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Abstract In this paper, the authors can prove the existence of translating solutions to the
nonparametric mean curvature flow with nonzero Neumann boundary data in a prescribed
product manifold M"™ x R, where M™ is an n-dimensional (n > 2) complete Riemannian
manifold with nonnegative Ricci curvature, and R is the Euclidean 1-space.
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1 Introduction

The mean curvature flow (MCF for short) is one of the most important extrinsic curvature
flows and has many nice applications. For instance, by using the curve shortening flow (i.e., the
lower-dimensional case of MCF), Topping [21] successfully gave an isoperimetric inequality on
simply connected surfaces with Gaussian curvature satisfying some integral precondition. This
result extends those isoperimetric inequalities (introduced in detail in, e.g., [6, 19]) obtained
separately by Alexandrov, Fiala-Huber, Bol, and Bernstein-Schmidt. Applying the long-time
existence and convergence conclusions of graphic MCF of any codimension in prescribed product
manifolds (see [23]), Wang [24] showed that for a bounded C? convex domain I (with diameter
0 and boundary dD) in the Euclidean n-space R™ and ¢ : 0D — R™ a continuous map, there
exists a map ¢ : D — R™, with ¢|sp = ¢ and with the graph of ¢ a minimal submanifold in
R™™™ provided v|gp is a smooth map and 8nd s%p |D?4p| + ﬁs{;g) |D1| < 1. This conclusion

provides classical solutions to the Dirichlet problem for minimal surface systems in arbitrary
codimensions for a class of boundary maps. Specially, when m = 1, the existence of ¢ was
obtained by Jenkins and Serrin [14] already. Inspired by Wang’s work mentioned above, by
applying the spacelike MCF in the Minkowski space R"*"" Mao [16] can successfully get the
existence of ¢ for maximal spacelike submanifolds (with index n) in R,
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In the early study of the theory of MCF, a classical result from Huisken [11] says that a
given compact strictly convex hypersurface M™ in R"! evolving along the MCF would contract
to a single point at finite time. More precisely, let X (-,¢) = X; be a one-parameter family of
immersions X; : M™ — R"*! whose images M* = X;(M™") satisfy

%X@¢pﬂ§cmMﬂme) (1.1)

for some 7' > 0, with the initial condition X (x,0) = Xo(z) on M", where H is the mean
curvature vector of the evolving hypersurface M;*, by using the method of L? estimates, Huisken
[11] proved that if M™ is a compact strictly convex hypersurface in R"*!, the MCF equation
(1.1), with the initial condition, has a unique smooth solution on the finite time interval [0, Tyax)
with Thax < 00, and the evolving hypersurfaces M;* contract to a single point as t — Tiax-
By imposing a pinching condition on the second fundamental form of the initial hypersurface,
Huisken [12] has extended the above conclusion to a more general setting that the ambient
space R™*! was replaced by a class of smooth complete Riemannian manifolds N**! having
some uniform bounds for curvatures and injectivity radius (of course, N"*! covers R"*1 as
a special case). From these two facts, one might know that generally the MCF would occur
singularity at finite time. A natural question is in the following.

Problem 1 When does the MCF exist for all the time?

That is to say, under specified setting, there is no singularity formed during the evolution
of MCF.

If there exists a constant vector V' such that

H=v"

then the evolving submanifold X; : M™ — R"*™ is called a translating soliton of the MCF
equation (1.1). Here (-)* denotes the normal projection of a prescribed vector to the normal
bundle of M/* in R™*". It is easy to see that the translating soliton gives an eternal solution
X; = Xo +tV to (1.1), which is called the translating solution. Translating solitons play an
important role in the study of type-II singularities of the MCF. For instance, Angenent and
Veldzquez [4-5] gave some examples of convergence which implies that type-II singularities of
the MCF are modeled by translating surfaces. Clearly, the existence of translation solutions to
(1.1) can give a positive answer to Problem 1.

Huisken [13] considered the evolution of graphic hypersurfaces over a bounded domain (with
smooth boundary) in R™ under the MCF with a vanishing Neumann boundary condition (NBC
for short), and proved that the flow exists for all the time and evolving graphic hypersurfaces
in R"*! converge to the graph of a constant function as t — co. The vanishing NBC here has
strong geometric meaning, that is, the evolving graphic hypersurface is perpendicular with the
parabolic boundary during the evolution (or the contact angle between the evolving graphic
hypersurface and parabolic boundary is 7). Is the vanishing NBC necessary? What about the
non-vanishing case? There are many literatures working on this direction and we would like
to mention some of them. When the dimension n satisfies n = 1 or n = 2, Altschuler and Wu
[2-3] gave a positive answer to these questions. In fact, they proved:

e When n = 1, a graphic curve defined over an open bounded interval evolves along the flow
given by a class of quasilinear parabolic equations (of course, including the MCF as a special
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case), with arbitrary contact angle (i.e., with nonzero NBC), would exist for all the time, and
the evolving curves converge as t — oo to a solution moving by translation with speed uniquely
determined by the boundary data.

e When n = 2, a graphic surface defined over a compact strictly convex domain (with smooth
boundary) in R? evolves along the MCF, with arbitrary contact angle (i.e., with nonzero NBC),
would exist for all the time, and the evolving surfaces converge as t — oo to a surface (unique up
to translation) which moves at a constant speed (uniquely determined by the boundary data).

