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Abstract In this paper, the authors first introduce the tree-indexed Markov chains in

random environment, which takes values on a general state space. Then, they prove the

existence of this stochastic process, and develop a class of its equivalent forms. Based on

this property, some strong limit theorems including conditional entropy density are studied

for the tree-indexed Markov chains in random environment.
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1 Introduction

Tree-indexed random process is one subfield of probability theory developed recently. Ben-

jamini and Peres [3] gave the definition of tree-indexed Markov chains and studied the recurrence

and the ray-recurrence of them. Berger and Ye [4] studied the existence of entropy rate for some

stationary random fields on a homogenous tree. Ye and Berger [33–34], by using Pemantle’s

result (see [23]) and a combinational approach, obtained Shannon-McMillan theorem in proba-

bility for a PPG-invariant and ergodic random field on a homogenous tree. Yang and Liu [31]

studied the strong law of large numbers and Shannon-McMillan theorem for Markov chain fields

on trees (a particular case of tree-indexed Markov chains and PPG-invariant random fields).

Yang [30] obtained the strong law of large numbers and the Shannon-McMillan theorem for

tree-indexed Markov chains. Huang and Yang [17] studied the strong law of large numbers and

Shannon-McMillian theorem for Markov chains indexed by a uniformly bounded tree. Dong,

Yang and Bai [14] studied the strong law of large numbers and the Shannon-McMillan theorem

for nonhomogeneous Markov chains indexed by a Cayley tree. Dembo, Mörters and Sheffield

[13] studied large deviations of Markov chains indexed by random trees. Guyon [15] gave the

definition of homogeneous bifurcating Markov chains indexed by a binary tree taking values in

general state space which is the generalization of bifurcating autoregressive model and studied
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their limit theorems, and applied these results to detect cellular aging. Delmas and Marsalle

[12] studied asymptotic results for bifurcating Markov chains indexed by Galton-Watson tree

instead of a regular tree. Dang, Yang and Shi [11] studied the equivalent properties of discrete

form of nonhomogeneous bifurcating Markov chains indexed by a binary tree, meanwhile the

strong law of large numbers and the Shannon-McMillan theorem were studied for these Markov

chains with finite state space. Peng, Yang and Shi [24] studied the strong law of large numbers

and Shannon-McMillan theorem with a.e. convergence for finite Markov chains indexed by a

spherically symmetric tree. Yang and Yang [29] established the generalized entropy ergodic

theorem for nonhomogeneous Markov chains indexed by a Cayley tree. Shi and Yang [27] gave

the definition of tree-indexed Markov chains in discrete random environment. Shi, Zhong and

Fan [28] studied the strong law of large numbers and Shannon-McMillan theorem for Markov

chains indexed by a Cayley tree in a Markovian environment on discrete state space. Shi,

Wang et al. [26] have studied the generalized entropy ergodic theorem for non-homogeneous

bifurcating Markov chains indexed by abbinary tree.

The research on Markov chains in random environment has a quite long history. Nawrotzki

[21–22] established its theoretical foundations. Cogburn [8–10] constructed a Hopf-chain, and

used Hopf-chain theorem to develop a series of theorems for Markov chains in random envi-

ronment which contains ergodic theorem, central limit theorem, periodic relationship between

direct convergence and transfer functions and the existence of invariant probability measure.

Hu and Hu [16] studied the equivalence theorems of Markov processes in random environment

with continuous time parameter. Liu and Li et al. [18] investigated the strong limit theorems

for the conditional entropy density for Markov chain in a bi-infinite random environment by

constructing a nonnegative martingale.

In this paper, the definition of tree-indexed Markov chains in random environment is pro-

posed, where the state of random environment takes values in a general state space. Meanwhile,

we give certain equivalent form of tree-indexed Markov chains in random environment, and ver-

ify the existence of this stochastic process on some probability space. Finally, some strong limit

properties including a strong limit theorem of conditional entropy density are studied for the

tree-indexed Markov chains in random environment.

The rest of this paper is organized as follows. In Section 2, we describes some preliminar-

ies, some concepts and properties of tree-indexed Markov chains in random environment are

provided. In Section 3, we provide some equivalent properties and existence for tree-indexed

Markov chains in random environment. In Section 4, we present some strong limit theorems

for tree-indexed Markov chains in random environment. Finally, the proofs of some theorems

(Theorems 3.1–3.2 and 4.1) are provided in Section 5.

