγ

2
E

[
sup

0≤t≤T

|∆Xt|
2
]
+

TLmγ

2
E

[
sup

0≤t≤T

|∆pt|
2
]
+

Lmγ

2
E

[ ∫ T

0

|∆qt|
2 + |∆q̃t|

2dt
]

≤
(3TLmγ

2
+ ε

)
E

[
sup

0≤t≤T

|∆Xt|
2
]
+
(TLmγ

2
+ ε

)
E

[
sup

0≤t≤T

|∆pt|
2
]

+
(Lmγ

2
+ ε

)
E

[ ∫ T

0

|∆qt|
2 + |∆q̃t|

2dt
]
+ C(T, ε)(E[|∆ξ|2] + ‖∆I‖2

I
).
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Here, the notation C(T, ε) stands for a constant depending only on T and ε. Plugging (A.3)

and (A.4) into above, we have

2CfγE
[ ∫ T

0

|∆ut|
2dt

]

≤ C(L, T, ε)(E[|∆ξ|2] + ‖∆I‖2
I
) + (C1C2 + C1 + C2)γεE

[ ∫ T

0

|∆ut|
2dt

]

+
3TC1 +max{1, T }(C1 + 1)C2

2
LmγE

[ ∫ T

0

|∆ut|
2dt

]
.

The constant

δ := 2(3TC1 +max{1, T }(C1 + 1)C2)
−1

depends only on (L, T ). If LmC−1
f ≤ δ, then, we choose

ε =
Cf

2(C1C2 + C1 + C2)

to get

γE
[ ∫ T

0

|∆ut|
2dt

]
≤ C(L, T, Cf )(E[|∆ξ|2] + ‖∆I‖2I ). (A.9)

Plugging (A.9) into (A.3) and (A.4), respectively, we have

E

[
sup

0≤t≤T

|(∆Xt,∆pt)|
2 +

∫ T

0

|(∆qt,∆q̃t)|
2dt

]
≤ C(L, T, Cf)(E[|∆ξ|2] + ‖∆I‖2I ).

From Lemma 3.1 we know that

|∆ut| ≤ C(L,Cf )(|∆Xt|+ |∆pt|+ |∆qt|+ |∆q̃t|), t ∈ [0, T ].

So we eventually have

‖Θ1 −Θ2‖2
S
≤ C(L, T, Cf)(E[|ξ

1 − ξ2|2] + ‖I1 − I2‖2
I
).

B Proof of Lemma 5.2

Let η ∈ L2
Fs

and û1, û2 ∈ L2
F
(s, τ). We denote by {X̂ i

t , s ≤ t ≤ τ} the state process corre-

sponding to ûi as in (5.10) and set m̂i
t = L(X̂ i

t |F̃t) for t ∈ [s, τ ] and i = 1, 2. We then denote by

{(X i
t , p

i
t, q

i
t, q̃

i
t), s ≤ t ≤ τ} the solution of FBSDE (5.14) corresponding to {m̂i

t, s ≤ t ≤ τ} for

i = 1, 2. We set ∆Xt = X2
t −X1

t for t ∈ [s, τ ]. The differences (∆pt,∆qt,∆q̃t,∆ut,∆ût,∆X̂t)

are defined in a similar way. Then {(∆Xt,∆pt,∆qt,∆q̃t), s ≤ t ≤ τ} satisfy the following

FBSDE




d∆Xt = [(b0(t, m̂
2
t ))− b0(t, m̂

1
t ) + b1(t)∆Xt + b2(t)∆ut]dt

+[(σ0(t, m̂
2
t )− σ0(t, m̂

1
t )) + σ1(t)∆Xt + σ2(t)∆ut]dWt

+[(σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t )) + σ̃1(t)∆Xt + σ̃2(t)∆ut]dW̃t, t ∈ (s, τ ];

d∆pt = −[b1(t)∆pt + σ1(t)∆qt + σ̃1(t)∆q̃t + (f0x(t,X
2
t , u

2
t )− f0x(t,X

1
t , u

1
t ))

+(f1x(t,X
2
t , m̂

2
t )− f1x(t,X

1
t , m̂

1
t ))]dt+∆qtdWt +∆q̃tdW̃t, t ∈ [s, τ);

