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Abstract In this paper, the authors consider the following singular Kirchhoff-Schrödinger
problem

M
(

∫

RN

|∇u|N + V (x)|u|Ndx
)

(−∆Nu+ V (x)|u|N−2
u) =

f(x, u)

|x|η
in R

N
, (Pη)

where 0 < η < N , M is a Kirchhoff-type function and V (x) is a continuous function
with positive lower bound, f(x, t) has a critical exponential growth behavior at infinity.
Combining variational techniques with some estimates, they get the existence of ground
state solution for (Pη). Moreover, they also get the same result without the A-R condition.
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1 Introduction

The research of nonlinear Kirchhoff equations has attracted a lot of attention and a classical

Kirchhoff equation is given by




−
(
a+ b

∫

Ω

|∇u|2dx
)
∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
N is a bounded domain, a, b > 0 and f : Ω× R → R is a continuous function. It

is related to the stationary analogue of the following equation

utt −
(
a+ b

∫

Ω

|∇u|2dx
)
∆u = f(x, u), (1.2)
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which was proposed by Kirchhoff in [21] as an extension of the classical D’Alembert’s wave

equation for free vibrations of elastic strings. The problem (1.1) is nonlocal since the appearance

of the integration term
∫
Ω
|∇u|2dx. In [28], Lions proposed an abstract framework for this kind

problems and after that, the Kirchhoff problem began to receive a lot of attention, see [3–4,

6, 8, 11, 32] and the references therein. For Kirchhoff type equation with a singular nonlinear

term, in [33], by proving the mountain pass structure of the related functional and using the

concentration compactness principle, the authors obtained the existence of a nontrivial solution

of the following polyharmonic Kirchhoff type problem




−M

(∫

Ω

|∇mu|
N
m dx

)
∆m

N
m

u =
f(x, u)

|x|η
in Ω,

u = ∇u = ∇2u = · · · = ∇m−1u = 0 on ∂Ω,

(1.3)

where ∆p with p ≥ 2 is the p-Laplacian operator, Ω ⊂ R
N is a bounded domain with smooth

boundary, m is an integer and 2 ≤ 2m ≤ N , 0 < η < N , M(·) is a Kirchhoff-type function,

f(x, t) has critical exponential growth behavior at infinity. Moreover, they also discuss the

above problem with convex–concave type sign changing nonlinearity. All theses results are

based on Trudinger-Moser inequality (see [34, 36]) and critical point theory. In the case of

M = 1 and 2m = N , it becomes to the following Polyharmonic problem

{
(−∆)mu = f(x, u) in Ω,

u = ∇u = ∇2u = · · · = ∇m−1u = 0 on ∂Ω.
(1.4)

When m = 1, the above problem was investigated in [1, 13, 15]. In [22], Lam and Lu studied

the above polyharmonic equation in both cases of f satisfying the well-known Ambrosetti-

Rabinowitz condition and without the Ambrosetti-Rabinowitz condition. One can also refer to

[24–25] for some relevant results.

A singular Schrödinger equation is written as

−div(|∇u|N−2∇u) + V (x)|u|N−2u =
f(x, u)

|x|η
, x ∈ R

N , (1.5)

where N ≥ 2, 0 ≤ η < N , V : RN → R is a continuous function, f(x, s) is continuous in

R
N × R and behaves like eα|s|

N
N−1

as |s| → ∞. When η = 0, (1.5) is a usual elliptic equation

with no singular term and it was first studied by Cao [7] for the case N = 2. It was studied by

Panda [35], do Ó [16] and Alves [5] for the general dimensional cases. When 0 < η < N , (1.5)

becomes an elliptic equation with a singular term. From the literatures one can see that to deal

with the singular Schrödinger equations is closely related to the singular Trudinger-Moser type

inequality (see for example [2, Theorem 1.1] or [14, Theorem 3]).

For the following perturbation problem

−div(|∇u|N−2∇u) + V (x)|u|N−2u =
f(x, u)

|x|η
+ εh(x), x ∈ R

N , (1.6)

when η = 0, using Ekeland variational principle and mountain-pass theorem, do Ó et al [17]

got the multiplicity of solutions. When η > 0, the existence of nontrivial weak solution of the

problem (1.6) was proved by Adimurthi and Yang [2]. In [37], Yang derived some similar results
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for the equations with bi-Laplacian operator in dimensional four, and proved the existence and

multiplicity of weak solutions for N -Laplacian elliptic equations in his another paper (see [38]).

Lam and Lu [23] considered the existence and multiplicity of nontrivial weak solution for non-

uniformly N -Laplacian elliptic equations. Motivated by the work of Lions [29], do Ó et al. [18]

improved the Trudinger-Moser inequality in R
N and obtained a ground state solution for the

quasilinear elliptic equation

−div(|∇u|N−2∇u) + |u|N−2u = f(x, u), x ∈ R
N (1.7)

with the function f(x, s) satisfying the so called exponential critical growth condition at +∞,

i.e., there exists α0 > 0 such that

lim
|s|→∞

f(x, s)e−α|s|
N

N−1

=

{
0, ∀α > α0,

+∞, ∀α < α0.