2 Preliminaries

Let T be a locally finite and infinite tree, and for any two vertices σ 6= t ∈ T , there exists

a unique path σ = z1, z2, · · · , zm = t from σ to t, where z1, z2, · · · , zm are distinct and zi, zi+1

are adjacent vertices. Thus the distance from σ to t is defined as m− 1, namely, the number of
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edges in the path connecting σ and t. In order to label the tree T , we select a vertex as root o.

For any two vertices σ and t of tree T , we write σ ≤ t if σ is on the unique path from root o to

t. Let σ ∧ t be the vertex satisfying σ ∧ t ≤ t and σ ∧ t ≤ σ.

Let t be any vertex of T and we write |t| as the distance from o to t. The expression |t| = n

indicates that vertex t is on the nth level of T . Let Ln denote the set containing all the vertices

on the nth level, and Ln
m denote the set of all the vertices from level m to level n. We denote

the subtree of tree T by T (n), which contains the vertices from level 0 (the root o) to level

n. If the root of a tree has N neighboring vertices and other vertices have N + 1 neighboring

vertices, we call this type of tree a Cayley tree and denote it by TC,N . That is, for any vertex

t of Cayley tree TC,N , it has N neighboring vertices on the next level (see Figure 1). For any

vertex t of T , we denote the predecessor of t by 1t, t is called the son of 1t. Let σ be any vertex,

if σ ∧ t ≤ 1t, we say σ is in the front of t. Let T t = {σ | σ ∧ t ≤ 1t} denote the set of all vertices

that are in front of t (see Figure 2).

Let (Ω,F ,P) be a probability space, and T be any tree, {Xt, t ∈ T } be a tree-indexed

stochastic process defined on (Ω,F ,P). Consider a subgraph A of T , denote XA = {Xt, t ∈ A},

let xA be the realization of XA, and denote by |A| the number of vertices of A.
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Figure 1 Cayley tree TC,2.
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Figure 2 The vertices of T t.

We first introduce the definition of Markov chain indexed by tree as follows.
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Definition 2.1 (see [14]) Let T be a locally finite and infinite tree, and χ = {1, 2, · · · } be

a discrete state space. Suppose that {Xt, t ∈ T } is a collection of random variables defined on

probability space (Ω,F ,P) taking values in χ. Let p = {p(x), x ∈ χ} be a probability distribution

on χ and {Pt = pt(x, y), t ∈ T } be a collection of transition matrices. If for any t ∈ T \{o},

P(Xt = y | XT t

) = P(Xt = y | X1t) = pt(X1t , y) a.e., ∀ y ∈ χ (2.1)

and

P(Xo = xo) = p(xo), ∀xo ∈ χ. (2.2)

{Xt, t ∈ T } will be called the tree-indexed nonhomogeneous Markov chains with initial distri-

bution p and transition matrices {Pt, t ∈ T } taking values in χ, or called nonhomogeneous

Markov chains indexed by a tree with initial distribution p and transition matrices {Pt, t ∈ T }

taking values in χ. If Pt have nothing to do with t, {Xt, t ∈ T } will be called the tree-indexed

homogeneous Markov chains with initial distribution p and transition matrix {Pt = P, t ∈ T }.

Remark 2.1 If we select a suitable regular conditional probability, (2.1) can be represented

as follows:

P(Xt = y | XT t

= xT t

) = P(Xt = y | X1t = x1t) = pt(x1t , y), ∀ y ∈ χ. (2.3)

Remark 2.2 Above definition is a natural generalization of the definition of homogenous

Markov chains indexed by trees (see [3]).

Let χ = {1, 2, · · · },A be σ-field produced by all subsets of χ, and (Θ,B) be a metric space,

where B is Borel σ- field. Let ξT = {ξt, t ∈ T } and XT = {Xt, t ∈ T } be a collections of random

variables on probability space (Ω,F ,P) taking values in Θ and χ, respectively. Suppose pθ =

{p(θ;x), x ∈ χ}, θ ∈ Θ, is a distribution with parameter θ and Pθ = {p(θ;x, y), x, y ∈ χ}, θ ∈ Θ,

is a transition matrices with parameter θ defined on χ2. We assume that p(θ;x) are measurable

on B for fixed x and p(θ;x, y) are also measurable on B for fixed x, y.

