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Abstract In this paper, by using Seshadri constants for subschemes, the author establishes
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1 Introduction

In higher dimensional Nevanlinna theory, it mainly studies the second main theorem of

holomorphic maps between complex manifolds intersecting subvarieties in the target manifold.

Cartan [2] established the second main theorem for linearly non-degenerate holomorphic curves

into complex projective space intersecting hyperplanes in general position, and Nochka [12]

considered the case of subgeneral position. Ru [14–15] established second main theorems for

algebraically non-degenerate holomorphic curves into complex projective varieties intersecting

hypersurfaces in general position and there are many new developments (see [13, 16]).

Recently, there are many developments in extending the second main theorem to arbitrary

subschemes case. Ru and Wang [17] obtained the following second main theorem for holomor-

phic curves intersecting closed subschemes.

Theorem 1.1 (see [17]) Let X be a projective variety. Let Y1, · · · , Yq be closed subschemes

of X such that, for any x ∈ X, there are at most m subschemes among Y1, · · · , Yq which

contains x. Let A be a big Cartier divisor on X. Let f : C → X be a holomorphic curve with

Zariski-dense image. Let

βA,Yj
= lim

N→∞

∞∑
m=1

h0(X̃j , Nπ∗
jA−mEj)

Nh0(X,NA)
, j = 1, · · · , q,
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where πj : X̃j → X is the blowing-up of X along Yj, with associated exceptional divisor Ej.

Then for every ε > 0,

∥∥∥
q∑

j=1

mf (r, Yj) ≤ m
(

max
1≤j≤q

{β−1
A,Yj

}+ ε
)
Tf,A(r), (1.1)

where “‖” means the estimate holds for all large r outside a set of finite Lebesgue measure.

(Here we use some notations which will be explained later).

When the closed subschemes Yj = yj are distinct points, the Seshadri constants ǫyj
(A) and

βA,yj
have the following relation (see [11])

βA,yj
≥

n

n+ 1
ǫyj

(A),

where dimX = n. Then one may takem = 1 in Theorem 1.1 and obtain the following inequality

∥∥∥
q∑

j=1

mf (r, yj) ≤
(n+ 1

n
max
1≤j≤q

{ 1

ǫyj
(A)

}
+ ε

)
Tf,A(r). (1.2)

More generally, by using the definition of Seshadri constants for general closed subscheme

(see Section 2), Heier and Levin [9] obtained the following result.

Theorem 1.2 (see [9, Theorem 1.3]) Let X be a projective variety of dimension n. Let

Y1, · · · , Yq be closed subschemes of X such that for every subset I ⊂ {1, · · · , q} with #I ≤ n+1,

we have codim
⋂
j∈I

(Supp Yj) ≥ #I. Let A be an ample Cartier divisor on X. Let f : C → X be

a holomorphic curve with Zariski-dense image. Then for every ε > 0,

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤ (n+ 1 + ε)Tf,A(r). (1.3)

Let Y be a closed subscheme of X of codimension codimY in X . Note that the elements

of the list obtained by repeating Y up to codimY times still satisfy the condition in Theorem

1.2, then from Theorem 1.2 we have the following corollary.

Corollary 1.1 (see [9, Corollary 1.6]) Let X be a projective variety of dimension n. Let Y

be a closed subscheme of X of codimension codimY in X. Let A be an ample Cartier divisor

on X. Let f : C → X be a holomorphic curve with Zariski-dense image. Then for every ε > 0,

‖ ǫY (A)mf (r, Y ) ≤
( n+ 1

codim Y
+ ǫ

)
Tf,A(r). (1.4)

They also compared the constant βA,Y and the Seshadri constant ǫY (A) (see [9, Theorem

4.2]) and obtained that

βA,Y ≥
codimY

n+ 1
ǫY (A) (1.5)

under the assumption that X is smooth.

Recently, He and Ru [7] give more general results.
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Theorem 1.3 (see [7]) Let X be a projective variety of dimension n and let m ≥ n

be a positive integer. Let Y1, · · · , Yq be closed subschemes of X such that for every subset

I ⊂ {1, · · · , q} with #I ≤ m + 1 we have dim
⋂
j∈I

(Supp Yj) ≤ m − #I, where we use the

convention that dim ∅ = −1. Let A be an ample Cartier divisor on X. Let f : C → X be a

holomorphic curve with Zariski-dense image. Then for every ε > 0,

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤ [(m− n+ 1)(n+ 1) + ε]Tf,A(r). (1.6)

We note that, in [7, 9, 17], the conditions on the subschemes Y1, · · · , Yq are called in

“(sub)general position”, but actually they are different. In this paper, in order to distinguish

them, we call the subschemes in “weak (sub)general position” and “(sub)general position”.

Let X be a projective variety of dimension n and let Y1, · · · , Yq be closed subschemes of X .

Definition 1.1 (Subgeneral position) Let m be a positive integer.

(a) The closed subschemes Y1, · · · , Yq are called in weak m-subgeneral position if, for any

x ∈ X, there are at most m subschemes among Y1, · · · , Yq which contains x. When m = n, the

subschemes are called in weak general position.

(b) The closed subschemes Y1, · · · , Yq are called in m-subgeneral position if for any subset

I ⊂ {1, · · · , q} with #I ≤ m + 1, we have dim
⋂
j∈I

(Supp Yj) ≤ m − #I. When m = n, the

subschemes are called in general position.

Definition 1.1(a) is used in [17], Definition 1.1(b) is used in [7, 9].