For Kirchhoff-Schrödinger type equation, Li and Yang [26] studied the following problem





(∫

RN

(|∇u|N + V (x)|u|N )dx
)k

(−∆Nu+ V (x)|u|N−2u) = λQ(x)|u|p−2u+ f(u),

u ∈ W 1,N (RN ),

(1.8)

where ∆Nu = div(|∇u|N−2∇u), k > 0, 1 < p < N , V : RN → (0,∞) is a continuous function

with positive lower bound and coercive, λ > 0 is a real parameter, Q(x) is a positive function

in L
N

N−p (RN ) and f(t) satisfies exponential growth condition. Recently, Furtado and Zanata

[20] studied the following Schrödinger-Kirchhoff type equation

M
(∫

R2

|∇u|2 + V (x)u2dx
)
(−∆u+ V (x)u) = A(x)f(u) in R

2, (1.9)

where M(t) is a Kirchhoff-type function and V (x) may vanish on a set of positive measure and

may take negative values in somewhere. The function A(x) is locally bounded and the function

f(t) has critical exponential growth. Applying variational method, they got the existence of

ground state solution. Moreover, in the local case M ≡ 1, they also got some relevant results.

In [12], the existence and multiplicity of solutions were investigated for the elliptic systems

involving Kirchhoff equations.

In this paper, we consider the following singular Kirchhoff-Schrödinger

M
(∫

RN

|∇u|N + V (x)|u|Ndx
)
(−∆Nu+ V (x)|u|N−2u) =

f(x, u)

|x|η
in R

N , (1.10)

where N ≥ 2, 0 < η < N . The potential V is a continuous function with positive lower bound,

f(x, t) has a critical exponential growth behavior at infinity. Let M(t) =
∫ t

0
M(s)ds, we always

assume that M : R+ → R
+ is a continuous function with M(0) = 0, and satisfies

(M1) for any d > 0 there exists κ := κ(d) > 0 such that M(t) ≥ κ for all t ≥ d;

(M2) for any t1, t2 ≥ 0, it holds

M(t1 + t2) ≥ M(t1) +M(t2);

(M3) there exists θ > 1 such that M(t)
tθ−1 is decreasing in (0,∞).
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Remark 1.1 A typical example of M(t) is given by M(t) = a + btθ−1 for all t ≥ 0 and

some θ > 1, where a, b ≥ 0 and a+ b > 0.

Remark 1.2 By (M3), we can obtain that θM(t) −M(t)t is nondecreasing for t > 0. In

particular,

θM(t) −M(t)t ≥ 0, ∀t ≥ 0. (1.11)

Since it is concerned with nonnegative weak solutions, we require that f(x, t) = 0 for all

(x, t) ∈ R
N × (−∞, 0]. Furthermore, we assume the function f satisfying:

(f0) f is a continuous function and f(x, t) > 0 for all t > 0 and x ∈ R
N .

(f1) There exist positive constants t0 and M0 such that

0 < F (x, t) :=

∫ t

0

f(x, s)ds ≤ M0f(x, t), ∀(x, t) ∈ R
N × [t0,+∞).

(f2) There exist constants α0, c1, c2 > 0 such that for all (x, t) ∈ R
N × R

+,

f(x, t) ≤ c1|t|
θN−1 + c2[e

α0|t|
N

N−1

− SN−2(α0, t)],

where

SN−2(α0, t) =

N−2∑

k=0

αk
0 |t|

kN
N−1

k!
.

(f3) There exists µ > θN such that

0 < µF (x, t) ≤ tf(x, t), F (x, t) =

∫ t

0

f(x, s)ds, (1.12)

where x ∈ R
N and t ∈ R

+.

(f3) is the well known Ambrosetti-Rabinowitz condition (A-R condition, for short).

We also give the following conditions on the potential V (x):

(V1) V is a continuous function satisfying V (x) ≥ V0 > 0.

Define a function space

E =
{
u ∈ W 1,N(RN ) :

∫

RN

(|∇u|N + V (x)|u|N )dx < ∞
}

equipped with the norm

‖u‖E =
(∫

RN

(|∇u|N + V (x)|u|N )dx
) 1

N

.

The condition (V1) implies that E is a reflexive Banach space. For any p ≥ N , we define

Sp = inf
u∈E\{0}

‖u‖E
( ∫

RN

|u|p

|x|η dx
) 1

p

(1.13)

and

λη = inf
u∈E\{0}

‖u‖θNE∫
RN

|u|θN

|x|η dx
.
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The continuous embedding of E →֒ W 1,N (RN ) →֒ Lp(RN ) (p ≥ N) and Hölder inequality

imply

∫

RN

|u|p

|x|η
dx

≤

∫

{|x|>1}

|u|pdx+
(∫

{|x|≤1}

|u|pt
′

dx
) 1

t′
( ∫

{|x|≤1}

1

|x|ηt
dx

) 1
t

≤ C‖u‖pE,

where 1
t
+ 1

t′
= 1 and t > 1 such that ηt < N . Thus we have Sp > 0. We now introduce the

following conditions.

(f4) lim sup
t→0+

NF (x,t)
|t|θN < M(1)λη uniformly in R

N .

(f5) There exist constants q > θN and Cq such that for all (x, t) ∈ R
N × (0,∞),

f(x, t) > Cqt
q−1,

where

Cq := inf
{
C > 0 : qM(tNSN

q )−NCtq ≤ qM
(((

1−
η

N

)αN

α0

)N−1)}
.

(f6)
f(x,t)
tθN−1 is strictly increasing in t > 0.