In the following, we will provide the definition of tree-indexed Markov chains in random

environment, which is closely related to the definition of Markov chains indexed by a tree defined

by Definition 2.1 and the definition of Markov chains in single infinite random environment.

Before doing this, we first review the definition of Markov chains in single infinite random

environment.

Definition 2.2 (see [8]) Let ~X = {Xn, n ≥ 0} and ~ξ = {ξn, n ≥ 0} be two sequences of

random variables taking values in χ and Θ, respectively. If

P(Xo = xo | ~ξ) = p(ξo;xo) a.e. (2.4)

and

P(Xn+1 = xn+1 | ~ξ, ~Xn
0 ) = p(ξn;Xn, xn+1) a.e., (2.5)

where ~Xn
0 = {X0, · · · , Xn}. Then ( ~X, ~ξ) will be called Markov chains in single infinite random

environment with the initial distribution pθ with parameter θ and transition matrices Pθ with

parameter θ.
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Similar to the definition of Markov chains in single infinite random environment and the

definition of tree-indexed Markov chains, we will give the definition of tree-indexed Markov

chains in random environment as follows.

Definition 2.3 Let ξT = {ξt, t ∈ T } and XT = {Xt, t ∈ T } be double tree-indexed stochastic

processes on probability space (Ω,F ,P) taking values in Θ and χ, respectively. If

P(Xo = xo | ξT ) = p(ξo;xo) a.e. (2.6)

and

P(Xt = xt | ξ
T , XT t

) = p(ξ1t ;X1t , xt) a.e., ∀ t ∈ T \{o}. (2.7)

XT will be called tree-indexed Markov chains in random environment ξT determined by distri-

butions pθ with parameter θ and transition matrices Pθ with parameter θ, or (XT , ξT ) will be

called tree-indexed Markov chains in random environment.

Remark 2.3 From Definition 2.3, it is easy to see that if (XT , ξT ) is a tree-indexed Markov

chain in random environment, let A be a subset of T t which contains 1t, then

P(Xt = xt | ξ
T , XA) = p(ξ1t ;X1t , xt) a.e., ∀ t ∈ T \{o}. (2.8)

Remark 2.4 If Θ is a discrete set. The definition of tree-indexed Markov chains in ran-

dom environment becomes the definition of tree-indexed Markov chains in discrete random

environment (see [27]).

Remark 2.5 If ξT only takes fixed point cT = {ct, t ∈ T }, then XT is a nonhomogeneous

Markov chain indexed by tree with initial distribution p(c0;x) and the transition matrices {Pt =

p(c1t ;x, y), t ∈ T }. In fact, in this case, P(Xo = xo) = P(Xo = xo | ~ξ) and p(ξo;xo) = p(co;xo)

a.e.. Hence we have

P(Xo = xo) = p(co;xo).

Since also

P(Xt = y | XT t

) = P(Xt = y | ξT , XT t

) = p(ξ1t ;X1t , xt) = p(c1t ;X1t , xt) a.e..

So the above conclusion is true.

If for any t ∈ T, ct = c0, then XT is a homogeneous Markov chain indexed by trees with

initial distribution p(c0;x) and the transition matrix {P = p(c0;x, y), t ∈ T }.

Remark 2.6 If there is only one son for each vertex of the tree, and T is the nonnegative

integer set N, the tree-indexed Markov chains in random environment will degenerate into

Markov chains in single infinite random environment.

3 Equivalent Properties and Existence

In this section, we present the equivalent properties for tree-indexed Markov chains in ran-

dom environment.
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Theorem 3.1 Let T be a locally finite and infinite tree, and (XT , ξT ) be double tree-indexed

stochastic process defined on the probability space (Ω,F ,P) taking values in (χ,Θ). Then the

following four propositions are equivalent:

(a) (XT , ξT ) is a tree-indexed Markov chain in random environment defined as in Definition

2.3;

(b) XT and ξT satisfy (2.6) and

P(XLn = xLn | ξT , XT (n−1)

) =
∏

t∈Ln

p(ξ1t ;X1t , xt) a.e.; (3.1)

(c) XT and ξT satisfy (2.6) and

P(XT (n)

= xT (n)

| ξT ) = p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt) a.e.; (3.2)

(d) (XT , ξT ) has the following finite dimensional distribution : For any m,n ∈ N and t ∈ T ,

Bt ∈ B,

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt)dPξT , (3.3)

where PξT is a distribution of ξT .