We also note that the condition in (a) is weaker than that in (b), since when #I = m +

1, dim
⋂
j∈I

(SuppYj) ≤ −1 implies that
⋂
j∈I

(Supp Yj) must be empty. When Y1, · · · , Yq are

hypersurfaces, (a) is equivalent to (b).

Motivated by the main theorem in [3], we give a second main theorem under “weak subgen-

eral position” condition.

Theorem 1.4 Let X be a complex projective variety of dimension n and Y1, · · · , Yq be closed

subschemes of X. Let A be an ample Cartier divisor on X. Let f : C → X be a non-constant

holomorphic curve such that f(C) 6⊂ SuppYj, for j = 1, · · · , q. Assume that Y1, · · · , Yq are in

weak m-subgeneral position. Then, for every ε > 0,

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤ [m(n+ 1) + ε]Tf,A(r). (1.7)

Remark 1.1 If Y1, · · · , Yq are general divisors, then Theorem 1.4 is a generalization of [3,

Corollary 1.2].

Now we consider the case that Y1, · · · , Yq are divisors. As an application of Theorem 1.4,

we can obtain a Brody hyperbolicity result for the complement of nef effective divisors, which

is motivated by the work of Heier and Levin [8]. We first recall the definition of Brody hyper-

bolicity.

Definition 1.2 (Brody hyperbolic) A complex variety is said to be quasi-Brody hyperbolic

if the union of all images of nonconstant holomorphic maps from C is not Zariski dense in it.
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A complex variety is said to be Brody hyperbolic if it admits no nonconstant holomorphic maps

from C.

Let X be a projective variety of dimension n. Let D1, · · · , Dq be non-zero effective Cartier

divisors in general position on X . For an ample divisor A on X , if there exist positive rational

constants c1, · · · , cq such that for all j = 1, · · · , q:

A− cjDj is Q-nef.

Then (1.3) implies that

∥∥∥
q∑

j=1

cjmf (r,Dj) ≤ (n+ 1 + ε)Tf,A(r). (1.8)

In [8], by using (1.8) and choosing appropriate A and cj , Heier and Levin obtained the following

result.

Theorem 1.5 (see [8, The analytic version of Theorem 1.8(a)]) Let X be a projective

variety of dimension n. Let E1, · · · , Er be nef Cartier divisors on X with
r∑

i=1

Ei ample. Let

D1, · · · , Dq be non-zero effective (possibly reducible) Cartier divisors in general position on X.

Suppose that Dj ≡
r∑

i=1

aj,iEi, j = 1, · · · , q, where the coefficients aj,i are non-negative real

numbers. Let Pj = (aj,1, · · · , aj,r) ∈ Rr, j = 1, · · · , q. Assume that for any proper subset T of

the set of standard basis vectors {e1, · · · , er} ⊂ Rr, at most (#T )
⌊
q
r

⌋
of the vectors P1, · · · , Pq

are supported on T . If

q ≥ r(n+ 1) + 1, r = 1, 2,

q ≥ r(n+ 1) +
(r − 1)(r − 2)

2
, r ≥ 3,

then X \
q∑

j=1

Dj is quasi-Brody hyperbolic.

If we use our Theorem 1.4 instead of Theorem 1.2, then we can obtain a hyperbolicity result

under weak subgeneral poisition condition on the divisors.

Theorem 1.6 Let X be a projective variety of dimension n. Let E1, · · · , Er be nef Cartier

divisors on X with
r∑

i=1

Ei ample. Let D1, · · · , Dq be non-zero effective (possibly reducible)

Cartier divisors in weak m-subgeneral position on X. Suppose that Dj ≡
r∑

i=1

aj,iEi, j = 1, · · · , q,

where the coefficients aj,i are non-negative real numbers. Let Pj = (aj,1, · · · , aj,r) ∈ Rr, j =

1, · · · , q. Assume that for any proper subset T of the set of standard basis vectors {e1, · · · , er} ⊂

Rr, at most (#T )
⌊
q
r

⌋
of the vectors P1, · · · , Pq are supported on T . If

q ≥ rm(n+ 1) + 1, r = 1, 2,

q ≥ rm(n+ 1) +
(r − 1)(r − 2)

2
, r ≥ 3,

then X \
q∑

j=1

Dj is Brody hyperbolic.
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2 Preliminaries

2.1 Seshadri constants

Let X be a projective variety and Y be a closed subscheme of X , corresponding to a coherent

sheaf of ideals I . Let S =
⊕
d≥0

I d be the sheaf of graded algebras, where I d is the d-th power

of I , with the convention that I 0 = OX . Then X̃ := Proj S is called the blowing up of X

along Y . Let π : X̃ → X be the corresponding morphism. From [6, Proposition II.7.13(a)], we

know that the inverse image ideal sheaf Ĩ = π−1I · O
X̃

is an invertible sheaf on X̃. Let E be

the exceptional divisor which is the effective Cartier divisor in X̃ whose associated invertible

sheaf is the dual of π−1I · O
X̃
.

We now introduce the notion of Seshadri constants defined by Heier and Levin in this context

as follows. As they said that it is essentially the same definition made in [4, Definition 1.1 and

Remark 1.3] by Cutkosky-Ein-Lazarsfeld when X is non-singular.

Definition 2.1 (see [9, Definition 2.3]) Let Y be a closed subscheme of a projective variety

X. Let π : X̃ → X be the blow-up of X along Y . Let A be a nef Cartier divisor on X. We

define the Seshadri constant ǫY (A) of Y with respect to A to be the real number

ǫY (A) = sup{γ ∈ Q≥0 | π∗A− γE is Q-nef}.