For the higher dimensional case, Guan [10] has given a partial answer. In fact, he can
get the long-time existence of the evolution of graphic hypersurfaces, defined over a bounded
domain (with smooth boundary) in R™, under a nonparametric mean curvature type flow (i.e.,
the MCF with a forcing term given by an admissible function defined therein) with nonzero
NBC. However, the asymptotic behavior of the flow cannot be obtained in his setting. Zhou [25]
extended Altschuler-Wu'’s conclusion (see [3]) to the situation that graphic surfaces were defined
over a compact strictly convex domain (with smooth boundary) in 2-dimensional Riemannian
surfaces M? with nonnegative Ricci curvature, and extended Guan’s conclusion (see [10]) to
the situation that graphic hypersurfaces were defined over a bounded domain (with smooth
boundary) in n-dimensional (n > 2) Riemannian manifolds M™. However, similar to Guan’s
work (see [10]), Zhou [25] also cannot give the asymptotic behavior of the MCF with a forcing
term (given by an admissible function) and with nonzero NBC in product manifolds M™ x R.
Recently, Ma, Wang and Wei [15] improved Huisken’s work (see [13]) to a more general setting
that the vanishing NBC therein can be replaced by a nonzero NBC of specialized type.

Our purpose here is trying to extend the main conclusion in [15] to a more general case —
the ambient space R™*! will be replaced by product manifolds of type M™ x R, where M™ is
a complete Riemannian manifold of nonnegative Ricci curvature.

Throughout this paper, let (M™, o) be a complete n-manifold (n > 2) with the Riemannian

metric o, and let Q C M™ be a compact strictly convex domain with smooth boundary 9f2.
_9_
8’wi 9

Denote by (Ua; w}4, wi, --+,w') the local coordinate coverings of M, and
A
the corresponding coordinate vector fields, where A € I C N with N the set of all positive

i:1727"'7n7

integers. For simplicity, we just write {wh,w?%, - ,w%} as {w!, w? -+ w"} to represent the

6673 as 86 - or O;. In this setting, the metric o should
w w

A

local coordinates on M, and write

be o = En: oirdw’ ® dw’ with o;; = 0(8;,0;). Denote by D the covariant derivative on
ij=1
Q. Now, sve would like to consider, along the MCF (1.1) with nonzero NBC, the evolution of
graphic hypersurfaces, defined over €2, in product manifold M™ x R with the product metric
g = 0i;dw’ ® dw’ +ds®ds. More precisely, given a smooth! graphic hypersurface G € M™ x R
defined over 2, then there exists a smooth function ug € C°° () such that G can be represented
by G := {(z,up(z)) | * € }. It is not hard to know that the metric of G is given by g = i*g,
where ¢* is the pullback mapping of the immersion ¢ : G < M"™ x R, tangent vectors are given

by

51281+D1U857 7::1,2,"',7’11,

Hn fact, it is not necessary to impose smoothness assumption on the initial hypersurface G. The C2-
regularity for G is enough to get all the estimates in the sequel. However, in order to avoid the boring regularity
arguments, which is not necessary, here we assume G is smooth.
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and the corresponding upward unit normal vector is given by

i Diud; — 0,

=1

e V14 [Du?

where D’u = > 0" D;u. Denote by V the covariant derivative operator on M™ x R, and then
i=1
the second fundamental form h;jdw’ @ dw’ of G is given by

Lo D;Dju
hij = (Ve,€j,7)g = -

Vs ek

Moreover, the scalar mean curvature? of G is

Z": gikDkau Z (Uik o D?‘uD’Cu)Dkau

n _ _ T+ Dul?
; i,k=1 i,k=1
H:E ht = = =2 . (1.2)
p 1+ |Dul? V14 |Dul?

Hence, in our situation here, the evolution of G under the MCF with nonzero NBC in M"™ x R
with the metric g can be reduced to solvability of the following initial-boundary value problem
(IBVP for short)

du _ zn: (aij M)Dlpju in Q% [0,7),

0 ot = 1+ |Dul?
Dyu = ¢(x) on 09 x [0,7),
U(-, O) = UO() on QO?

where 7 is the inward unit normal vector of 9, Q; = Q x {t} is a slice in Q x [0,T), up(x) €
C>(Q) and ¢(z) € C>(Q2) are smooth functions satisfying

Uy = ¢(x) on Q. (1.3)

w

Here (1.3) is called compatibility condition of system (#), and a comma “” in the subscript
means doing covariant derivative with respect to a prescribed tensor. This convention will also
be used in the sequel. For the IBVP (), we can prove the following theorem.

Theorem 1.1 If the Ricci curvature of M™ is nonnegative, Q& C M™ is a compact strictly
convex domain with smooth boundary 0X), then for the IBVP (f), we have

(1) the IBVP (%) has a smooth solution u(x,t) on Q x [0, 00);

(2) the smooth solution u(x,t) converges ast — oo to At + w(x), i.e.,

Jim Jlu(z, t) — (A + w(@)) | cogm) =0,

n ..
2 In fact, the mean curvature H is computed as H = 5. g% h;; with the second fundamental form h;; given
i,5=1
D;Dju
V1+|Dul?’