The proof of this theorem can be found in Section 5.

Remark 3.1 From (d) of Theorem 3.1 and Kolmogorov’s extension theorem, there exists a

tree-indexed Markov chain in random environment (XT , ξT ) defined on some probability space

(Ω,F ,P) such that (3.3) holds. In Theorem 3.2, we also provide an alternative approach to

prove the existence of tree-indexed Markov chains in random environment.

Corollary 3.1 If Θ is a countable set, (XT , ξT ) is a tree-indexed Markov chain in discrete

random environment if and only if

P(ξT
(n)

= θT
(n)

, XT (n)

= xT (n)

)

= P(ξT
(n)

= θT
(n)

)p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt). (3.4)

Proof If Θ is a countable set, from (d) of Theorem 3.1, (XT , ξT ) is a tree-indexed Markov

chain in discrete random environment if and only if

P(ξT
(m)

= θT
(m)

, XT (n)

= xT (n)

)

=

∫

{ξT
(m)

=θT
(m)

}

p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)dP. (3.5)

Letting m = n in (3.5), (3.4) follows. The proof of necessity is complete.
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Next we prove sufficiency. Assume that (3.4) holds. For m ≤ n,

P(ξT
(m)

= θT
(m)

, XT (n)

= xT (n)

)

=
∑

θ
Ln
m+1

P(ξT
(n)

= θT
(n)

, XT (n)

= xT (n)

)

=
∑

θ
Ln
m+1

P(ξT
(n)

= θT
(n)

)p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt) (3.6)

and
∫

{ξT
(m)

=θT
(m)

}

p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)dP

=
∑

θ
Ln
m+1

∫

{ξT
(n)

=θT
(n)

}

p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)dP

=
∑

θ
Ln
m+1

P(ξT
(n)

= θT
(n)

)p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt). (3.7)

Hence (3.5) holds in this case.

For m > n,

P(ξT
(m)

= θT
(m)

, XT (n)

= xT (n)

)

=
∑

x
Lm
n+1

P(ξT
(m)

= θ
T

(m)

, XT (m)

= xT (m)

)

=
∑

x
Lm
n+1

P(ξT
(m)

= θT
(m)

)p(θo;xo)
∏

t∈T (m)\{o}

p(θ1t ;x1t , xt)

= P(ξT
(m)

= θT
(m)

)p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt) (3.8)

and
∫

{ξT
(m)

=θT
(m)

}

p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)dP

= P(ξT
(m)

= θT
(m)

)p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt). (3.9)

In this case, (3.5) also holds. Thus we complete the proof.

Corollary 3.2 Let T be a local finite and infinite tree, and χ = {1, 2, · · · } be a countable

state space. Let {Xt, t ∈ T } be a collection of random variables defined on probability space

(Ω,F ,P) taking values in χ. Then the following descriptions are equivalent :

(a) {Xt, t ∈ T } is a tree-indexed nonhomogeneous Markov chain defined as in Definition

2.1.

(b) For any positive integer n, XT satisfies (2.2) and

P(XLn = xLn | XT (n−1)

) =
∏

t∈Ln

pt(X1t , xt) a.e.. (3.10)
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(c) For any positive integer n, and for any xT (n)

∈ χT (n)

, we have

P(XT (n)

= xT (n)

) = p(xo)
∏

t∈T (n)\{o}

pt(x1t , xt). (3.11)

Proof Let ξT take a fixed point cT = {ct, t ∈ T }, and p(co;x) = p(x), p(c1t ;x, y) =

pt(x, y), t ∈ T . Since

P(Xo = xo | ξT ) = P(Xo = xo), (3.12)

p(xo) = p(co;xo) = p(ξo;xo) a.e. (3.13)

and

P(Xt = y | ξT , XT t

) = P(Xt = y | XT t

), (3.14)

pt(X1t , y) = p(c1t ;X1t , y) = p(ξ1t ;X1t , y) a.e.. (3.15)

Then (XT , ξT ) is a tree-indexed Markov chain in random environment with initial distribution

p(c0;x) and transition matrices {Pt = {p(c1t ;x, y)}, t ∈ T } if and only if XT is a tree-indexed

Markov chain with the initial distribution p(x) and transition matrices {Pt = {pt(x, y)}}. By

Theorem 3.1, this is equivalent to

P(Xo = xo | ξT ) = p(ξ0;x0) = p(c0;x0) = p(xo) (3.16)

and

P(XLn = xLn | ξT , XT (n−1)