Our main results can be stated as follows.

Theorem 1.1 Suppose V satisfies (V1) and f satisfies (f0)–(f6). Then problem (1.10)

possesses a positive ground state solution.

Remark 1.3 The main difficulty is how to obtain a strong convergence subsequence from

a (PS) sequence and prove that the limit is a ground state solution of problem (1.10), which

can be overcome by the concentration compactness principle and the singular Trudinger-Moser

inequality.

Now instead the conditions (f1) and (f3), we assume that

(f ′
1) there exists constant c > 0 such that F (x, t) ≤ c|t|θN + cf(x, t) for all (x, t) ∈ R

N ×R
+.

(f ′
3) lim

|t|→+∞

F (x,t)
|t|θN = +∞ uniformly on x ∈ R

N .

Theorem 1.2 Suppose V satisfies (V1), f satisfies (f0), (f ′
1), (f2), (f ′

3) and (f4)–(f6).

Then problem (1.10) has a positive ground state solution.

Remark 1.4 In Theorem 1.2, we study the ground state solution of Kirchhoff-Schrödinger

equation without the A-R condition. For Schrödinger equation with exponential growth and

singular term, the A-R condition was weakened in [31]. Instead of using the mountain-pass

theorem of (PS) sequence, we use the mountain-pass theorem of Cerami sequence and obtain

the boundedness of Cerami subsequence for the energy functional.

The rest of the paper is organized as follows. In Section 2, some preliminary results are

introduced. In Section 3, we study the functionals related to (1.10). In Section 4, we give a

proof of Theorem 1.1. In Section 5, we give a proof of Theorem 1.2, which is a key step to

prove the boundedness of (C)c sequence.
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2 Preliminaries

In this section, we give some preliminaries for our use later.

Lemma 2.1 (see [39, p. 5]) Suppose q ≥ N and 0 < η < N . Then E can be compactly

embedded into Lq(RN , |x|−ηdx).

Notice that 0 < η < N , we have the singular Trudinger-Moser inequality.

Lemma 2.2 (see [2, p. 2397]) For all α > 0, 0 < η < N , and u ∈ W 1,N(RN ), N ≥ 2, there

holds

∫

RN

eα|u|
N

N−1
− SN−2(α, u)

|x|η
dx < +∞. (2.1)

Furthermore, for all α ≤
(
1− η

N

)
αN and τ > 0, there holds

sup
‖u‖1,τ≤1

∫

RN

eα|u|
N

N−1
− SN−2(α, u)

|x|η
dx < +∞, (2.2)

where ‖u‖1,τ =
( ∫

RN (|∇u|N + τ |u|N )dx
) 1

N .

Lemma 2.3 Let β > 0, 0 < η < N and ‖u‖E ≤ M such that βM
N

N−1 <
(
1 − η

N

)
αN and

q > N , then
∫

RN

eβ|u|
N

N−1
− SN−2(β, u)

|x|η
|u|qdx ≤ C(β,N)‖u‖qE .

Proof Set R(β, u) = eβ|u|
N

N−1
− SN−2(β, u), by using the Hölder inequality and Lemma

2.1, we have

∫

RN

R(β, u)

|x|η
|u|qdx ≤

(∫

RN

R(pβ, u)

|x|η
dx

) 1
p
( ∫

RN

|u|qp
′

|x|η
dx

) 1

p′

≤
(∫

RN

R(pβM
N

N−1 , ũ)

|x|η
dx

) 1
p

‖u‖qE

≤ C(β,N)‖u‖qE,

where ũ = u
‖u‖E

and p > 1 is sufficiently close to 1 such that βpM
N

N−1 ≤
(
1− η

N

)
αN , 1

p
+ 1

p′ = 1.

The last estimate is a direct consequence of Lemma 2.2 since ‖ũ‖1,τ ≤ ‖ũ‖E = 1 for any positive

τ ≤ V0.

Next, we claim that from the condition (f6) one can get the following condition.

(f ′
6) H(x, t) = tf(x, t) − θNF (x, t) is strictly increasing in t > 0. In fact, we have the

following lemma.

Lemma 2.4 If (f6) holds, then for all x ∈ R
N , we have that tf(x, t)− θNF (x, t) is strictly

increasing in t > 0.

Proof Let 0 < t1 < t2 be fixed. It follows from (f6) that

t1f(x, t1)− θNF (x, t1) <
f(x, t2)

tθN−1
2

tθN1 − θNF (x, t2) + θN

∫ t2

t1

f(x, s)ds. (2.3)
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On the other hand,

θN

∫ t2

t1

f(x, s)ds < θN
f(x, t2)

tθN−1
2

∫ t2

t1

sθN−1ds =
f(x, t2)

tθN−1
2

(tθN2 − tθN1 ). (2.4)

From (2.3)–(2.4), we derive that

t1f(x, t1)− θNF (x, t1) < t2f(x, t2)− θNF (x, t2).

This completes the proof.

3 Functionals and Compactness Analysis

We say that u ∈ E is a positive weak solution of problem (1.10) if u > 0 in R
N , and for all

φ ∈ E,

M(‖u‖NE )

∫

RN

(|∇u|N−2∇u∇φ+ V (x)|u|N−2uφ)dx−

∫

RN

f(x, u)

|x|η
φdx = 0.