(equivalently, choosing an opposite orientation for the unit normal vector), then H = —div(

by hij = (Vg €, V)7 = However, if one uses another definition for h;j, that is, hij = —(Vg, €5, 9)7

Du d
\/1+\Du\2)7 an
consequently, the evolution equation in (f) does not change. Obviously, there is no essential difference between
these two settings.
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where A € R and w € C**(Q) (unique up to a constant) solving the following boundary value
problem (BVP for short)

. D'uDiu

i Z 22 V\DDiu=)\ inQ,

w {2 (7 T ) PO i
1,7=1

Dyu = ¢(x) on 09.

Here 0 < a <1 and X is called the additive eigenvalue of the BVP ().

Remark 1.1 (I) By (1.2), it is easy to know that

. DiyDj Du
3 (m 1 +7DuT2)D Dyu=H-/T+|Duf2 = dlv(\/m) V/1+ [Dul?,
ij=1

which, substituting into the first equation of (1), implies

div( Dw ) _ A
1+ |Dw? V1+ [Dwl?’

where u = w(x) is the solution to the BVP (I). Integrating the above equality and using the
divergence theorem, one can get

¢(x)
Joa \/mdx
Jo(1+ |Dwf?)~2dz

Clearly, if ¢(z) = 0, then A = 0. Moreover, in this setting, for the IBVP (f), as t — oo, its
smooth solution u(x,t) would converge to a constant function defined over Q C M™.

(II) We would like to mention one thing, that is, if M™ = R™ and ¢(z) = 0, then Theorem
1.1 here degenerates into Huisken’s main conclusion in [13]; if M™ = R™, our main conclusion
here becomes exactly [15, Theorems 1.1-1.2].

(IIT) Recent years, the study of submanifolds of constant curvature in product manifolds
attracts many geometers’ attention. For instance, Hopf in 1955 discovered that the complexi-
fication of the traceless part of the second fundamental form of an immersed surface 32, with
constant mean curvature (CMC for short) H, in R? is a holomorphic quadratic differential Q
on Y2, and then he used this observation to get his well-known conclusion that any immersed
CMC sphere S? — R3 is a standard distance sphere with radius % By introducing a generalized
quadratic differential Q for immersed surfaces X2 in product spaces S? x R and H? x R, with
S?, H? the 2-dimensional sphere and hyperbolic surface, respectively, Abresch and Rosenberg
[1] can extend Hopf’s result to CMC spheres in these target spaces. Meeks and Rosenberg
[18] successfully classified stable properly embedded orientable minimal surfaces in the product
space M xR, where M is a closed orientable Riemannian surface. In fact, they proved that such
a surface must be a product of a stable embedded geodesic on M with R, a minimal graph over
a region of M bounded by stable geodesics, M x {t} for some ¢t € R, or is in a moduli space of
periodic multigraphs parameterized by P x RT, where P is the set of primitive (non-multiple)
homology classes in Hi(M). Mazet, Rodriguez and Rosenberg [17] analyzed properties of pe-
riodic minimal or constant mean curvature surfaces in the product manifold H? x R, and they
also constructed examples of periodic minimal surfaces in H? x R. In [20], Rosenberg, Schulze
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and Spruck showed that a properly immersed minimal hypersurface in M x RT equals some slice
M x {c} when M is a complete, recurrent n-dimensional Riemannian manifold with bounded
curvature. Of course, for more information, readers can check references therein of these pa-
pers. Hence, it is interesting and important to consider submanifolds of constant curvature in
the product manifold of type M™ x R. Based on this reason, in our setting here, it should be
interesting and important to consider the following CMC equation with nonzero NBC:

. Du oy
(h) H = le(W) =)\ in Q,
Dyu = ¢(z) on 0.

Of course, all the symbols in the above system have the same meaning as those in (). The
existence and uniqueness of solution to the BVP (i) have been obtained recently (see [9] for
details).

(IV) The evolution of space-like surfaces in the Lorentz 3-manifold M? x R under the
MCF with arbitrary contact angle (of course, in this situation, the NBC is nonzero) has been
investigated in [7], and the long-time existence and the existence of translating solutions to the
flow have been obtained.

(V) As we know, if the warping function was chosen to be a constant function, then warped
product manifolds would degenerate into product manifolds. Hence, one might ask “whether
one could expect to get a similar conclusion to Theorem 1.1 in warped product manifolds or
not?”. By constructing an interesting graphic hypersurface example in a prescribed warped
product (see [25, Appendix A]), Zhou gave a negative answer to this question. Speaking in
other words, he showed that the MCF with nonzero NBC in warped product manifolds would
form singularities within finite time.

(VI) In fact, Huisken [13] considered the following IBVP:

u _ Zn: (5”’ M)iju in Q% [0,7),

ot = 1+ |Dul?
Dpu =0 on 002 x [0,T),
u(,0) = uo(+) on Qo,

which, as mentioned before, describes the evolution of graphic hypersurfaces over Q C R™ under
the MCF with a zero NBC, and obtained the long-time existence, i.e., T'= co. The vanishing
NBC here means that
(7,75 = <= =0,
VT D

which is to say ¥ L 7/, i.e., the contact angle between ¥ and 7 is 5. If the contact angle is
arbitrary, then the corresponding NBC should have the form Dyulgq = ¢(x) - \/1 4+ |Dul? for
some ¢(x) € C®(Q), |o(z)] <1 on 99, and ¢(x) = ug 7 on I). Based on this reason, we can
say that although the IBVP (#) has nonzero NBC, the geometric meaning of the NBC in (f) is
not sufficient. Can we deal with the IBVP (f) if the RHS of the nonzero NBC therein contains
Du also? Inspired by a recent work (see [22]), Gao and Mao [8] considered a generalization of
the IBVP (#) where the NBC can be replaced by

Dyu = ¢(z) - (v/1+ [Du?) ="
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for any ¢ > 0, and similar conclusion to Theorem 1.1 could be derived.