∆Xs = 0, ∆pτ = v(X2
τ , X̂

2
τ )− v(X1

τ , X̂
1
τ ).
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From Lemma 3.1 we know that

|∆ut| ≤
L

2Cf

|∆Xt|+
L

2Cf

|∆pt|+
Bu

2Cf

(|∆qt|+ |∆q̃t|), t ∈ [0, T ], (B.1)

and recall that Bu ≤ L. From (B.1) and assumptions (H1), (H3) and (H5), we have

E

[
sup

s≤t≤τ

|∆Xt|
2
]

≤ (τ − s)C(L, T )E
[

sup
s≤t≤τ

|(∆X̂t,∆Xt)|
2 +

∫ τ

s

|∆ut|
2dt

]
+ 6B2

uE

[ ∫ τ

s

|∆ut|
2dt

]

≤ (τ − s)C(L, T, Cf )E
[

sup
s≤t≤τ

|(∆X̂t,∆Xt,∆pt)|
2 +

∫ τ

s

|(∆qt,∆q̃t)|
2dt

]

+
6B2

uL
2

C2
f

E

[ ∫ τ

s

|(∆qt,∆q̃t)|
2dt

]
. (B.2)

Here, the notation C(L, T, Cf ) stands for a constant depending only on L, T and Cf , and we

have used the following estimates

E[W2(m̂
1
t , m̂

2
t )

2] ≤ E[E[|∆X̂t|
2|F̃t]] = E[|∆X̂t|

2] ≤ E

[
sup

0≤t≤T

|∆X̂t|
2
]
, t ∈ [0, T ].

Similarly, by using Doob’s inequality, Cauchy’s inequality and (B.1), we have

E

[
sup

s≤t≤τ

|∆pt|
2
]

≤ 2E[|v(X2
τ , X̂

2
τ )− v(X1

τ , X̂
1
τ )|

2] + 8E
[(∫ τ

s

|b1(r)∆pr |+ |σ1(r)∆qr |+ |σ̃1(r)∆q̃r |

+ |fx(r,X
2
r , u

2
r, m̂

2
r)− fx(r,X

1
r , u

1
r, m̂

1
r)|dr

)2]

≤ (τ − s)C(L, T, Cf)E
[

sup
s≤t≤τ

|(∆X̂t,∆Xt,∆pt)|
2 +

∫ τ

s

|(∆qt,∆q̃t)|
2dt

]

+ 4C2
vE

[
sup

s≤t≤τ

|(∆X̂t,∆Xt)|
2
]
. (B.3)

We also have from (B.1) that

E

[ ∫ τ

s

|(∆qt,∆q̃t)|
2dt

]
= E

[∣∣∣
∫ τ

s

∆qtdWt +

∫ τ

s

∆q̃tdW̃t

∣∣∣
2]

= E

[∣∣∣∆pτ −∆ps +

∫ τ

s

b1(t)∆pt + σ1(t)∆qt + σ̃1(r)∆q̃r

+ (fx(t,X
2
t , u

2
t , m̂

2
t )− fx(t,X

1
t , u

1
t , m̂

1
t ))dt

∣∣∣
2]

≤ (τ − s)C(L, T, Cf )E
[

sup
s≤t≤τ

|(∆X̂t,∆Xt,∆pt)|
2 +

∫ τ

s

|(∆qt,∆q̃t)|
2dt

]

+ 6E
[

sup
s≤t≤τ

|∆pt|
2
]
. (B.4)
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From (B.2)–(B.4), we deduce that

E

[
sup

s≤t≤τ

|∆Xt|
2
]

≤

144B2

uL
2C2

v

C2

f

+ (τ − s)C(L, T, Cf , Cv)

1− (τ − s)C(L, T, Cf , Cv)
E

[
sup

s≤t≤τ

|(∆Xt,∆X̂t)|
2
]
;

E

[
sup

s≤t≤τ

|∆pt|
2
]

≤
4C2

v + (τ − s)C(L, T, Cf , Cv)

1− (τ − s)C(L, T, Cf , Cv)
E

[
sup

s≤t≤τ

|(∆Xt,∆X̂t)|
2
]
;

E

[ ∫ τ

s

|(∆qt,∆q̃t)|
2
]

≤
24C2

v + (τ − s)C(L, T, Cf , Cv)

1− (τ − s)C(L, T, Cf , Cv)
E

[
sup

s≤t≤τ

|(∆Xt,∆X̂t)|
2
]
.