Define the functional I : E → R by

I(u) =
1

N
M(‖u‖NE )−

∫

RN

F (x, u)

|x|η
dx, (3.1)

where F (x, t) =
∫ t

0 f(x, s)ds. I is well defined and due to the Trudinger-Moser inequality

I ∈ C1(E,R). A straightforward calculation shows that

〈I ′(u), φ〉 = M(‖u‖NE )

∫

RN

(|▽u|N−2
▽u▽φ+ V (x)|u|N−2uφ)dx −

∫

RN

f(x, u)

|x|η
φdx (3.2)

for all u, φ ∈ E. Hence a critical point of I defined in (3.1) is a weak solution of (1.10).

Next, we will check the geometry of the functional I.

Lemma 3.1 Assume that (V1), (f2) and (f4) hold. Then there exist positive constants δ

and r such that

I(u) ≥ δ for ‖u‖E = r.

Proof From (f4), there exist σ, ε > 0, such that if |u| ≤ ε,

F (x, u) ≤
M(1)λη − σ

N
|u|θN

for all x ∈ R
N . On the other hand, using (f2) for each q > θN , we have

F (x, u) ≤
c1

θN
|u|θN + c2|u|[e

α0|u|
N

N−1

− SN−2(α0, u)]

≤ C|u|q[eα0|u|
N

N−1

− SN−2(α0, u)]

for |u| ≥ ε and x ∈ R
N . Combining the above estimates, we obtain

F (x, u) ≤
M(1)λη − σ

N
|u|θN + C|u|q[eα0|u|

N
N−1

− SN−2(α0, u)]
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for all (x, u) ∈ R
N × R. Furthermore, (1.11) gives M(t) ≥ M(1)tθ, t ∈ [0, 1]. Fix r ∈ (0, 1)

such that α0r
N

N−1 < αN

(
1− η

N

)
. For any u ∈ E with ‖u‖E = r, then by Lemma 2.3 we have

I(u) =
1

N
M(rN )−

∫

RN

F (x, u)

|x|η
dx

≥
M(1)

N
rθN −

M(1)λη − σ

N

∫

RN

|u|θN

|x|η
dx− C

∫

RN

|u|q[eα0|u|
N

N−1
− SN−2(α0, u)]

|x|η
dx

≥
M(1)

N
rθN −

M(1)λη − σ

N

∫

RN

|u|θN

|x|η
dx− C‖u‖qE

≥
M(1)

N
rθN −

M(1)λη − σ

Nλη

‖u‖θNE − Crq

=
σ

Nλη

rθN − Crq .

We now choose sufficiently small r > 0 such that

σ

Nλη

rθN − Crq ≥
σ

2Nλη

rθN .

So we derive that

I(u) ≥ σ
2Nλη

rθN := δ > 0 for ‖u‖E = r.

This completes the proof.

Lemma 3.2 If the condition (f3) is satisfied, then there exists e ∈ E with ‖e‖E > r such

that

I(e) < inf
‖u‖E=r

I(u),

where r is given in Lemma 3.1.

Proof From (1.11), we have M(t) ≤ M(1)tθ, t ≥ 1. Let u ∈ E \ {0}, u ≥ 0 with compact

support Ω = supp(u) and ‖u‖E = 1. From (f3) or (1.12), for µ > θN , there exist C1, C2 > 0

such that for all (x, t) ∈ Ω× R
+,

F (x, s) ≥ C1t
µ − C2.

Then for all t ≥ 1, there holds

I(tu) ≤
M(1)tθN

N
‖u‖θNE − C1t

µ

∫

Ω

|u|µ

|x|η
dx+ C2|Ω|.

Hence, I(tu) → −∞ as t → ∞. Setting e = tu with t sufficiently large, the proof of Lemma 3.2

is completed.

From Lemmas 3.1–3.2, we get a (PS)c sequence {un} ⊂ E, i.e.,

I(un) → c > 0 and I ′(un) → 0 as n → ∞, (3.3)

where

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (3.4)
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and

Γ =: {γ ∈ C([0, 1] : E) : γ(0) = 0, γ(1) = e}.

Lemma 3.3 Suppose that the condition (f5) is satisfied, then for the min–max level c defined

in (3.4), there holds c ∈
(
0, 1

N
M

(((
1− η

N

)
αN

α0

)N−1))
.

Proof Firstly, we claim the best constant Sp defined in (1.13) can be achieved at an element

u0 ∈ E. In fact, since

Sq = inf
u∈E\{0}

‖u‖E
( ∫

RN

|u|q

|x|η dx
) 1

q

,

we can choose un such that
∫

RN

|un|
q

|x|η
dx = 1 and ‖un‖E → Sq as n → ∞,

so un is bounded in E. From Lemma 2.1, there exists u0 ∈ E such that up to a subsequence

un ⇀ u0 in E, un → u0 in Lq(RN , |x|−ηdx) and un(x) → u0(x) almost everywhere in R
N . This

implies ∫

RN

|u0|
q

|x|η
dx = lim

n→∞

∫

RN

|un|
q

|x|η
dx = 1.

We also have ‖u0‖E ≤ lim
n→∞

‖un‖E = Sq, thus ‖u0‖E = Sq. With this u0 ∈ E, by condition

(f5) and following the argument in the proof of Lemma 3.2, we see that there exists a positive

number t0 such that I(t0u0) < 0.