The Seshadari constants have the following non-decreasing property.

Proposition 2.1 Let X be a projective variety and X ′ be a subvariety of X, denote by

i : X ′ → X the inclusion map. Let A be a nef Cartier divisor on X and Y be a closed

subscheme of X. Then we have

ǫi∗Y (i
∗A) ≥ ǫY (A). (2.1)

Proof Let π : X̃ → X be the blowing up of X along Y and E be the exceptional divisor.

Denote by Y ′ = i∗Y . Let π′ : X̃ ′ → X ′ be the blowing up of X ′ along Y ′ and E′ be the

exceptional divisor. Since the strict transform of X ′ in the blowing up X̃ of X along Y is

the blowing up X̃ ′ of X ′ along Y ′ (see [5, Corollary 5.2(a)], [1, Theorem 1.3.1]), we have

π′∗(i∗A) = (π∗A)|
X̃′

and E′ = E|
X̃′

. Let γ ∈ Q such that π∗A− γE is Q-nef on X̃. Note that

the restriction of a nef divisor on X̃ is a nef divisor on X̃ ′, it follows that

π′∗(i∗A)− γE′ = (π∗A)|
X̃′

− γE|
X̃′

= (π∗A− γE)|
X̃′

is Q-nef on X̃ ′, which completes the proof.

2.2 Weil functions

We briefly recall the basic definition of Weil functions, one can refer to [19] for more details.

Let Y be a closed subscheme of a projective variety X . One can associate a Weil function

λY : X \ SuppY → R, well-defined up to O(1), which satisfies the following properties: If Y

and Z are two closed subschemes of X , and φ : X ′ → X is a morphism of projective varieties,

(i) λY ∩Z = min{λY , λZ};

(ii) λY+Z = λY + λZ ;
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(iii) λY ≤ λZ , if Y ⊂ Z;

(iv) λY (φ(x)) = λφ∗Y (x).

In particular, let D be a Cartier divisor on a complex projective variety X . A Weil function

with respect to D is a function λD : (X \ SuppD) → R such that for all x ∈ X there is an

open neighborhood U of x in X , a nonzero rational function f on X with D|U = (f), and a

continuous function α : U → R such that

λD(x) = − log |f(x)|+ α(x)

for all x ∈ (U \ SuppD). Note that a continuous fiber metric ‖ · ‖ on the line sheaf OX(D)

determines a Weil function for D given by λD(x) = − log ‖s(x)‖, where s is the rational section

of OX(D) such that D = (s). An example of Weil function for the hyperplane H = {a0x0 +

· · ·+ anxn = 0} in Pn(C) is given by

λH(x) = log

max
0≤i≤n

|xi| max
0≤i≤n

|ai|

|a0x0 + · · ·+ anxn|
, (2.2)

where [x0, · · · , xn] are homogeneous coordinates for x. The Weil functions with respect to

divisors satisfiy the following properties:

(a) Functoriality: If λ is a Weil function for a Cartier divisor D on X , and if φ : X ′ → X

is a morphism such that φ(X ′) 6⊂ SuppD, then x 7→ λ(φ(x)) is a Weil function for the Cartier

divisor φ∗D on X ′.

(b) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2 on X ,

respectively, then λ1 + λ2 is a Weil function for D1 +D2.

(c) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor on X , then

λ1 = λ2 +O(1).

(d) Boundedness from below: If D is an effective divisor and λ is a Weil function for D,

then λ is bounded from below.

Let X be a projective variety, and let Y ⊂ X be a closed subscheme.

Lemma 2.1 (see [19, Lemma 2.2]) There exist effective Cartier divisors D1, · · · , Dℓ such

that

Y =

ℓ⋂

i=1

Di.

By Lemma 2.1, we can assume that Y = D1 ∩ · · · ∩ Dℓ, where D1, · · · , Dℓ are effective

Cartier divisors. This means that IY = ID1 + · · · + IDℓ
, where IY ,ID1 , · · · ,IDℓ

are the

defining ideal sheaves in OX . We set

λY = min{λD1 , · · · , λDℓ
}+O(1). (2.3)

Then we have λY : X \ SuppY → R, which does not depend on the choice of Cartier divisors.

2.3 Nevanlinna functions

In this section, we briefly recall the definitions of characteristic function, proximity function

and counting function in Nevanlinna theory.
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2.3.1 Characteristic function

Let X be a complex projective variety and f : C → X be a holomorphic map. Let L → X

be an ample line sheaf and ω be its Chern form. We define the characteristic function of f with

respect to L by

Tf,L(r) =

∫ r

1

dt

t

∫

|z|<t

f∗ω.

Since any line sheaf L can be written as L = L1 ⊗ L−1
2 with L1, L2 being both ample, we

define Tf,L(r) = Tf,L1(r) − Tf,L2(r). A divisor D on X defines a line bundle O(D), we denote

by Tf,D(r) = Tf,O(D)(r). If X = Pn(C) and L = OPn(C)(1), then we simply write Tf,OPn(C)(1)(r)

as Tf(r).

The characteristic function satisfies the following properties:

(a) Functoriality: If φ : X → X ′ is a morphism and if L is a line sheaf on X ′, then

Tf,φ∗L(r) = Tφ◦f,L(r) +O(1).

(b) Additivity: If L1 and L2 are line sheaves on X , then

Tf,L1⊗L2(r) = Tf,L1(r) + Tf,L2(r) +O(1).