) =
∏

t∈Ln

p(ξ1t ;x1t , xt)

=
∏

t∈Ln

p(c1t ;x1t , xt) =
∏

t∈Ln

pt(x1t , xt) a.e.. (3.17)

This is also equivalent to (3.16) and

P(XT (n)

= xT (n)

| ξT ) = p(ξ0;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)

= p(c0;xo)
∏

t∈T (n)\{o}

p(c1t ;x1t , xt) = p(xo)
∏

t∈T (n)\{o}

pt(x1t , xt) a.e.. (3.18)

Since (3.12) holds,

P(XLn = xLn | XT (n−1)

) = P(XLn = xLn | ξT , XT (n−1)

) (3.19)

and

P(XT (n)

= xT (n)

) = P(XT (n)

= xT (n)

| ξT ). (3.20)

This corollary follows.
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Corollary 3.3 Let ( ~X, ~ξ) = {Xn, ξn, n ≥ 0} be a sequence of random variables taking values

in (χ,Θ). Then the following descriptions are equivalent :

(a) ( ~X, ~ξ) is a Markov chain in single infinite random environment with the initial distri-

bution p(θ;x) and transition matrices Pθ = {p(θ;x, y)} which contain a parameter θ defined by

Definition 2.2;

(b) ( ~X, ~ξ) satisfies (2.3) and

P( ~Xn
0 = ~xn

0 | ~ξ) = p(ξo;xo)

n
∏

k=1

p(ξk−1;xn−1, xn) a.e., (3.21)

where ~xn
0 is the realization of ~Xn

0 .

(c) For m,n ∈ N and ∀ i ∈ N, Bi ∈ B,

P
(

m
⋂

i=0

{ξi ∈ Bi}, ~X
n
0 = ~xn

0

)

=

∫

m⋂

i=0

{θi∈Bi}

p(θo;xo)
n
∏

k=1

p(θk−1;xk−1, xk)dP~ξ
, (3.22)

where P~ξ
is a distribution of ~ξ.

Proof The corollary is a special case of Theorem 3.1, where T is the set of nonnegative

integers N.

In this following, we will show the existence of tree-indexed Markov chains in random envi-

ronment on some probability space.

Let (χT ,AT ) and (ΘT ,BT ) be two measurable space. Define a function K(·, ·),ΘT ×AT →

[0, 1], satisfying (i). For any θT ∈ ΘT , K(θT , ·) is a probability measure on AT . (ii). For

any A ∈ AT , K(·, A) is a measurable function about BT . We say that K(·, ·) is a probability

transition kernel from (ΘT ,BT ) to (χT ,AT ).

Lemma 3.1 There exists a probability transition kernel K(·, ·) from (ΘT ,BT ) to (χT ,AT ),

satisfying

K(θT , XT (n)

= xT (n)

) = p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt). (3.23)

Proof By Kolmorgrov existence theorem, it is easy to see that (3.23) can generate a

probability measure on (χT ,AT ) denoted by K(θT , ·). Meanwhile, it is easy to see that for any

cylinder sets {XT (n)

= xT (n)

}, K(θT , XT (n)

= xT (n)

) is a measurable function on BT . Hence,

for any A ∈ AT , K(θT , A) is a measurable function on BT by monotone class theorem. Thus

K(·, ·) is a probability transition kernel from (ΘT ,BT ) to (χT ,AT ).

Theorem 3.2 Let (χT × ΘT ,AT × BT ) be a measurable space. Let m be a probability

measure on (ΘT ,BT ), and K(·, ·) be a probability transition kernel from (ΘT ,BT ) to (χT ,AT )

defined as in Lemma 3.1. Define an orbital process on (χT × ΘT ,AT × BT ) as following :

XT (xT , θT ) = xT , ξT (xT , θT ) = θT (∀ω = (xT , θT ) ∈ χT × ΘT ), i.e., (XT (ω), ξT (ω)) = ω. Set

a probability measure µP on (χT ×ΘT ,AT × BT ), satisfying

µP ((X
T , ξT ) ∈ C) =

∫

ΘT

K(θT , CθT )m(dθT ), (3.24)
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where C ∈ AT ×BT , and CθT is a section of C. Then (XT , ξT ) is a tree-indexed Markov chain

in random environment under the probability measure µP .