This paper is organized as follows. In Section 2, the time-derivative estimate, the gradient
estimate, and the estimate for higher-order derivatives of u will be shown in detail, which nat-
urally lead to the long-time existence of the IBVP (). In Section 3, by using an approximating
approach, the solvability of the BVP (f) can be given first, which will be used later to get the
asymptotic behavior of solutions u to the IBVP (4).

2 The Long-Time Existence
For convenience, we use several notations as follows:

= /14 |Dul?,

gij = 0ij + DjuDju,

i i D'uDlu
g- = Ia=—
1+ |Dul?
ou
Up = —.
o

For vectors V., W or matrices A, B, we shall use the shorthand as follows:
o= gIviw;, Z dIViW;, (A Bgo= > g7c™AxBy.
i,j=1 i,j=1 i,4,k,1=1

First, by applying a similar method to that in the proof of [3, Lemma 2.2], we would like to
show the time-derivative estimate for w.

Lemma 2.1 For the IBVP (4), we have

sup |Ut|2 = sup |Ut|2-
Ox[0,T] Qo

That is to say, there exists some positive constant co = co(ug) € RT such that for any (z,t) €
Q x [0,T), we have

|ut|2(x, t) < ¢p.

Proof We first show that the maximum of |u;| must occur on (9 x [0,7]) U Q. By a

direct computation, we have

= 69“ ij
Z 2ut(WDiDju +g DiDjut)

4,j=1

- 8¢ 9OD*u
= Z 2utang T DDu—i—Zg DD|ut| — 2DjusDjuy)

i,,k=1 4,j=1

= g% dDFu i
”Zk:_12u 3DFu B ——D,D; u—|—”Z:197DD |ut| 2(Duy, Dut)
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n o ij o le n B
Z Qut g MDiDju—i— Z g”DiDj|ut|2 — 2<Dut,Dut>U

k
7;7j)k3;l:1 aD u at i7j:1
n 891'3‘ . ) n y ,
= apky 0 DiDjubiluel” + > 97 DiDjlu|* - 2(Duy, Duy)o,
1,5,k,1=1 ij=1

which implies

sup |Ut|2 = sSup |Ut|2
Qx[0,T] (0Qx[0,T])UQ0

by directly applying the weak maximum principle.
Next, we expel the possibility that the maximum occurs at 9 x [0,7]. Assume that

2 2
m = , >0
QX&?}WJ |ug|*(&,7)

3 : Olus|?
for some (£,7) € 00 x [0,T]. By the Hopf leanzT; it follows that =z% €
O|ut

boundary condition of the IBVP (4), one has =5& en = 2 (Dpul(e) = &(d(x)) =0. Tt is
a contradiction. Therefore, the maximum cannot be achieved at 9 x [0,7T]. The conclusion of

< 0. But by the

Lemma 2.1 follows.

We know that if  is a strictly convex domain with smooth boundary 0f2, then there exists
a smooth function 5 on Q such that Slq < 0, Slaq = 0, sup |DF| < 1,
Q

(Bij)nxn Z k0(5ij)nxn
for some positive constant ko > 0, 7 = D8 = —1 and |DS| = 1 on 0. Besides, since Q is
strictly convex, we have
(hiajﬂ)(n—l)x(n—l) > £1(0i5) (n—1)x (n—1)>

where h?jQ, 1 <i,7 <mn—1,is the second fundamental form of the boundary 92, and x; > 0

is the minimal principal curvature of 9).

Lemma 2.2 Assume that u(z,t) € C>2(Q x [0,T)) is a solution to the IBVP (%), and the
Ricci curvature of M™ is nonnegative. Then there exists a constant ¢1 := c1(n, Q, ug, ¢(x)) such
that

sup |Du| < ¢;.
Qx[0,T)

Proof To reach the conclusion of this lemma, we only need to prove that for 0 < T’ < T,
we can bound |Du| on Q X [0,7”) independent of 7" and then take a limit argument.
Let

O(x) = log|Do.)|2 + f(8),
where

w=u+¢(x)s, [f=(p,
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and ( is a positive constant which will be determined later. For convenience, denote by G =
~$(2)B. -

We firstly show that the maximum of ®(z) on 2 x [0, 7"] cannot be achieved at the boundary
o0 x [0,T"].

Choose a suitable local coordinate around a point zg € Q such that 7, is the inward unit
normal vector of 092, and 7;, i = 1,2,--- ,n — 1 are the unit smooth tangent vectors of 9.
Denote by Dru = u;, Dyju = uj, Dy Dru = uyy; for 1 < i,5 < n.® By the boundary
condition, one has

Dy, wloa = wnloo = unloa + (#nB + Bnd)|on = 0.
If ®(z,t) attains its maximum at (zg,to) € 9Q x [0,7”], then at (o, o), we have

| Dwl,
0>®, = -
B | De|?

n—1
Z 2WkD7—nD7—kw . C
|Dwl?