(c) Positivity: If L is ample and f : C → X is non-constant, then

Tf,L(r) → +∞ as r → +∞.

(d) Base locus: If the image of f is not contained in the base locus of |D|, then Tf,D(r) is

bounded from below.

(e) Globally generated line sheaves: If L is a line sheaf on X , and is generated by its global

sections, then Tf,L(r) is bounded from blow.

2.3.2 Counting and proximity functions

Let X be a projective variety and let Y ⊂ X be a closed subscheme. For a holomorphic

curve f : C → X with f(C) 6⊂ Supp Y , the proximity function of f with respect to Y is defined

by

mf(r, Y ) =

∫ 2π

0

λY (f(re
iθ))

dθ

2π
.

The proximity function satisfies the following properties:

(a) Functoriality: If φ : X → X ′ is a morphism and Y ′ is a closed subscheme on X ′ with

φ ◦ f(C) 6⊂ Supp Y ′, then

mf (r, φ
∗Y ′) = mφ◦f (r, Y

′) +O(1).

(b) Additivity: If Y1 and Y2 are two closed subschemes on X , then

mf(r, Y1 + Y2) = mf (r, Y1) +mf (r, Y2) +O(1).

(c) Boundedness from below: If D is an effective divisor, then mf (r,D) is bounded from

below.
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Next, we introduce the definition of counting function Nf (r, Y ) given by Yamanoi in [23].

Assume that Y can be written as Y = D1 ∩ · · · ∩ Dℓ with D1, · · · , Dℓ being effective Cartier

divisors, then we set

ordz f
∗Y = min{ordz f

∗D1, · · · , ordz f
∗Dℓ}.

When f(C) ⊂ SuppDi, we set ordz f
∗Di = +∞. The definition of ordz f

∗Y does not depend

on the choice of the Cartier divisors D1, · · · , Dℓ. We define the counting function by

Nf (r, Y ) =

∫ r

1

( ∑

{z∈C | |z|<t}

ordz f
∗Y

)dt
t
.

For a closed subscheme Y as above, consider the blowing up π : X̃ → X of X along Y , let

f : C → X be a holomorphic curve and f̃ : C → X̃ be its holomorphic lifting. Let A be an

ample divisor on X . By using the functoriality property of characteristic function, proximity

function and counting function, we have

T
f̃ ,π∗A

(r) = Tf,A(r) +O(1),

m
f̃
(r, π∗Y ) = mf (r, Y ) +O(1),

N
f̃
(r, π∗Y ) = Nf(r, Y ) +O(1).

2.3.3 First main theorem

Let X be a complex projective variety and f : C → X be a holomorphic map. Let D be a

divisor on X . By using Poincaré-Lelong formula, we have the first main theorem,

mf (r,D) +Nf(r,D) = Tf,D(r) +O(1). (2.4)

3 Proof of Theorem 1.4

For the nonconstant holomorphic curve f : C → X in Theorem 1.4, we consider the Zariski

closure f(C) of its image. In order to prove Theorem 1.4, we need the following second main

theorem for holomorphic curves with Zariski-dense image. (We thank professor Min Ru for

pointing out a simple proof of Theorem 3.1.)

Theorem 3.1 Let X be a complex projective variety of dimension n. Let Yj be closed

subschemes of codimension codimYj(≥ 1) in X, j = 1, · · · , q. Let A be an ample Cartier

divisor on X. Let f : C → X be a holomorphic curve with Zariski dense image, assume that

Y1, · · · , Yq are in weak m-subgeneral position. Then, for every ε > 0,

∥∥∥
q∑

j=1

codimYj · ǫYj
(A) ·mf (r, Yj) ≤ [m(n+ 1) + ε]Tf,A(r). (3.1)

Proof of Theorem 3.1 Denote by ̺j := codimYj , j = 1, · · · , q.

Given z ∈ C, we arrange {1, · · · , q} as {1(z), · · · , q(z)} so that

̺1(z)ǫY1(z)
(A)λY1(z)

(f(z)) ≥ ̺1(z)ǫY2(z)
(A)λY2(z)

(f(z))

≥ · · · ≥ ̺1(z)ǫYm(z)
(A)λYm(z)

(f(z)) ≥ · · · ≥ ̺1(z)ǫYq(z)
(A)λYq(z)

(f(z)). (3.2)
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Since Y1, · · · , Yq are in weak m-subgeneral position, we have

q∑

j=1

̺jǫYj
(A)λYj

(f(z))

≤
m∑

j=1

̺j(z)ǫYj(z)
(A)λYj(z)

(f(z)) + O(1)

≤ m̺1(z)ǫY1(z)
(A)λY1(z)

(f(z)) +O(1). (3.3)

The proof of the first inequality is similar to that of [21, Lemma 21.7] and is omitted here.

For each 1 ≤ j ≤ q, we observe that according to Definition 1.1(b), the elements of the

list obtained by repeating Yj up to ̺j times, i.e., the closed subschemes Yj,1, Yj,2, · · · , Yj,̺ with

Yj,ℓ = Yj for ℓ = 1, · · · , ̺j , are in general position (of Definition 1.1(b)). Note that the union

of all closed subschemes Yj,ℓ (1 ≤ j ≤ q, 1 ≤ ℓ ≤ ̺j) is a finite set, which may be denoted by

{Ỹ1, · · · , ỸT }. We rewrite (3.3) as

q∑

j=1

̺jǫYj
(A)λYj

(f(z))

≤ m

̺1(z)∑

ℓ=1

ǫY1(z)
(A)λY1(z),ℓ

(f(z)) +O(1)

≤ mmax
K

∑

u∈K

ǫ
Ỹu
(A)λ

Ỹu
(f(z)) +O(1), (3.4)

where the maximum is taken over all subsets K of {1, · · · , T } such that the closed subschemes

Ỹu, u ∈ K, are in general position.