(B.5)

From the condition

Bu

Cf

≤
1

24LCv

, (B.6)

we have that when (τ − s) is small enough,

E

[
sup

s≤t≤τ

|∆Xt|
2
]
≤

1

2
E

[
sup

s≤t≤τ

|∆X̂t|
2
]
. (B.7)

From (B.5), (B.7) and (B.1), we deduce that when (τ − s) is small enough,

E

[ ∫ τ

s

|∆ut|
2dt

]
≤

48L2C2
v

C2
f

E

[
sup

s≤t≤τ

|∆X̂t|
2
]
. (B.8)

Similar as the above, we have

E

[
sup

s≤t≤τ

|∆X̂t|
2
]
≤

6B2
u + (τ − s)C(L, T, Cf , Cv)

1− (τ − s)C(L, T, Cf , Cv)
E

[ ∫ τ

s

|∆ût|
2dt

]
. (B.9)

From (B.6), (B.8) and (B.9), we deduce that

E

[ ∫ τ

s

|∆ut|
2dt

]
≤

1
2 + (τ − s)C(L, T, Cf , Cv)

1− (τ − s)C(L, T, Cf , Cv)
E

[ ∫ τ

s

|∆ût|
2dt

]
.

It follows that when (τ − s) is small enough,

‖Φ(û2)− Φ(û1)‖2L2

F
(s,τ) = E

[ ∫ τ

s

|∆ut|
2dt

]
≤

3

4
‖û2 − û1‖2L2

F
(s,τ).

As a result, we get a contraction map for sufficiently small (τ−s) depending only on (L, T, Cv, Cf )

as desired.

C Proof of Lemma 5.3

In this section, we give the proof of (5.22) and (5.23), respectively. From the condition

(5.16) and Lemma 5.2, we know that v is well-defined.
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C.1 Proof of (5.22)

Let η ∈ L2
Fτ

and x1, x2 ∈ R. We denote by {(X̂t, p̂t, q̂t, ̂̃qt), τ ≤ t ≤ T } the solution of

FBSDE (5.18) with initial condition X̂τ = η, and set m̂t = L(X̂t|F̃t) for t ∈ [τ, T ]. We

then denote by {(X i
t , p

i
t, q

i
t, q̃

i
t), τ ≤ t ≤ T } the solution of FBSDE (5.20) corresponding to

{m̂t, τ ≤ t ≤ T } with initial conditions X i
τ = xi for i = 1, 2. We set ∆Xt = X2

t − X1
t and

∆pt = p2t − p1t for t ∈ [τ, T ]. By applying Itô’s lemma to ∆pt∆Xt from τ to T and taking

expectation conditional on Fτ (denoted by Eτ [·]), we get

Eτ [∆pT∆XT ]−∆pτ∆x

= Eτ

[ ∫ T

τ

(b2(t)∆pt + σ2(t)∆qt + σ̃2(t)∆q̃t)∆ut

− (f0x(t,X
2
t , u

2
t )− f0x(t,X

1
t , u

1
t ))∆Xt

− (f1x(t,X
2
t , m̂t)− f1x(t,X

1
t , m̂t))∆Xtdt

]
. (C.1)

From the optimal conditions (5.21) of u1 and u2, we have

b2(t)∆pt + σ2(t)∆qt + σ̃2(t)∆q̃t = −(f0u(t,X
2
t , u

2
t )− f0u(t,X

1
t , u

1
t ))∆ut, t ∈ [τ, T ].