—¢

k=1
N 24 () — (Do)l
1 |Dw|?

n

>
Il
|
—

20w* (Do, T ) (W)
|Dw|?

|
(]

—¢

SR
_ =

kawj <Dran7 Tj>g
|Dwl?

—¢

I
M

=1

|
_

_ = 20Rw (D Ty o) o ¢
. |Dwp

n—l kawjhg?

= Z [Dw|?

k,j=1
> 2k — C. (2.1)

>
Il

—¢

Hence, by taking 0 < ¢ < 21, the maximum of ® can only be achieved in Q x [0,7"]. By the
way, there is one thing we would like to mention here, that is, in (2.1), the relation

n n—1
wk:§ :oklwl: § :O'kl’w[
=1 =1

holds. Here we have used the convention in Riemannian geometry to deal with the subscripts
and superscripts, and this convention will also be used in the sequel.
Assume that ®(z,t) attains its maximum at (xo,to) € Q x [0,7’]. By direct calculation, we

have
|Dw|?
Dy (wo,t0) = !
( ) ) |Dw|2 )
3Covariant derivatives of other tensors can be simplified similarly. For instance, one has w; = Drw, wij =

D, DT]. w.
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Duw|?
®;(z0,t0) = :leg +¢Bi=0 (2.2)
and
o (oo 1oy D9 IDWBIDLE
zg(an 0) - |DUJ|2 - |DUJ|4 +C i
|D°‘) gj 2
Since ¢¥ = o — %, we have
0> > g%, — o,
i,j=1
- 1|Dw|f |Dw|; —~ 5 N i
D R RED WIS o
ij=1 ij=1 ij=1
21+ Iy, (2.4)
where
n 2
j= Z ij | Dl B |Dwl?
2 TDeE T TDap
and
Iy=Y"(¢g"Bij — C*g" Bi3;).
ij=1
At (z0,t0), one can make a suitable change® to the coordinate vector fields {71, 72, -+ , 75}
such that [Du| = w1, (uij)2<ij<n is diagonal, and (oyj)2<i j<n is diagonal. Clearly, in this
setting, o'! = 1. Besides, we have
n_ 1 ij . C it i .
g =—=, ¢g7=0 for2<i,j<n,i#j and g¢g"=o0" fori>2,
v
g . DDy
iy, — (0 _ 220
(9" ) (0 v2 )k

n

(Qu};uj Z 2umumkuiuj)
n V2 v ’

m=1

where v = /1 + [Dul? = /1 + u2.

Assume that u; is big enough such that uy, wi, w!, |Dw| and v are equivalent with each
other at (zg,tp). Otherwise, the conclusion of Lemma 2.2 is proved. It is also noticeable that
|wi] < eo, i =2,---,n for some nonnegative constant cy. Here, in the proof, ¢y is denoted to

4This change can always be found. In fact, one can firstly rotate 7;, i = 1,2,--- ,n, such that the gradient
vector Du lies in the same or the opposite direction with 71. Denote the hyperplane, which is orthogonal with
71, by II. Then rotate 72,73, -+ , T in II, corresponding to an orthogonal matrix, such that the real symmetric
matrices (Uij)a<i j<n, (04j)2<i,j<n change into diagonal matrices.
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be a nonnegative constant which may change in different places but has nothing to do with 7’

Since (Bij)nxn = ko(dij)nxn, one can easily get

n

=) (Cg7Bi; — 29V BiB))

4,j=1
i1 ko 2 ﬁ% - i1 Q2
>g[zak 5] - (Y8, (25)
i=2
Set J := E 9" |Dwl?; — |Dw|?, one has
1,7=1
7= g9Dwf — |Dwl?
1,7=1
= Z g% (2wfwki + 2w W) — 2 Zwkwtk
i,5,k=1 k=1
= Z 97 [2whwy; + 2w (ugjr + Rékjul — Glikj)] — 2 Zw Wik

ijk =1 =1
= Z 97 2whwri + 2w (ugjk + Ripjur — Girg)] — 2 Zw Wik

i.j,k=1 =1

= QZwk Z uwk + lejul Gikj) — wtk} +2 Z gijwkz

k=1 =1 i, k=1
=2> | > g7 (wigk + Ripyun = Gigr) - Utk} +2 ) gw
k=1 i.j=1 ij,k=1
= -9 Z gijkaijk +2 Z gijkalkjul —2 Z WP kum + 2 Z g”w;ﬂwk
i,7,k=1 i,7,k=1 i,7,k=1 i,7,k=1
£+ Jo+ Js+ Ja,
where lej, 1<4,4,k,1 <n, are coefficients of the curvature tensor on M™. It is obvious that
Jl =-2 Z gijkaijk
i5,k=1
> —Cov. (2.6)

In fact, using the nonnegativity of the Ricci curvature on M™, we

Next we deal with J5, J3.

have
n
Jy =2 Z g”ka%kjul
',j k=1
_ i i, k w lel
220 RYL 02 +2 Z olw Rmv+2R111+2Z :
i,k=2 k=2

> cov® + O(1)v + 2R}y,
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and

Jsz =

By (2.2)-

and

By (2.8),

Y. Gao, Y. J. Gong and J. Mao

> cpv? + O(1)w (2.7)

1
n i, n m, i, j
UL U U4 UU U U Ui
_ § 4wk k ! J E 4wk ; J
v “ v
1 m,i,j,k=1
il ) n 3
O ULUIEUL; 24 rUTUIEULL
v2 v
1 k=1

w ’U,11 u wulullul w ula ul wa ulu iUl
Saslln gy gy sl gy ST

I
=~ <.
=M= %
N
&

,_.