Now, we need the following general form of second main theorem given in [9].

Theorem 3.2 (see [9, Theorem 1.8]) Let X be a projective variety of dimension n. Let

Y1, · · · , Yq be closed subschemes of X. Let A be an ample Cartier divisor on X. Let f : C → X

be a holomorphic curve with Zariski-dense image. Then for every ε > 0,

∥∥∥
∫ 2π

0

max
J

∑

j∈J

ǫYj
(A)λYj

(f(reiθ))
dθ

2π
≤ (n+ 1 + ε)Tf,A(r), (3.5)

where the maximum is taken over all subsets J of {1, · · · , q} such that the closed subschemes

Yj , j ∈ J , are in general position.

Then it follows from (3.4) and Theorem 3.2 that, for any given ε > 0,

q∑

j=1

̺jǫYj
(A)mf (r, Yj)

≤ m

∫ 2π

0

max
K

∑

u∈K

ǫ
Ỹu
(A)λ

Ỹu
(f(reiθ))

dθ

2π
+O(1)

≤ [m(n+ 1) + ε]Tf,A, (3.6)

This completes the proof of Theorem 3.1.
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Remark 3.1 (1) If q = 1, i.e., there is only one closed subscheme Y , we may take m = 1,

then (3.1) is exactly (1.4). If Y1, · · · , Yq are distinct points, then (1.2) can also be obtained

from (3.1).

(2) Recently, Ru and Wang [18] proved that, if Y1, · · · , Yq are intersecting properly on X

(which is, by [10, Theorem 17.4], equivalent to in general position when X is smooth), then

∥∥∥
q∑

j=1

βA,Yj
mf (r, Yj) ≤ (1 + ε)Tf,A(r). (3.7)

(Or see [22] for more general case.) This gives an improvement of Theorem 1.2 when X is

smooth.

By using similar method, one can obtain that, if Y1, · · · , Yq are in weak m-subgeneral posi-

tion on X , then

∥∥∥
q∑

j=1

βA,Yj
mf (r, Yj) ≤ m(1 + ε)Tf,A(r). (3.8)

If X is smooth, then one can also obtain Theorem 3.1 from (3.8) and (1.5). But in the case we

are dealing with, f(C) may not be smooth.

Proof of Theorem 1.4 Denote by ̺ := min
1≤j≤q

{codimYj}, then ̺ ≥ 1.

Case 1 If f(C) is Zariski dense in X .

It follows from Theorem 3.1 that

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤

[m(n+ 1)

̺
+ ε

]
Tf,A(r)

≤ [m(n+ 1) + ε]Tf,A(r).

Case 2 If f(C) is not Zariski dense in X .

Since f : C → X is non-constant, we can assume that f(C) is contained in an irreducible

subvariety V (= f(C)) of X of dimension k with 1 ≤ k ≤ n − 1 such that f : C → V is a

holomorphic curve with Zariski dense image. Consider the inclusion map i : V → X . The

assumption that the subschemes Y1, · · · , Yq are located in weak m-subgeneral position (with

respect to X) implies that i∗Y1, · · · , i∗Yq are located in weak m-subgeneral position (with

respect to V ). Note that if the codimension of i∗Yj in V is 0 for any j ∈ {1, 2, · · · , q}, then

i∗Yj = V , which contradicts the assumption that f(C) 6⊂ Supp Yj . Hence, by applying Case 1

to the holomorphic curve f : C → V , we have, for every ε > 0,

∥∥∥
q∑

j=1

ǫi∗Yj
(i∗A)mf (r, i

∗Yj) ≤ [m(k + 1) + ε]Tf,i∗A(r)

≤ [m(n+ 1) + ε]Tf,i∗A(r). (3.9)

Here,

mf (r, i
∗Yj) = mi◦f (r, Yj) +O(1) = mf (r, Yj) +O(1), (3.10)

Tf,i∗A(r) = Ti◦f,A(r) +O(1) = Tf,A(r) +O(1). (3.11)
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From Proposition 2.1, we have

ǫi∗Yj
(i∗A) ≥ ǫYj

(A). (3.12)

Combining (3.9)–(3.12), we have

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤ [m(n+ 1) + ε]Tf,A(r).

This completes our proof of Theorem 1.4.

Remark 3.2 Combining the proof of Theorem 1.4 and He-Ru’s result (see [7, Main Theorem

(Analytic Part)]), one can also obtain a second main theorem for “non-constant” holomorphic

curves as follows.

Let X be a complex projective variety of dimension n and Y1, · · · , Yq be closed subschemes

of X . Let A be an ample Cartier divisor on X . Let f : C → X be a non-constant holomorphic

curve. Assume that Y1, · · · , Yq are in m-subgeneral position. Then, for every ε > 0,

∥∥∥
q∑

j=1

ǫYj
(A)mf (r, Yj) ≤

[(
m−min

{
n,

m

2

}
+ 1

)(
min

{
n,

m

2

}
+ 1

)
+ ε

]
Tf,A(r). (3.13)

Though the coefficient on the right-hand side of (3.13) is smaller than that in Theorem 3.1,

but in our theorem, the subschemes only need to be in weak m-subgeneral position and m can

be smaller than n.