The inequality c ≥ δ can be easily proved as in the proof of Lemma 3.1. From the definition

of c, take γ : [0, 1] → E, γ(t) = te, where e = t0u0 with I(t0u0) < 0 as explained above. We

have γ ∈ Γ and by using the condition (f5), we have

c ≤ max
t∈[0,1]

I(γ(t)) ≤ max
t≥0

I(tu0) < max
t≥0

(M(tNSN
q )

N
−

tq

q
Cq

)
≤

1

N
M

(((
1−

η

N

)αN

α0

)N−1)
.

The proof of Lemma 3.3 is completed.

Lemma 3.4 Suppose that the conditions (V1), (f1)–(f4) and (f6) are satisfied. Let {un} ⊂

E be an arbitrary (PS)c sequence of I. Then there exist a subsequence of {un} (still denoted

by {un}) and u ∈ E such that






f(x, un)

|x|η
→

f(x, u)

|x|η
strongly in L1

loc(R
N ),

F (x, un)

|x|η
→

F (x, u)

|x|η
strongly in L1(RN ).

Proof Let {un} ⊂ E be an arbitrary (PS)c sequence of I, i.e.,

I(un) → c > 0 and I ′(un) → 0 as n → ∞. (3.5)

We shall prove that the sequence {un} is bounded in E. Arguing by contradiction, suppose

that {un} is unbounded in E. Then up to a subsequence, we have ‖un‖E → ∞ and d :=

inf
n≥1

‖un‖
N
E > 0. Since µ > θN , combining (1.11) and (M1), we have

c+ o(1) + o(1)‖un‖E
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≥ I(un)−
1

µ
〈I ′(un), un〉

=
1

N
M(‖un‖

N
E )−

1

µ
M(‖un‖

N
E )‖un‖

N
E −

1

µ

∫

RN

µF (x, un)− f(x, un)un

|x|η
dx

≥
( 1

θN
−

1

µ

)
M(‖un‖

N
E )‖un‖

N
E −

1

µ

∫

RN

µF (x, un)− f(x, un)un

|x|η
dx

≥
( 1

θN
−

1

µ

)
κ‖un‖

N
E .

Divide the above inequality by ‖un‖
N
E and let n → ∞, we have

0 ≥
( 1

θN
−

1

µ

)
κ > 0,

which is impossible. Therefore {un} is bounded in E.

It then follows from (3.3) that

∫

RN

f(x, un)un

|x|η
dx ≤ C,

∫

RN

F (x, un)

|x|η
dx ≤ C.

By [13, Lemma 2.1, p. 143], we get

f(x, un)

|x|η
→

f(x, u)

|x|η
strongly in L1

loc(R
N ). (3.6)

By (f1) and (f2), there exists C > 0 such that

F (x, un) ≤ C|un|
θN + Cf(x, un).

From Lemma 2.1 and the generalized Lebesgue’s dominated convergence theorem in [27, p. 20],

arguing as [39, Lemma 4.6, p. 13], we derive that

F (x, un)

|x|η
→

F (x, u)

|x|η
strongly in L1(RN ). (3.7)

This completes the proof of Lemma 3.4.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 By the process as in the proof of Lemma 3.4, we have that

the (PS)c sequence {un} is bounded in E. We claim that I(u) ≥ 0. Indeed, suppose by

contradiction that I(u) < 0. Then u 6= 0, set r(t) := I(tu), t ≥ 0, we have r(0) = 0 and

r(1) < 0. As the proof of Lemma 3.1, for t > 0 small enough, it holds r(t) > 0. So there exists

t0 ∈ (0, 1) such that

r(t0) = max
t∈[0,1]

r(t), r′(t0) = 〈I ′(t0u), u〉 = 0.

By Remark 1.1 and Lemma 2.4, we have

c ≤ I(t0u) = I(t0u)−
1

θN
〈I ′(t0u), u〉

=
1

N
M(‖t0u‖

N)−
1

θN
M(‖t0u‖

N)‖t0u‖
N
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+
1

θN

∫

RN

f(x, t0u)t0u− θNF (x, t0u)

|x|η
dx

<
1

N
M(‖u‖N)−

1

θN
M(‖u‖N)‖u‖N

+
1

θN

∫

RN

f(x, u)u− θNF (x, u)

|x|η
dx.

Furthermore, by the weak lower semi-continuity of the norm and Fatou’s lemma, we have

c < lim inf
n→∞

( 1

N
M(‖un‖

N )−
1

θN
M(‖un‖

N)‖u‖N
)

+
1

θN
lim inf
n→∞

∫

RN

f(x, un)un − θNF (x, un)

|x|η
dx

≤ lim inf
n→∞

(
I ′(un)−

1

θN
〈I ′(un), un〉

)
= c,

which is impossible. Thus the claim is true.

Now we show that I ′(u) = 0 and I(u) = c. In fact, from the lower semi-continuity of the nor-

m in E, we have ‖u‖E ≤ lim
n→∞

‖un‖E . Suppose, by contradiction, that ‖u‖E < lim
n→∞

‖un‖E := ξ.