£ J31 + Jag + Jaz + Jaa.

(2.3), for 2 <i < n, we have

—(BilDw|* — 2wiuy; +2 > wkGi

-G = o k=2 (2.8)
" 2w (g — Gu) 2w (u11 — G11)
E — _ 7 2.

=

for 2 < i < n, it follows that

—Cﬂi|Dw|2 — 2wiuii + 2 E kaik
k=2

Uy = + G

2w

(1). (2.10)

n 2wi(u G n i —Cﬁi|Dw|Q — 2wiu“- +2 Z wk@G k
1 — 11 k=2
Z |Dw|? Z Dw|2( 2wt

¢Bil i AR
S0y S Bty

By (2.10)—(2.11), we have

2w1(u11 - Gll) _ - |<61 uu 2wikaki
—Cf1 — e ZO( ) Z |Dw|2 _22 [DwPwt ’

=

2
g 22O o1y o Do %)

v



Translating Solutions of the Nonparametric Mean Curvature Flow

So
U1 = —_<51U+ZO( )uu+0( )

Now, we deal with Js1, J3o, Js3, J34, respectively. It is obvious that
J31 + J33 > 0.

For the term J3z,

- wiuu u
10110145
Jgp =4y S

- v
1=2

—ay (e %Cﬁlv+i0(v—12)uii+0(1)) (- 5¢p0 - m)

=o(2) o() X fo ('wl)+0('Cﬁ")}uﬂ+20(ve)

Besides, we have

WU ulu iU
J34—4Z 7 W

_42n:wu10 u”(——C@
iO( Yo+ 3 008

1=2

)

y (2.13)—(2.15), it follows that

23 [o( %) ro( L) 33 [0(4) + o5  onga

+o(S) ()

Then, for J,, we have

n
Jy=2 E g”wkiwf
i\j k=1

n
=92 E qg¥ Uklwkiwlj
L, ij k=1

= 22 wli 2 + 22 O'ii(wli)2 =+ 22(0”)2(%1»)2
1=2 1=2

ZZ":(1+ )cr uh—l—z )

1=2
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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By (2.6)—(2.7), (2.16) and (2.18), we write all the terms containing u;; in J as below

3 [0() +0l5x) + i+ 3 005 + 05+ 0K

=2
~ 0(I¢Bil*)
E_Z (gi)2

=2

where the inequality holds since az? 4 bz > —% for a > 0. Therefore, we can obtain

J=Ji+Jo+J3+ Jy

> — Z E'{fﬁ)l ) — v+ O(1)w + cov?. (2.18)
=2
Hence,
J
L =——
L [Dwp?
> 2 4+ 0 — O(1)o — ca0?
1=2
> - Dap . (2.19)

By (2.4)—(2.5) and (2.19), at the maximum point (zg, %), we can get

O Z i gijq)ij — (I)t

i,j=1

> OEL‘;?;E) + cov — O(1)v — cov?
> =2

IDwI2

+C[Zo“k + } 42(ﬂ1+z “52)
2 C[;giiko+ Iz—g} —C2(f—§ +;U”Bf)

Let A = min(c?), A = max(c™), i > 2. Taking 0 < ¢ < min {w, 2k1}, we can obtain
U($0,t0) < C3,

where c3 is independent of T”. Then the conclusion of Lemma 2.2 follows immediately.

By Lemmas 2.1-2.2, together with the Schauder estimate for parabolic PDEs (i.e., one can
control C%® by C®, and then, by iterating, the regularity can be improved), we can get uniform
estimates in any C*-norm for the derivatives of u, and locally (in time) uniform bounds for the
C®-norm, which leads to the long-time existence, with uniform bounds on all higher derivatives
of u, to the IBVP (#). This finishes the proof of (1) of Theorem 1.1.

3 Asymptotic Behavior

In order to study the asymptotic behavior of the solution to the IVBP (), we need the
following two conclusions.
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Lemma 3.1 Let Q be a strictly conver bounded domain in M™, n > 2, and 02 € C3.
Assume that € > 0, the Ricci curvature of M™ is nonnegative, ¢ is a function defined on Q,

and there exists a positive constant L > 0 such that
|¢|cs(§) S L.

Let u € C*(Q) N C3(Q) be a solution to the following BVP:

"/ .. DwuDlu ,
cu = ; (a i_ W)DiDju in Q,

Dyu = ¢(x) on 0N.

(3.1)

Then there exists a constant cq := c4(n, 2, L) > 0 such that

sup |Du| < ¢4.
Q

Proof Let ®(z) = log|Dw|? + (B3, where w = u + ¢(z)3, and ¢ will be determined later.
Denote by G = —¢(z)p.