The proof of this theorem is provided in Section 5.

4 Some Strong Limit Theorems

In this section, we will present some strong limit theorems of tree-indexed Markov chains in

random environment.

Lemma 4.1 Let (XT , ξT ) be a tree-indexed Markov chain in random environment defined

as in Definition 2.3, and let f(θT ;x, y) be a function such that for any (x, y) ∈ χ2, f(·;x, y)

is a Borel measurable functions on BT . Assume that, for any t ∈ T \{o}, the integral of

f(ξT ;X1t , Xt) exists. Then we have for any t ∈ T \{o},

E[f(ξT ;X1t , Xt) | F|t|−1] =
∑

xt∈χ

f(ξT ;X1t , xt)p(ξ1t ;X1t , xt) a.e., (4.1)

where Fn = σ{ξT , XT (n)

}.

Proof By Definition 2.3, we have for any t ∈ T \{o},

E[I{ξT∈BT }I{X1t=x1t}
I{Xt=xt} | F|t|−1]

= I{ξT∈BT }I{X1t=x1t}
E[I{Xt=xt} | F|t|−1]

= I{ξT∈BT }I{X1t=x1t}
p(ξ1t ;X1t , xt) a.e., (4.2)

where BT = {Bt, t ∈ T } and {Bt ∈ B}. From (4.2) and the general method of measure theory,

(4.1) follows.

Theorem 4.1 Let (XT , ξT ) be a tree-indexed Markov chain in random environment as

defined in Definition 2.3, and {gt(θ
T ;x, y), t ∈ T \{o}} be a collection of ternary real-valued

functions defined on ΘT×χ2 such that for any x, y ∈ χ, gt(·;x, y) are Borel measurable functions

on BT . Let gt = gt(ξ
T ;X1t , Xt). If there exists a constant b > 0 such that

lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

E[g2t e
b|gt| | F|t|−1] ≤ M < ∞ a.e., (4.3)

where M is a positive constant and Fn = σ{ξT , XT (n)

}. Then

lim
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{gt(ξ
T ;X1t , Xt)− E[gt(ξ

T ;X1t , Xt) | F|t|−1]} = 0 a.e.. (4.4)

The proof of this theorem will be given in Section 5.

Corollary 4.1 Let (XT , ξT ) be a tree-indexed Markov chain in random environment defined

as Definition 2.3. Let Sn(y) be the number of y in set of random variables {Xt, t ∈ T (n)}, and

Sn(x, y) be the number of (x, y) in the set of random couples {(X1t , Xt), t ∈ T (n)\{o}}, i.e.,
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Sn(y) =
∑

t∈T (n)

δy(Xt), Sn(x, y) =
∑

t∈T (n)\{o}

δx(X1t)δy(Xt), where δx(·) is Kronecker δ function.

Then for arbitrary x, y ∈ χ, we have

lim
n→∞

{Sn(y)

|T (n)|
−

1

|T (n)|

∑

t∈T (n)\{o}

p(ξ1t ;X1t , y)
}

= 0 a.e., (4.5)

lim
n→∞

{Sn(x, y)

|T (n)|
−

1

|T (n)|

∑

t∈T (n)\{o}

δx(X1t)p(ξ1t ;X1t , y)
}

= 0 a.e.. (4.6)

Proof For any t ∈ T \{o}, let gt(ξ
T ;X1t , Xt) = δy(Xt) and gt(ξ

T ;X1t , Xt) = δx(X1t)δy(Xt)

be in Theorem 4.1, respectively. Obviously, gt(ξ
T ;X1t , Xt) satisfies the conditions of Theorem

4.1. Noticing that

E[δy(Xt) | F|t|−1] = p(ξ1t ;X1t , y) a.e.

and

E[δx(X1t)δy(Xt) | F|t|−1] = δx(X1t)p(ξ1t ;X1t , y) a.e.,

thus (4.5) and (4.6) follow immediately by Theorem 4.1.

Let T be a local finite and infinite tree, XT and ξT be two tree-indexed stochastic processes

taking values in χ and Θ, respectively. Denote

P (xT (n)

| ξT ) = P(XT (n)

= xT (n)

| ξT ).