From the convexity assumption (H4), we have

(b2(t)∆pt + σ2(t)∆qt + σ̃2(t)∆q̃t)∆ut − (f0x(t,X
2
t , u

2
t )− f0x(t,X

1
t , u

1
t ))∆Xt

= −((f0x, f0u)(t,X
2
t , u

2
t )− (f0x, f0u)(t,X

1
t , u

1
t )) · (∆Xt,∆ut)

≤ −2Cf |∆ut|
2, t ∈ [τ, T ];

(f1x(t,X
2
t , m̂t)− f1x(t,X

1
t , m̂t))∆Xt ≥ 0, t ∈ [τ, T ];

∆pT∆XT = (g(X2
T , m̂T )− g(X1

T , m̂T ))∆XT ≥ 0.

(C.2)

From (C.1) and (C.2), we deduce that

[v(x2, η)− v(x1, η)](x2 − x1) = ∆pτ∆x ≥ 0.

C.2 Proof of (5.23)

Let x1, x2 ∈ R and η1, η2 ∈ L2
Fτ

. We denote by {(X̂ i
t , p̂

i
t, q̂

i
t,
̂̃q
i

t), τ ≤ t ≤ T } the solutions of

FBSDE (5.18) with initial conditions X̂ i
τ = ηi, and set m̂i

t = L(X̂ i
t |F̃t) for t ∈ [τ, T ] and i = 1, 2.

We then denote by {(X i
t , p

i
t, q

i
t, q̃

i
t), τ ≤ t ≤ T } the solution of FBSDE (5.20) corresponding to

{m̂i
t, τ ≤ t ≤ T } with initial conditions X i

τ = xi for i = 1, 2. We set ∆Xt = X2
t − X1

t .

The differences ∆pt,∆qt,∆q̃t,∆X̂t,∆p̂t,∆q̂t,∆̂̃qt,∆x,∆η are defined in a similar way. Then

{(∆X i
t ,∆pit,∆qit,∆q̃it), τ ≤ t ≤ T } satisfy the following FBSDE





d∆Xt = [(b0(t, m̂
2
t )− b0(t, m̂

1
t )) + b1(t)∆Xt + b2(t)∆ut]dt

+[(σ0(t, m̂
2
t )− σ0(t, m̂

1
t )) + σ1(t)∆Xt + σ2(t)∆ut]dWt

+[(σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t )) + σ̃1(t)∆Xt + σ̃2(t)∆ut]dW̃t, t ∈ (τ, T ];

d∆pt = −[b1(t)∆pt + σ1(t)∆qt + σ̃1(t)∆q̃t + (f0x(t,X
2
t , u

2
t )− f0x(t,X

1
t , u

1
t ))

+(f1x(t,X
2
t , m̂

2
t )− f1x(t,X

1
t , m̂

1
t ))]dt+∆qtdWt +∆q̃tdW̃t, t ∈ [τ, T );

∆Xτ = ∆x, ∆pT = gx(X
2
T , m̂

2
T )− gx(X

1
T , m̂

1
T )
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with the condition

b2(t)∆pt + σ2(t)∆qt + σ̃2(t)∆q̃t + (f0u(t,X
2
t , u

2
t )− f0u(t,X

1
t , u

1
t )) = 0, t ∈ [τ, T ]. (C.3)

Applying Itô’s lemma to ∆pt∆Xt from τ to T and taking expectation conditional on F̃τ (denote

by Ẽτ [·]), from (C.3), the convexity assumption (H4) and the Lipschitz assumption (H5), we

have

Ẽτ [∆pT∆XT ]− Ẽτ [∆pτ∆x]

≤ −2Cf Ẽτ

[ ∫ T

τ

|∆ut|
2dt

]
+ LẼτ

[ ∫ T

τ

W2(m̂
1
t , m̂

2
t )(|∆Xt|+ |∆pt|+ |∆qt|+ |∆q̃t|)dt

]
. (C.4)

From assumptions (H4) and (H5), we have

Ẽτ [∆pT∆XT ]

= Ẽτ [(gx(X
2
T , m̂

2
T )− gx(X

1
T , m̂

2
T ))∆XT ] + Ẽτ [(gx(X

1
T , m̂

2
T )− gx(X

1
T , m̂

1
T ))∆XT ]

≥ −LẼτ [W2(m̂
1
T , m̂

2
T )|∆XT |]. (C.5)

Plugging (C.5) into (C.4) and using the average inequality, we have for any ε > 0,