If one chooses 0 < < 21, using an almost same procedure as that in (2.1), it is easy to
show that the maximum of ® can only be achieved in the interior of €.

Assume that ®(z) attains its maximum at g € 2, then we have at this point that

| Dwl?

and

N L Lo
= z](xO) — |DLU|2 - |DUJ|4 +<ﬁz]
|Dw fj )

It follows that

i,j=1
n y | Dw|?, n y n y
= 2 g 2 GBS oA,
ij=1 ij=1 ij=1
é Il + 12’ (32)
where
" |Dwl|?
I = (%] 3
' Z g |Dw|?
1,7=1
and

L= ¢g"Bi;— > gBiB;.

i,7=1 i,7=1
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As in Lemma 2.2, one can choose suitable local coordinates around z such that |Du| = uq,

(uij)ggi)jgn is diagonal, and (O'ij)ggi)jgn is diagonal. Similarly, for the term I, at zy, we have

B[y 7] - (B 3 o)

1=2

n ..
Set J := . ¢"|Dwl[;;. By direct calculation, one has
ig=1

J = Z gij|Dw|12j

ij=1

g (wawki + 2wF W)

n
i,j,k=1
n

gij [20.)?601@1' + ka(uijk + Rﬁkjul — Gikj)]
4,5,k =1

n n
ij, k 1 ij, k
> gUw (uik + Riyur — Garg) +2 Y g7wfwn
i.jk= ijk=1

n

k=1
n n
2 E g”kaijk—i—2 E g”kaZ,ﬁul—Q E WP kuw
',jk 1 i\jk=1 i\j k=1

+2Zw (eug) + 2 Z g o.);”

i,j,k=1
ENh+Jo+Js+ Jy+ Js.

=2

Without loss of generality, one may assume that u; is big enough, then
Jy = 2¢0v% > 0.

Otherwise, the conclusion of Lemma 3.1 follows.

As in Lemma 2.2, the other terms Jy, Jo, Js, Js5 can be controlled similarly. In (3.2), taking
0 < ¢ < min {w,2/€1}, we can obtain

v(zg) < s

for some positive constant c¢; := c5(n, 2, L), which is independent of €. Then the assertion of
Lemma 3.1 follows.

Theorem 3.1 Let Q be a strictly convex bounded domain in M™ with C® boundary OS2,
n > 2. Assume that the Ricci curvature of M™ is nonnegative. For ¢p(x) € C3(X0), there eists
a unique X € R and w € C*%(Q) solving the BVP (1). Moreover, the solution w is unique up
to a constant.

Proof We use a similar method to that of the proof of [15, Theorem 1.2].

For each fixed € > 0, we firstly show the existence of the solution to the BVP (3.1). Based
on the Ct-estimate (see Lemma 3.1), the only obstacle is to derive a priori C%-estimate for the
solution u.(z) to the BVP (3.1).
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Let f be a smooth function on Q satisfying Dyf < —sup|¢(x)|. Let p be a point where
Q

| — ue achieves its minimum. Denote by 7" the tangent vector to 9§2. If p € 9, then Drf(p) =
Dru-(p) and Dy f(p) > Dyuc(p) = ¢(p), which is contradict with the choice of f. So, p € Q,
and then Df(p) = Du.(p) and D?f(p) > D?u.(p). This gives the existence of a constant
c6 = cg(f) such that

n n

6> Y g7 (Df)fii(p) > > g7 (Duc)(ue)i(p) = cus(p)

ij=1 ij=1

Together with the fact f(z) — uc(z) > f(p) — ue(p) for x € Q, we have

cuc(z) < ef (@) — £ (p) + co.

Similarly, one can get a lower bound for eu.(z). Therefore, sup |eu:| < c¢; holds for some
Q
nonnegative constant ¢;. By the standard theory of second-order elliptic PDEs,? one can get

the existence of the solution to the BVP (3.1).
Set w, := u. — ﬁ fQ usdx. It is easy to check that w. satisfies

g w ) (w-)! 1 .
i,j=1

Dpw: = (we)y = ¢(x) on 9.

sup | Dw| = sup |Duc| < ¢y
Q Q

(see Lemma 3.1) and the fact that w. has at least one zero point, we have |w.| < ¢g for some
nonnegative constant cg := cs(c4, ¢7), which also gives the boundedness of ﬁ Jo(eue)dz. By the
Schauder theory for second-order elliptic PDEs, one has |w,| cro@) < Co for some nonnegative
constant ¢g := cg(cg). Taking e — 0, we have w. — w and ew, +5|—§12‘ fQ usdx — A, where (\, w)
solves the BVP (7).

Assume that there exist two pairs (A1,u1) and (A2, usz) solving the BVP (1). Without loss
of generality, we may assume that A\; < X\o. Let w = u; — us, and by the linearization process
for the quasilinear elliptic PDEs, it is clear that w satisfies

Z Giwi + Zbiwi =X — X <0 inQ,
ij=1 i=1

Dyw =0 on 02,

(3.3)

where g% = ¢ (Duy) and b; = Y (u2)m fol g% (nDuy + (1 — n)Dusy)dn. By Hopf’s lemma, w
k=1
must be a constant, which gives the uniqueness (up to a constant) of the solution to the BVP

(1). Consequently, we have Ay = Ao. This completes the proof of Theorem 3.1.