Let

fn(ω) = −
1

|T (n)|
logP (XT (n)

| ξT ).

fn(ω) is called the conditional entropy density of XT (n)

. If (XT , ξT ) is a tree-indexed Markov

chain in random environment defined as Definition 2.3, by (c) of Theorem 3.1, we have

fn(ω) = −
1

|T (n)|

[

log p(ξo;Xo) +
∑

t∈T (n)\{o}

log p(ξ1t ;X1t , Xt)
]

. (4.7)

The entropy density is an important notion in information theory. Entropy density converg-

ing to a constant in a sense (L1 convergence, convergence in probability, a.e. convergence) is

called the Shannon-McMillan theorem, or the entropy theorem, or the asymptotic equipartition

property (AEP for short) in information theory. Shannon [25] first proved the AEP for conver-

gence in probability for stationary ergodic information sources with finite alphabet. McMillan

[20] and Breiman [5] proved the AEP for stationary ergodic information sources with finite

alphabet in L1 and a.e. convergence, respectively, Chung [6] considered the case of countable

alphabet. The AEP for general stochastic processes can be found, for example, in Barron [2]

and Algoet and Cover [1]. Liu and Yang [19] proved the AEP for a class of nonhomogeneous

Markov information sources. Yang and Liu [32] studied the AEP formth-order nonhomogeneous

Markov information source. Dang, Yang and Shi [11] studied the AEP for nonhomogeneous

bifurcating Markov chains indexed by a binary tree with finite state space. Shi, Zhong and Fan

[28] studied the AEP of tree-indexed Markov chain in Markovian environment on countable

state space.
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In the following, let χ = {1, 2, · · · , N}, we will give the strong limit theorem of the condi-

tional entropy density for tree-indexed Markov chains in random environments.

Theorem 4.2 Let χ = {1, 2, · · · , N}, and let (XT , ξT ) be a tree-indexed Markov chain

in random environment taking values in χ × Θ defined as in Definition 2.3, and fn(ω) be the

conditional entropy density defined by (4.7). Then

lim
n→∞

{

fn(ω) +
1

|T (n)|

∑

t∈T (n)\{o}

N
∑

y=1

p(ξ1t ;X1t , y) log p(ξ1t ;X1t , y)
}

= 0 a.e.. (4.8)

Proof Let gt(θ
T ;x, y) = − log p(θ1t ;x, y), b = 1

2 in Theorem 4.1. Using the inequality

(log x)2x
1
2 ≤ 16e−2 with 0 ≤ x ≤ 1, from Lemma 4.1, we have

lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

E[{− log p(ξ1t ;X1t , Xt)}
2e

1
2 | log p(ξ1t ;X1t ,Xt)| | F|t|−1]

= lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

N
∑

y=1

{− log p(ξ1t ;X1t , y)}
2e

1
2 | log p(ξ1t ;X1t ,y)|p(ξ1t ;X1t , y)

= lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

N
∑

y=1

{log p(ξ1t ;X1t , y)}
2p

1
2 (ξ1t ;X1t , y) ≤ 16Ne−2 < ∞. (4.9)

By Lemma 4.1 and Theorem 4.1, noticing that

1

|T (n)|

∑

t∈T (n)\{o}

{gt(ξ
T ;X1t , Xt)− E[gt(ξ

T ;X1t , Xt) | F|t|−1]}

=
1

|T (n)|

∑

t∈T (n)\{o}

{− log p(ξ1t ;X1t , Xt) + E[log p(ξ1t ;X1t , Xt) | F|t|−1]}

= −
1

|T (n)|

∑

t∈T (n)\{o}

log p(ξ1t ;X1t , Xt) +
1

|T (n)|

∑

t∈T (n)\{o}

N
∑

y=1

p(ξ1t ;X1t , y) log p(ξ1t ;X1t , y),

we have

lim
n→∞

−
1

|T (n)|

{

∑

t∈T (n)\{o}

log p(ξ1t ;X1t , Xt)

−
∑

t∈T (n)\{o}

N
∑

y=1

p(ξ1t ;X1t , y) log p(ξ1t ;X1t , y)
}

= 0 a.e. (4.10)

By (4.7) and (4.10), (4.8) follows directly.

Remark 4.1 If there is only one son for each vertex of the tree, the tree-indexed Markov

chains in random environment will degenerate into Markov chains in single infinite random envi-

ronment. Thus we can easily obtain the similar results of Markov chains in random environment

(see [18, Theorem 3.1, Corollaries 3.2–3.3]).
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5 The Proofs

In this section, we will prove Theorems 3.1–3.2 and 4.1.