Set vn := un

‖un‖E
and v := u

ξ
, then vn ⇀ v weakly in E and ‖v‖E < 1. From I(u) ≥ 0 and

Lemma 3.4, we have

M(ξN ) = lim
n→∞

M(‖un‖
N
E ) = lim

n→∞
N
(
I(un) +

∫

RN

F (x, un)

|x|η
dx

)

= Nc+N

∫

RN

F (x, u)

|x|η
dx = Nc+M(‖u‖NE )−NI(u)

< M

(((
1−

η

N

)αN

α0

)N−1)
+M(‖u‖NE )

≤ M

(((
1−

η

N

)αN

α0

)N−1

+ ‖u‖NE

)
.

Here, we have used the condition (M2) in the last inequality. By (M1), it holds ξN <
((
1 −

η
N

)
αN

α0

)N−1
+ ‖u‖N . Notice that

ξN =
ξN − ‖u‖NE
1− ‖v‖N

.

Thus

ξN <

((
1− η

N

)
αN

α0

)N−1

1− ‖v‖NE
.

Choosing q > 1 sufficiently close to 1 and β0 > 0 such that for large n,

qα0‖un‖
N

N−1

E ≤ β0 <

(
1− η

N

)
αN

(1− ‖v‖NE )
1

N−1

.

By using concentration compactness principle (see [19, p. 230], [39, p. 3]), together with singular

Trudinger-Moser inequality, it holds

∫

RN

eqα0|un|
N

N−1
− SN−2(qα0, |un|)

|x|η
dx
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≤

∫

RN

eβ0|vn|
N

N−1
− SN−2(β0, |vn|)

|x|η
dx ≤ C. (4.1)

From (f2) and Hölder inequality, there holds

∣∣∣
∫

RN

f(x, un)(un − u)

|x|η
dx

∣∣∣

≤ c1

( ∫

RN

|un|
θN

|x|η
dx

) θN−1

N
( ∫

RN

|un − u|θN

|x|η
dx

) 1
θN

+ c2

(∫

RN

|un − u|q
′

|x|η
dx

) 1

q′
( ∫

RN

eqα0|un|
N

N−1
− SN−2(qα0, |un|)

|x|η
dx

) 1
q

, (4.2)

where 1
q′
+ 1

q
= 1. In view of Lemma 2.1, combining (4.1) with (4.2), we obtain

∫

RN

f(x, un)(un − u)

|x|η
dx → 0. (4.3)

Since I ′(un)(un − u) → 0, there holds

M(‖un‖
N
E )

∫

RN

(|∇un|
N−2∇un∇(un − u) + V (x)|un|

N−2un(un − u))dx → 0. (4.4)

On the other hand, by un ⇀ u in E, we have

M(‖un‖
N
E )

∫

RN

(|∇u|N−2∇u∇(un − u) + V (x)|u|N−2u(un − u))dx → 0. (4.5)

(4.4) minus (4.5) and applying with the next inequality

22−N |∇un −∇u|N ≤ 〈|∇un|
N−2∇un − |∇u|N−2∇u,∇un −∇u〉

and

22−N |un − u|N ≤ 〈|un|
N−2un − |u|N−2u, un − u〉,

we can derive

lim
n→∞

M(‖un‖
N
E )‖un − u‖NE

≤ 2N−2M(‖un‖
N
E )

∫

RN

(|∇un|
N−2∇un∇(un − u) + V (x)|un|

N−2un(un − u))dx

+ 2N−2M(‖un‖
N
E )

∫

RN

(|∇u|N−2∇u∇(un − u) + V (x)|u|N−2u(un − u))dx = 0. (4.6)

It is in contradiction with the fact ‖u‖E < lim
n→∞

‖un‖E := ξ. Thus, we have ‖u‖E = ξ =

lim
n→∞

‖un‖E . Since {un} is bounded in E, we can apply Brezis-Lieb lemma to obtain un → u

strongly in E. Since I ∈ C1(E,R), we have I ′(u) = 0 and I(u) = c.

Next, we show that u is nonzero. If u ≡ 0, since F (x, 0) = 0 for all x ∈ R
N , from Lemma

3.4, we have

lim
n→∞

1

N
M(‖un‖

N
E )c < M

(((
1−

η

N

)αN

α0

)N−1)
, (4.7)
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Thus, there exist ε0 > 0 and n∗ > 0 such that ‖un‖
N
E ≤

(
N−η
N

αN

α0
− ε0

)N−1
for all n > n∗.

Choose q > 1 sufficiently close to 1 such that qα0‖un‖
N

N−1

E ≤
(
1− η

N

)
αN − ε0α0 for all n > n∗.

By (f2), there holds

|f(x, un)un| ≤ c1|un|
θN + c2|un|[e

α0|un|
N

N−1

− SN−2(α0, |un|)].

Thus by using singular Trudinger-Moser inequality, it holds

∫

RN

|f(x, un)un|

|x|η
dx

≤ c1

∫

RN

|un|
θN

|x|η
dx+ c2

∫

RN

|un|[e
α0|un|

N
N−1

− SN−2(α0, |un|)]

|x|η
dx

≤ c1

∫

RN

|un|
θN

|x|η
dx+ c2

( ∫

RN

eqα0|un|
N

N−1
− SN−2(qα0, |un|)

|x|η
dx

) 1
q
( ∫

RN

|un|
q′

|x|η
dx

) 1

q′

≤ c1

∫

RN

|un|
θN

|x|η
dx+ C

( ∫

RN

|un|
q′

|x|η
dx

) 1

q′

→ 0,

here we have used Lemma 2.1 in the last estimate. From I ′(un)un → 0, we have

lim
n→∞

M(‖un‖
N
E )‖un‖

N
E = 0. (4.8)

From the condition (M1), we can get ‖un‖ → 0. Then I(un) → 0, which contradicts the fact

that I(un) → c > 0, so u is nonzero.