Ẽτ

[ ∫ T

τ

|∆ut|
2dt

]
≤

C(L, T )

εC2
f

(
|∆x|2 + Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
])

+ εẼτ

[
sup

τ≤t≤T

|∆Xt|
2 + |∆pτ |

2 +

∫ T

τ

|∆pt|
2 + |∆qt|

2 + |∆q̃t|
2dt

]
, (C.6)

where we have used the estimates

Ẽτ [W2(m̂
1
t , m̂

2
t )

2] ≤ Ẽτ [E[|∆X̂t|
2|F̃t]] = Ẽτ [|∆X̂t|

2], t ∈ [τ, T ].

By standard estimates for SDEs and BSDEs, we have

Ẽτ

[
sup

τ≤t≤T

|∆Xt|
2
]

≤ C(L, T )
(
|∆x|2 + Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]
+ Ẽτ

∫ T

τ

|∆ut|
2dt

)
; (C.7)

Ẽτ

[
sup

τ≤t≤T

|∆pt|
2 +

∫ T

τ

|∆qt|
2 + |∆q̃t|

2dt
]

≤ C(L, T )Ẽτ

[
sup

τ≤t≤T

|(∆X̂t,∆Xt)|
2 +

∫ T

τ

|∆ut|
2dt

]
, (C.8)

where C(L, T ) stands for some positive constant depending only on L and T . From (C.6)–(C.8)

and (C.6), we deduce that when ε is small enough,

Ẽτ

[ ∫ T

τ

|∆ut|
2dt

]
≤ C(L, T )

(
1 +

1

C2
f

)(
|∆x|2 + Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
])

. (C.9)

Now we plug (C.7) and (C.9) into (C.8) to get

Ẽτ [|∆pτ |
2] ≤ C(L, T )

(
1 +

1

C2
f

)(
|∆x|2 + Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
])

. (C.10)
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Next, we aim to give the estimate of Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]
. Note that {(∆X̂ i

t ,∆p̂it,∆q̂it,∆
̂̃q
i

t), τ

≤ t ≤ T } satisfy the following FBSDE





d∆X̂t = [(b0(t, m̂
2
t )− b0(t, m̂

1
t )) + b1(t)∆X̂t + b2(t)∆ût]dt

+ [(σ0(t, m̂
2
t )− σ0(t, m̂

1
t )) + σ1(t)∆X̂t + σ2(t)∆ût]dWt

+ [(σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t )) + σ̃1(t)∆X̂t + σ̃2(t)∆ût]dW̃t, t ∈ (τ, T ];

d∆p̂t = −
[
b1(t)∆p̂t + σ1(t)∆q̂t + σ̃1(t)∆̂̃qt + (f0x(t, X̂

2
t , û

2
t )− f0x(t, X̂

1
t , û

1
t ))

+ (f1x(t, X̂
2
t , m̂

2
t )− f1x(t, X̂

1
t , m̂

1
t ))

]
dt+∆q̂tdWt +∆̂̃qtdW̃t, t ∈ [τ, T );

∆X̂τ = ∆x, ∆pT = gx(X̂
2
T , m̂

2
T )− gx(X̂

1
T , m̂

1
T )

with the condition

b2(t)∆p̂t + σ2(t)∆q̂t + σ̃2(t)∆̂̃qt + (f0u(t, X̂
2
t , û

2
t )− f0u(t, X̂

1
t , û

1
t )) = 0, t ∈ [τ, T ]. (C.11)

As above, by standard estimates for SDEs and BSDEs, there exist two constants C1 > 0 and

C2 > 0 depending only on (L, T ), such that

Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]
≤ C(L, T )Ẽτ [|∆η|2] + C1Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
; (C.12)

Ẽτ

[
sup

τ≤t≤T

|∆p̂t|
2 +

∫ T

τ

|∆q̂t|
2 + |∆̂̃qt|2dt

]
≤ C2Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2 +

∫ T

τ

|∆ût|
2dt

]
. (C.13)