4 Proof of Theorem 1.6

In this section, we give the proof of Theorem 1.6 by using our second main theorem and the

method of Heier and Levin [8].

Proof of Theorem 1.6 By assumption, for any proper subset T of the set of standard

basis vectors {e1, · · · , er} ⊂ Rr, at most (#T )
⌊
q
r

⌋
of the vectors P1, · · · , Pq are supported on

T , then we may take

α1,1(κ), · · · , α1,r(κ), α2,1(κ), · · · , α2,r(κ), · · · , αq,1(κ), · · · , αq,r(κ)

to be (discontinuous) functions of κ ∈ (0, 1] with the following properties.

(i) The function αj,i(κ) is identically equal to 0 if aj,i = 0. If, on the other hand, aj,i 6= 0,

then αj,i(κ) takes on positive real values such that we have the limits

lim
κ→0+

αj,i(κ) = 0.

(ii) The R-divisors Bj(κ) = αj,1(κ)E1 + · · ·+ αj,r(κ)Er are such that

D′
j(κ) := Dj +Bj(κ) ≡

r∑

i=1

a′j,i(κ)Ei, j = 1, · · · , q,

have rational coefficients a′j,i(κ) = aj,i + αj,i(κ).
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(iii) For any proper subset T of the set of standard basis vectors {e1, · · · , er} ⊂ Rr, at most

(#T )
⌊
q
r

⌋
of the vectors P ′

1(κ), · · · , P
′
q(κ) are supported on T , where P ′

1(κ) = (a′1,1(κ), · · · ,

a′1,r(κ)), · · · , P
′
q(κ) = (a′q,1(κ), · · · , a

′
q,r(κ)).

(iv) For all i 6= i′, j 6= j′,

a′j,i(κ)a
′
j′,i′(κ)− a′j,i′(κ)a

′
j′i(κ) 6= 0, (4.1)

unless both terms on the left are 0.

For Q = (b1, · · · , br) ∈ Rr with positive coordinates, define

ni(Q,P ′
1(κ), · · · , P

′
q(κ)) = #

{
j ∈ {1, · · · , q} | min

ℓ=1,··· ,r

bℓ

a′j,ℓ(κ)
=

bi

a′j,i(κ)

}
, i = 1, · · · , r.

We need the following result in [8].

Lemma 4.1 (see [8, Lemma 2.2]) Let P ′
j = (a′j,1(κ), · · · , a

′
j,r(κ)) ∈ Rr \ {0}, j = 1, · · · , q,

be vectors with non-negative coordinates. Suppose that for any proper subset T of the set of

standard basis vectors {e1, · · · , er} ⊂ Rr of cardinality t, at most t
⌊
q
r

⌋
of the vectors P ′

j are

supported on T . Assume additionally that for all i 6= i′, j 6= j′, we have

a′j,i(κ)a
′
j′,i′(κ)− a′j,i′(κ)a

′
j′,i(κ) 6= 0,

unless both terms on the left are 0. Then there exists Q′(κ) = (b′1(κ), · · · , b
′
r(κ)) ∈ Qr with

positive coordinates such that

ni(Q
′(κ), P ′

1(κ), · · · , P
′
q(κ)) ≥

q

r
−

r − 1

2
, i = 1, · · · , r (4.2)

and

(1
2
min

a′j,i(κ)

a′j′,i′(κ)

)r

≤
b′ℓ(κ)

b′ℓ′(κ)
≤

(
2max

a′j,i(κ)

a′j′,i′(κ)

)r

for all ℓ, ℓ′, (4.3)

where the minimum and maximum are taken over all the indexes i, j, i′, j′ such that a′j,i(κ)a
′
j′,i′(κ)

6= 0.

Then it follows from Lemma 4.1 that for all κ, there exists a vectorQ′(κ) = (b′1(κ), · · · , b
′
r(κ))

as in Lemma 4.1 with respect to P ′
1(κ), · · · , P

′
q(κ).

From the definition of a′j,i(κ), for a sufficiently small choice of κ̂ > 0 (we now fix one such

choice), there exist positive rational constants γ1, γ2 such that for all 0 < κ < κ̂,

γ1 < a′j,i(κ) < γ2 (4.4)

for all i and j such that a′j,i(κ) 6= 0 (or equivalently, aj,i 6= 0).

Since ni(Q
′(κ), P ′

1(κ), · · · , P
′
q(κ)) = ni(λQ

′(κ), P ′
1(κ), · · · , P

′
q(κ)) for any rational number

λ > 0, where λQ′(κ) = (λb′1(κ), · · · , λb
′
r(κ)). We may replace Q′(κ) by some λQ′(κ), which

still satisfies (4.2) and (4.3), and normalize the coordinates so that b′1(κ) = 1. Then it follows

from (4.3) and (4.4) that, there exist positive rational constants γ3 and γ4 such that for all

0 < κ < κ̂,

γ3 < b′i(κ) < γ4, i = 1, · · · , r. (4.5)
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We now choose a fixed positive rational number δ < min{ γ1γ3

2γ2γ4
, 12} and a fixed 0 < κ0 =

κ(δ) < κ̂ such that

δγ3

r∑

i=1

Ei −
γ4

γ1

q∑

j=1

Bj(κ0) (4.6)

is Q-nef.

Set Q′ = Q′(κ0) = (b′1, · · · , b
′
r) with b′1 = 1 and let

A′ = b′1E1 + · · ·+ b′rEr.

Then A′ is Q-ample.