Finally, we are ready to show the existence of positive ground state solution for (1.10).

Setting

m = inf
u∈Λ

I(u), Λ := {u ∈ E\{0} : I ′(u)u = 0}.

Let c be the mountain-pass level, obviously m ≤ c.

On the other hand, for any u ∈ Λ, there holds u > 0. In fact, denote u− := min{u, 0}, from

I ′(u)u− = 0, we get ‖u−‖ = 0. Since f is nonnegative, by applying the Harnack inequality, we

have u > 0 in R
N . Define h : (0,+∞) → R by h(t) = I(tu). We have that h is differentiable

and

h′(t) = I ′(tu)u = M(tN‖u‖N)tN−1‖u‖N −

∫

RN

f(x, tu)u

|x|η
dx, ∀t ≥ 0.

From I ′(u)u = 0, we get

h′(t) = I ′(tu)u− tθN−1I ′(u)u,

so

h′(t) = tθN−1‖u‖θNE

[ M(tN‖u‖N)

t(θ−1)N‖u‖
(θ−1)N
E

−
M(‖u‖N)

‖u‖
(θ−1)N
E

]

+ tθN−1

∫

RN

(f(x, u)
uθN−1

−
f(x, tu)

(tu)θN−1

)
uθNdx.

By (M3), (f6) and u > 0, we conclude that h′(t) > 0 for 0 < t < 1 and h′(t) < 0 for t > 1.

From h′(1) = 0, we have

I(u) = max
t≥0

I(tu).
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From the above argument, we see that h′(t) < 0 is strongly decreasing in t ∈ (1,+∞), so

h(t) → −∞ as t → +∞. Now, define γ : [0, 1] → E, γ(t) = tt0u, where t0 is a real number

which satisfies I(t0u) < 0, we have γ ∈ Γ, and therefore

c ≤ max
t∈[0,1]

I(γ(t)) ≤ max
t≥0

I(tu) = I(u).

Since u ∈ Λ is arbitrary, we have c ≤ m, thus c = m. This ends the proof of Theorem 1.1.

5 The Ground State Solution Without the A-R Condition

In this section, insteading the conditions (f1) and (f3), we assume following condition on

the function f .

(f ′
1) There exists constant c > 0 such that F (x, t) ≤ c|t|N + cf(x, t) for all (x, t) ∈ R

N ×R
+.

(f ′
3) lim

|t|→+∞

F (x,t)
|t|θN = ∞ uniformly on x ∈ R

N , where F (x, t) =
∫ t

0 f(x, s)ds.

We will use a Cerami’s mountain pass theorem which was introduced in [9–10]. For readers’

convenience, we give a brief introduction here.

Definition A Let (E, ‖·‖E) be a real Banach space with its dual space (E∗, ‖·‖E∗). Suppose

I ∈ C1(E,R). For c ∈ R, we call {un} ⊂ E a (C)c sequence of the functional I, if

I(un) → c and (1 + ‖un‖E)‖I
′(un)‖E∗ → 0 as n → ∞.

Proposition A Let (E, ‖·‖E) be a real Banach space. I ∈ C1(E,R), I(0) = 0 and satisfies :

(i) There exist positive constants δ and r such that

I(u) ≥ δ for ‖u‖E = r

and

(ii) there exists e ∈ E with ‖e‖E > r such that

I(e) ≤ 0.

Define c by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where

Γ =: {γ ∈ C([0, 1] : E) : γ(0) = 0, γ(1) = e}.

Then I possesses a (C)c sequence.

In order to prove Theorem 1.2, along the line of the proof of Theorem 1.1, we get into

two steps. Firstly, we check the mountain pass geometry of the functional I under the weak

condition. Secondly, it is the key step to establish that any (C)c sequence is bounded.

Lemma 5.1 Assume that (V1), (f2), (f
′
3), (f4) hold. Then

(i) there exist positive constants δ and r such that

I(u) ≥ δ for ‖u‖E = r.

(ii) there exists e ∈ E with ‖e‖E > r such that
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I(e) < inf
‖u‖E=r

I(u).

Proof The proof of (i) is similar as that in Lemma 3.1. From (M3), we have M(t) ≤

M(1)tθ, t ≥ 1. Let u ∈ E \ {0}, u ≥ 0 with compact support Ω = supp(u), by (f ′
3), for any

L > 0, there exists d > 0 such that for all (x, s) ∈ Ω× R
+,

F (x, s) ≥ LsθN − d.

Then

I(tu) ≤
M(1)tθN

N
‖u‖θNE − LtθN

∫

Ω

|u|θN

|x|η
dx+O(1)

≤ tθN
(
M(1)‖u‖θNE

N
− L

∫

Ω

|u|θN

|x|η
dx

)
+O(1).

Now choosing L >
M(1)‖u‖θN

E

N
∫
Ω

|u|θN

|x|η
dx

, it implies that I(tu) → −∞ as t → ∞. Setting e = tu with t

sufficiently large, the proof of (ii) is completed.