5In fact, here we can use two steps based on the standard theory of second-order elliptic PDEs to get the
existence.

Step 1: Denote by (x); a family of boundary value problems indexed by a parameter 4 in a bounded closed
interval, say [0,1]. Moreover, when ¢ = 1, ()1 is exactly the target equation (i.e., BVP (3.1)), and when ¢ = 0,
(*)o is a BVP which can be solved.

Step 2: Show that the set A of all ¢ € [0, 1] for which BVPs (x); can be solved is not only open but also closed,
which means A should be the whole segment 0 < i < 1. Therefore, the target equation can be solved.
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Let
W(z,t) == w+ M, (3.4)

where (A, w) is the solution to the BVP (1). It is easy to check that @ solves the following IBVP

n

Iy DiuDiuy

Dyu = ¢(x) on 99 x (0, 00),
u(z,0) = w(x) on €.

(3.5)

As mentioned at the end of Section 2, by Lemmas 2.1-2.2, the Schauder theory for parabolic
PDEs, one can obtain the long-time existence for the IBVP (f), i.e., T = occ.

Corollary 3.1 For a solution u = u(x,t) to the IBVP (), there exists a positive constant
c10, independent of t, such that

lu(z,t) — At| < cio.

Proof Set z(z,t) := u(x,t) — &(x,t). By the linearization process, it is easy to check that
z(z,t) satisfies

2t = Z §ijzij + szzz in Q % (0,00),
ij=1 i=1
Dyz=0 on 99 x (0, 00),
2(x,0) = up(x) — w(x) on €,
where g% = ¢"(Du) and b; = Y (@)w fol g% (nDu+(1—n)D&)dn. By the maximum principle
k=1
of second-order parabolic PDEs, we know that z attains its maximum and minimum on Qx {0}.

Hence, one has

sup |u— M| < sup |w| 4 sup |ug — w|,
Q% (0,00) Q Q

which implies the conclusion of Corollary 3.1.

Lemma 3.2 Letuy and us be any two solutions to the IBVP (8) with initial data uo,1 and ug 2
respectively. Let u = uy — usg, then u converges to a constant function as t — oo. In particular,
the limit of any solution to the IBVP (#) is & up to a constant.

Proof We use a similar method to that of the proof of [15, Lemma 2.5].
As shown in Corollary 3.1, it is easy to know that u satisfies

Zt = E ﬁijzij + szzl in Q x (0,00),

ig=1 i
2, =0 on 99 x (0, 00), (36)

z(x,0) = uo,1(x) —ug2(x) on

where g% = ¢g¥(Duy) and b; = > (u2)n fol g% (nDuy + (1 —n)Dugy)dn. Set
k=1

osc(u)(t) = max u(z, t) — inn u(x,t).
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By the strong maximum principle of second-order parabolic PDEs and Hopf’s lemma, one knows
that osc(u)(t) is a strictly decreasing function unless u is a constant.
Now, we claim that

lim osc(u)(t) = 0.

t—o0

Otherwise, one has tlim osc(u)(t) = x for some x > 0. In fact, given a sequence t, — —+00,
—00
define

ul,n(-,t) = ul(-,t + tn) — Ay,
and
UQ)n(',t) = ’U,Q(-,t + tn) — Ay,

By Corollary 3.1, for i = 1,2, we have |u; , — At| < ¢19. By Lemmas 2.1-2.2 and the Schauder
theory of second-order parabolic PDEs, it follows that for any k, uy ,(-,t) and us (-, t) are
locally (in time) C* uniformly bounded with respect to n. Therefore, there exists a subsequence
(still denoted by t¢,) such that ui ,(-,t) and ug.,(-,t) converge locally uniformly in any C* to
ui (-, t) and u3(-,t), respectively, i.e.,

’Uff(, t) = nh—>ngo Ul,n(', t)v u;(v t) = nh_%o u2,n('a t)'

*_

Set u* := uj — u3, and then we have

osc(u®)(t) = osc(uj — uj)

= lim osc(uy(x,t + tn) — My — uz(x,t + t,) + Mp)

n—oo (
(

= lim osc(ui(z,t+t,) — ua(z,t +ty))

n—r oo

= lim osc(u)(t + t,)

n—oo

=X (3.7)

The second equality in (3.7) holds since uy (-, t) and us (-, ) are uniformly convergent.
Besides, it is easy to check that u* satisfies

ze= > §9zij+ Y biz; inQx (—o0,00),
t,j=1 i=1
Dyz =0 on 90 x (—oo, 00),

where g7 = ¢"(Du¥) and b; = > (ud)m fol g (nDui + (1 — n)Duj)dn. By the strong max-
k=1
imum principle of second-order parabolic PDEs and Hopf’s lemma, we know u* is a constan-

— 00

tlim n}zinu = ¢ for some constant ¢11, which implies tlim |u—c11| = 0. This finishes the proof
—00 —00

of Lemma 3.2.

t. This is contradict with osc(u*)(t) = x. Our claim follows. So, one has tlim maxu =

Clearly, by Corollary 3.1 and Lemma 3.2, we know that the limit of any solution to the
IBVP () is @ = w + At up to a constant, where (A\,w) is the solution to the BVP (1). This
completes the proof of (2) of Theorem 1.1.
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