From the weak monotonicity condition (H6), we have

Ẽτ [∆p̂T∆X̂T ] = Ẽτ [(gx(X̂
2
T , m̂

2
T )− gx(X̂

1
T , m̂

1
T ))∆X̂T ]

= E[E[(gx(X̂
2
T , m̂

2
T )− gx(X̂

1
T , m̂

1
T ))∆X̂T |F̃T ]|F̃τ ] ≥ 0;

Ẽτ [(f1x(t, X̂
2
t , m̂

2
t )− f1x(t, X̂

1
t , m̂

1
t ))∆X̂t]

= E[E[(f1x(t, X̂
2
t , m̂

2
t )− f1x(t, X̂

1
t , m̂

1
t ))∆X̂t|F̃t]|F̃τ ] ≥ 0, t ∈ [τ, T ]. (C.14)

Applying Itô’s lemma to ∆p̂t∆X̂t from τ to T and using the average inequality, from (C.11),

(C.14), the convexity condition (H4) and the Lipschitz condition (H5), we have

− Ẽτ [∆p̂τ∆η]

≤ Ẽτ

[ ∫ T

τ

(b0(t, m̂
2
t )− b0(t, m̂

1
t ))∆p̂t + (σ0(t, m̂

2
t )− σ0(t, m̂

1
t ))∆q̂t

+ (σ̃0(t, m̂
2
t )− σ̃0(t, m̂

1
t ))∆

̂̃qt + (b2(t)∆p̂t + σ2(t)q̂t + σ̃2(t)̂̃qt)∆ût

− (f0x(t, X̂
2
t , û

2
t )− f0x(t, X̂

1
t , û

1
t ))∆X̂tdt

]

≤ −2Cf Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
+ LmẼτ

[ ∫ T

τ

(Ẽt[|∆X̂t|
2])

1

2 (|∆p̂t|+ |∆q̂t|+ |∆̂̃qt|)dt
]

≤ −2Cf Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
+

TLm

2
Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]

+
3Lm

2
Ẽτ

[ ∫ T

τ

(|∆p̂t|
2 + |∆q̂t|

2 + |∆̂̃qt|2)dt
]
.
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By applying average inequality for ∆p̂τ∆η, we have for any ε > 0,

Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
≤

1

16C2
fε

Ẽτ [|∆η|2] +
TLm

4Cf

Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]

+
(3Lm

4Cf

+ ε
)
(T + 1)Ẽτ

[
sup

τ≤t≤T

|∆p̂t|
2 +

∫ T

τ

|∆q̂t|
2 + |∆̂̃qt|2dt

]
. (C.15)

Plugging (C.12) and (C.13) into (C.15) and recall that Lm ≤ L, we have

Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]

≤ C(L, T )
(
1 +

1

εC2
f

+
1

Cf

+ ε
)
Ẽτ [|∆η|2]

+
(TC1 + 3(T + 1)(C1 + 1)C2

4Cf

Lm + (T + 1)(C1 + 1)C2ε
)
Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
.

The constant

δ = 2(TC1 + 3(T + 1)(C1 + 1)C2)
−1

depends only on (L, T ). If LmC−1
f ≤ δ, we choose

ε =
1

4(T + 1)(C1 + 1)C2
.

Then, have

Ẽτ

[ ∫ T

τ

|∆ût|
2dt

]
≤ C(L, T )

(
1 +

1

Cf

+
1

C2
f

)
Ẽτ [|∆η|2]. (C.16)

Plugging (C.16) into (C.12), we have

Ẽτ

[
sup

τ≤t≤T

|∆X̂t|
2
]
≤ C(L, T )

(
1 +

1

Cf

+
1

C2
f

)
Ẽτ [|∆η|2]. (C.17)

Now we plug (C.17) into (C.10). If LmC−1
f ≤ δ, we have

Ẽτ [|∆pτ |
2] ≤ C(L, T )

(
1 +

1

Cf

)4

(|∆x|2 + Ẽτ [|∆η|2]),

or equivalently,

|v(x2, η2)− v(x1, η1)|
2 ≤ C(L, T )

(
1 +

1

Cf

)4

(|x2 − x1|
2 + E[|η2 − η1|

2|F̃τ ])

as desired.
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