We define positive rational numbers

c′j := min
ℓ=1,··· ,r

b′ℓ
a′j,ℓ(κ0)

<
γ4

γ1
, j = 1, · · · , q.

Note that

A′ − c′jD
′
j(κ0) ≡

r∑

i=1

(b′j − c′ja
′
j,i(κ0))Ei

=

r∑

i=1

a′j,i(κ0)
( b′j

a′j,i(κ0)
− c′j

)
Ei,

where
b′j

a′

j,i
(κ0)

− c′j ≥ 0 for j = 1, · · · , q. Since c′jBj(κ0) is a nef R-divisor, it implies that

A′ − c′jDj is a nef Q-divisor for j = 1, · · · , q.

We first deal with the general case r ≥ 3.

Since

q ≥ rm(n + 1) +
(r − 1)(r − 2)

2
= r[m(n+ 1)− 1] +

r(r − 1)

2
+ 1,

we have

ni(Q
′, P ′

1(κ0), · · · , P
′
q(κ0)) ≥

q

r
−

r − 1

2
> m(n+ 1)− 1, i = 1, · · · , r.

Therefore,

ni(Q
′, P ′

1(κ0), · · · , P
′
q(κ0)) ≥ m(n+ 1), i = 1, · · · , r (4.7)

as ni(Q
′, P ′

1(κ0), · · · , P
′
q(κ0)) is an integer.

For i ∈ {1, · · · , r}, by hypothesis, at most (r− 1)
⌊
q
r

⌋
≤ q− q

r
of the vectors P1, · · · , Pq lie in

Span({e1, · · · , er}\{ei}). Since q > rm(n+1), it follows that there are at least
⌈
q
r

⌉
≥ m(n+1)+1

points P ′
j(κ0) with a′j,i(κ0) > 0. Combined with (4.7), this implies that

q∑

j=1

c′jD
′
j(κ0) ≥

r∑

i=1

m(n+ 1)b′iEi +

r∑

i=1

(
min
j

c′j

)(
min

j,a′

j,i(κ0) 6=0
a′j,i(κ0)

)
Ei

≥ m(n+ 1)A′ +
γ1γ3

γ2

r∑

i=1

Ei
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≥
[
m(n+ 1) +

γ1γ3

γ2γ4

]
A′.

Here, for R-divisors F1 and F2, we write F1 ≥ F2 if the difference F1 − F2 is a nef R-divisor.

Finally, we find the inequalities

q∑

j=1

c′jDj − [m(n+ 1) + δ]A′

=

q∑

j=1

c′jD
′
j(κ0)− [m(n+ 1) + 2δt]A′ + δA′ −

q∑

j=1

c′jBj(κ0)

≥
[
m(n+ 1) +

γ1γ3

γ2γ4

]
A′ − [m(n+ 1) + 2δ]A′ + δγ3

r∑

i=1

Ei −
γ4

γ1

q∑

j=1

Bj(κ0)

≥
(γ1γ3
γ2γ4

− 2δ
)
A′,

where the last inequality is due to (4.6). Therefore, by γ1γ3

γ2γ4
− 2δ > 0,

q∑

j=1

c′jDj − [m(n+ 1) + δ]A′

is Q-ample.

When r = 1, since q ≥ rm(n+ 1) + 1, we have

ni(Q
′, P ′

1(κ0), · · · , P
′
q(κ0)) ≥

q

r
−

r − 1

2
≥ m(n+ 1) + 1.

Thus

q∑

j=1

c′jD
′
j(κ0) ≥

r∑

i=1

[m(n+ 1) + 1]b′iEi

= [m(n+ 1) + 1]A′.

Then we have

q∑

j=1

c′jDj − [m(n+ 1) + δ]A′

=

q∑

j=1

c′jD
′
j(κ0)− [m(n+ 1) + 2δ]A′ + δA′ −

q∑

j=1

c′jBj(κ0)

≥ [m(n+ 1) + 1]A′ − [m(n+ 1) + 2δ]A′ + δγ3

r∑

i=1

Ei −
γ4

γ1

q∑

j=1

Bj(κ0)

≥ (1 − 2δ)A′.

Therefore, by δ < 1
2 ,

q∑

j=1

c′jDj − [m(n+ 1) + δ]A′
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is Q-ample.

When r = 2, since q ≥ rm(n+ 1) + 1, we have

ni(Q
′, P ′

1(κ0), · · · , P
′
q(κ0)) ≥

q

r
−

r − 1

2
≥ m(n+ 1).

Then the proof is the same as the case r ≥ 3 and we have

q∑

j=1

c′jDj − [m(n+ 1) + δ]A′

is Q-ample.

Now A′ is an ample Q-divisor, there exists a positive integer N big enough such that NA′

is an ample integral divisor. Set A := NA′ and cj := Nc′j for j = 1, · · · , q.

To summarize, there exist an ample divisor A and positive rational constants c1, · · · , cq, δ

such that for all j = 1, · · · , q:

A− cjDj is Q-nef (4.8)

and

q∑

j=1

cjDj − [m(n+ 1) + δ]A is Q-ample. (4.9)

Let f : C → X \
q∑

j=1

Dj be a holomophic curve.

If f is not constant, we may apply Theorem 1.4 to conclude that,

∥∥∥
q∑

j=1

cjmf(r,Dj) ≤ [m(n+ 1) + δ]Tf,A(r).