From Lemmas 3.1, 5.1 and Proposition A, we get a (C)c sequence {un} ⊂ E, i.e.,

I(un) → c > 0 and (1 + ‖un‖E)‖I
′(un)‖E∗ → 0 as n → ∞. (5.1)

Lemma 5.2 Suppose that the conditions (f2), (f5) and (f6) are satisfied. Let {un} ⊂ E be

an arbitrary (C)c sequence of I. Then {un} is bounded up to a subsequence.

Proof Let {un} ⊂ E be a (C)c sequence of I, i.e.,

M(‖un‖
N
E )

N
−

∫

RN

F (x, un)

|x|η
dx → c as n → ∞ (5.2)

and

(1 + ‖un‖E)|〈I
′(un), ϕ〉| ≤ τn‖ϕ‖E for all ϕ ∈ E, (5.3)

where τn → 0 as n → ∞. We shall prove that the sequence {un} is bounded in E. Indeed,

suppose by contradiction that

‖un‖E → +∞

and set

vn =
un

‖un‖E
.

Combining with Lemma 2.1 and the similar argument as in [30, Lemma 5, p. 12], we can get

v+n ⇀ 0 in E.

Let tn ∈ [0, 1] be such that

I(tnun) = max
t∈[0,1]

I(tun).

For any given A ∈
(
0,
(
N−η
N

αN

α0

)N−1

N
)
, for the sake of simplicity, let

ε =

(
1− η

N

)
αN

A
N

N−1

− α0 > 0.
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In the following argument we will take A →
(
N−η
N

αN

α0

)N−1

N and so we have ε → 0.

By condition (f2), there exists C > 0 such that

F (x, t) ≤ C|t|θN + εR(α0 + ε, |t|), ∀(x, t) ∈ R
N × R

+, (5.4)

where R(α, s) = eαs
N

N−1
− SN−2(α, s). In fact, from condition (f2), there holds

F (x, t) ≤
C

N
|t|θN + |t|R(α0, |t|).

By using Young inequality, for 1
p
+ 1

q
= 1, p, q > 1, there holds

ab ≤ ε
ap

p
+ ε−

q
p
bq

q
.

So we have

F (x, t) ≤
C

N
|t|θN +

εR(α0, |t|)
p

p
+ ε−

q
p
|t|q

q
.

Now we take p = α0+ε
α0

and q = α0+ε
ε

> θN . One can see that near infinity |t|q can be estimated

from above by R(α0+ε, |t|), and near the origin |t|q can be estimated from above by |t|θN , thus

we obtain (5.4). We also have A
‖un‖

∈ (0, 1] with sufficient large n, so by using (5.4), we have

I(tnun) ≥ I
( A

‖un‖
un

)
= I(Avn) =

M(AN )

N
−

∫

RN

F (x,Avn)

|x|η
dx

=
M(AN )

N
−

∫

RN

F (x,Av+n )

|x|η
dx

≥
M(AN )

N
− CAθN

∫

RN

|v+n |
θN

|x|η
dx − ε

∫

RN

R(α0 + ε, Av+n )

|x|η
dx

≥
M(AN )

N
− CAθN

∫

RN

|v+n |
θN

|x|η
dx − ε

∫

RN

R((α0 + ε)A
N

N−1 , v+n )

|x|η
dx

≥
M(AN )

N
− CAθN

∫

RN

|v+n |
θN

|x|η
dx − ε

∫

RN

R
((
1− η

N

)
αN , v+n

)

|x|η
dx.

Since v+n ⇀ 0 in E and the embedding E →֒ Lq(RN , |x|−ηdx) (q ≥ N) is compact, by using

the Hölder inequality, we have
∫
RN

|v+
n |N

|x|η dx → 0. By singular Trudinger-Moser inequality,
∫
RN

R((1− η
N

)αN ,v+
n )

|x|η dx is bounded. When A →
(
N−η
N

αN

α0

)N−1

N , from Lemma 3.3, we can show

lim inf
n→∞

I(tnun) ≥
1

N
M

(((
1−

η

N

)αN

α0

)N−1)
> c. (5.5)

Since I(0) = 0 and I(un) → c, we can assume tn ∈ (0, 1), and so I ′(tnun)tnun = 0, it follows

from Lemma 2.4 and Remark 1.1,

θNI(tnun) = θNI(tnun)− I ′(tnun)tnun

= θM(‖tnun‖
N )− θN

∫

RN

F (x, tnun)

|x|η
dx

−M(‖tnun‖
N )‖tnun‖

N +

∫

RN

f(x, tnun)tnun

|x|η
dx
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= θM(‖tnun‖
N )−M(‖tnun‖

N)‖tnun‖
N +

∫

RN

f(x, tnun)tnun − θNF (x, tnun)

|x|η
dx

≤ θM(‖un‖
N )−M(‖un‖

N )‖tnun‖
N +

∫

RN

f(x, un)un − θNF (x, un)

|x|η
dx

= θNI(un)− I ′(un)un

= θNI(un) + on(1) = θNc+ on(1),

which is a contradiction to (5.5). This proves that {un} is bounded in E.

Proof of Theorem 1.2 From Lemma 5.2, we have that the (C)c sequence {un} of I

is bounded in E. Applying the same procedure as in proof of Theorem 1.1, we derive that

I ′(u) = 0 and I(u) = c. Moreover, we also get that u is positive and u is a ground state

solution of (1.10).
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