Since f(C) ∩
( q⋃
j=1

SuppDj

)
= ∅ and (2.4), we get

∥∥∥
q∑

j=1

cjTf(r,Dj) =

q∑

j=1

cjmf (r,Dj) +O(1) ≤ [m(n+ 1) + δ]Tf,A(r) + O(1),

which contradicts to our construction that
q∑

j=1

cjDj − [m(n+1)+ δ]A is Q-ample. Thus f must

be constant.

5 Schmidt Subspace Theorem

In this section, we introduce the counterpart in number theory of our main results according

to Vojta’s dictionary which gives an analogue between Nevanlinna theory and Diophantine

approximation. The line of reasoning is by now well known and we omit the details here.

Let k be a number field. Denote by Mk the set of places (i.e., equivalence classes of absolute

values) of k and write M∞
k for the set of archimedean places of k.

Let X be a projective variety defined over k, let L be a line sheaf on X and let Y be a closed

subscheme on X . For every place v ∈ Mk, we can associate the local Weil functions λL,v and
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λY,v with respect to v, which have similar properties as the Weil function introduced in Section

2. For more details, please refer to [20, Section 1.3].

Define

hL(x) =
∑

v∈Mk

λL,v(x) for x ∈ X

and

mS(x, Y ) =
∑

v∈S

λY,v(x) for x ∈ X \ SuppY,

where S is a finite subset of Mk containing M∞
k .

Now, we state the counterparts of Theorems 3.1 and 1.4.

Theorem 5.1 Let X be a projective variety, defined over a number field k, of dimension

n. Let Yj be closed subschemes of codimension codimYj(≥ 1) in X, j = 1, · · · , q. Let A be

an ample Cartier divisor on X. Let S be a finite subset of Mk containing M∞
k . Assume that

Y1, · · · , Yq are in weak m-subgeneral position. Then, for every ε > 0, there exists a proper

Zariski-closed subset Z ⊂ X such that for all points x ∈ X(k) \ Z,

q∑

j=1

codimYj · ǫYj
(A) ·mS(x, Yj) ≤ [m(n+ 1) + ε]hO(A)(x). (5.1)

Theorem 5.2 Let X be a projective variety, defined over a number field k, and Y1, · · · , Yq

be proper closed subschemes of X in weak m-subgeneral position. Let A be an ample Cartier

divisor on X. Let S be a finite subset of Mk containing M∞
k . Then, for every ε > 0, the set of

points x ∈ X(k) \
q⋃

j=1

Supp Yj with

q∑

j=1

ǫYj
(A)mS(x, Yj) ≥ [m(n+ 1) + ε]hO(A)(x) (5.2)

is a finite set.

Now, using the method shown in [8], we give an application of this theorem.

Definition 5.1 (Arithmetically quasi-hyperbolic) Given a variety V = X \D defined over

a number field k.

(i) We say that V is arithmetically quasi-hyperbolic if there exists a proper closed subset

Z ⊂ X such that for every number field k′ ⊃ k, every finite set of places S of k′ containing the

archimedean places, and every set R of (k′-rational) (D,S)-integral points on X, the set R \Z

is finite.

(ii) We say that X \D is arithmetically hyperbolic if all sets of (D,S)-integral points on X

are finite (i.e., one may take Z = ∅ in the definition of quasi-hyperbolicity).

For the notion of (D,S)-integral sets of points, please refer to [20, Section 1.4].

In [8], Heier and Levin showed the following arithmetically quasi-hyperbolicity result as an

application of [9, Corollary 1.4].
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Theorem 5.3 (see [8, Theorem 1.8(a)] Let X be a projective variety, defined over a number

field k, of dimension n. Let E1, · · · , Er be nef Cartier divisors on X with
r∑

i=1

Ei ample. Let

D1, · · · , Dq be non-zero effective (possibly reducible) Cartier divisors in general position on X

and let D =
q∑

j=1

Dj. Suppose that Dj ≡
r∑

i=1

aj,iEi, j = 1, · · · , q, where the coefficients aj,i are

non-negative real numbers. Let Pj = (aj,1, · · · , aj,r) ∈ Rr, j = 1, · · · , q. Assume that for any

proper subset T of the set of standard basis vectors {e1, · · · , er} ⊂ Rr, at most (#T )
⌊
q
r

⌋
of the

vectors P1, · · · , Pq are supported on T . If

q ≥ r(n+ 1) + 1, r = 1, 2,

q ≥ r(n+ 1) +
(r − 1)(r − 2)

2
, r ≥ 3,

then X \D is arithmetically quasi-hyperbolic.

As an application of Theorem 5.2, we have an arithmetically hyperbolicity result for divisors

in weakly m-subgeneral position as follows.

Theorem 5.4 Let X be a projective variety, defined over a number field k, of dimension

n. Let E1, · · · , Er be nef Cartier divisors on X with
r∑

i=1

Ei ample. Let D1, · · · , Dq be non-

zero effective (possibly reducible) Cartier divisors in weak m-subgeneral position on X and let

D =
q∑

j=1

Dj. Suppose that Dj ≡
r∑

i=1

aj,iEi, j = 1, · · · , q, where the coefficients aj,i are non-

negative real numbers. Let Pj = (aj,1, · · · , aj,r) ∈ Rr, j = 1, · · · , q. Assume that for any proper

subset T of the set of standard basis vectors {e1, · · · , er} ⊂ Rr, at most (#T )
⌊
q
r

⌋
of the vectors

P1, · · · , Pq are supported on T . If

q ≥ rm(n+ 1) + 1, r = 1, 2,

q ≥ rm(n+ 1) +
(r − 1)(r − 2)

2
, r ≥ 3,

then X \D is arithmetically hyperbolic.
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