Proof of Theorem 3.1 (a) ⇒ (b). Suppose that (2.6) and (2.7) are true. We just need to

prove (3.1) holds. We have by the tower principle of conditional expectation and Remark 2.3,

P(XLn = xLn | ξT , XT (n−1)

)

= E[I{Xt=xt}I{XLn\t=xLn\t} | ξT , XT (n−1)

]

= E[E[I{Xt=xt}I{XLn\t=xLn\t} | ξT , XT (n−1)

, XLn\t] | ξT , XT (n−1)

]

= E[I{XLn\t=xLn\t}E[I{Xt=xt} | ξT , XT (n−1)

, XLn\t] | ξT , XT (n−1)

]

= E[I{XLn\t=xLn\t}p(ξ1t ;X1t , xt) | ξ
T , XT (n−1)

]

= p(ξ1t ;X1t , xt)E[I{XLn\t=xLn\t} | ξT , XT (n−1)

]

= · · ·

=
∏

t∈Ln

p(ξ1t ;X1t , xt) a.e..

Thus, (3.1) follows.

(b) ⇒ (c). Assume that (2.6) and (3.1) hold, we only need to prove (3.2) holds. Using (2.6),

(3.1) and the tower principle of conditional expectation, we have

P (XT (n)

= xT (n)

| ξT )

= E
[

n
∏

k=0

I{XL
k=xL

k}

∣

∣

∣
ξT

]

= E
[

E
[

n
∏

k=0

I{XL
k=xL

k}

∣

∣

∣
ξT , XT (n−1)

]∣

∣

∣
ξT

]

= E
[

n−1
∏

k=0

I{XL
k=xL

k}E[I{XLn=xLn} | ξT , XT (n−1)

]
∣

∣

∣
ξT

]

= E
[

n−1
∏

k=0

I{XL
k=xL

k}

∏

t∈Ln

p(ξ1t ;X1t , xt)
∣

∣

∣
ξT

]

= E
[

n−1
∏

k=0

I{XL
k=xL

k}

∏

t∈Ln

p(ξ1t ;x1t , xt)
∣

∣

∣
ξT

]

=
∏

t∈Ln

p(ξ1t ;x1t , xt)E
[

n−1
∏

k=0

I{XL
k=xL

k}

∣

∣

∣
ξT

]

= · · ·

=
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)E[I{Xo=xo} | ξT ]

= p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt) a.e.. (5.1)

It follows by (5.1) that (3.2) holds, thus the proof of (c) is completed.
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(c) ⇒ (d). Suppose that (2.6) and (3.2) are true, we need to prove (3.3) holds. For any

positive integers m,n, since

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=

∫

⋂

t∈T
(m)

{ξt∈Bt}

E[I
{XT

(n)
=xT

(n)
}
| ξT ]dP

=

∫

⋂

t∈T
(m)

{ξt∈Bt}

p(ξo;xo)
∏

t∈T (n)\{o}

p(ξ1t ;x1t , xt)dP

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt)dPξT ,

where the last equality is established by integral transformation theorem (see [7, Theorem

3.2.2]), thus (d) follows.

(d) ⇒ (a). Assume that (3.3) is true, we need to prove (2.6) and (2.7) hold. Firstly, we

prove (2.6) holds. In order to prove (2.6), we only need to prove that for any positive integer

m,

∫

⋂

t∈T
(m)

{ξt∈Bt}

P(Xo = xo | ξT )dP =

∫

⋂

t∈T
(m)

{ξt∈Bt}

p(ξo;xo)dP. (5.2)

We have by (3.3) and integral transformation theorem,

∫

⋂

t∈T
(m)

{ξt∈Bt}

P(Xo = xo | ξT )dP = P
(

Xo = xo,
⋂

t∈T (m)

{ξt ∈ Bt}
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)dPξT =

∫

⋂

t∈T
(m)

{ξt∈Bt}

p(ξo;xo)dP,

thus (5.2) holds, so we complete the proof of (2.6). Next, we will prove (2.7). Without loss of

generality, we assume that t ∈ Ln. To prove (2.7), we just need to prove that for any positive

integers m and l,

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

P(Xt = xt | ξ
T , XT t

)dP

=

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

p(ξ1t ;X1t , xt)dP. (5.3)
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We discuss the following three situations: Case 1. If l < n, noticing that T t
⋂

T (l) = T (l), we

have
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

P(Xt = xt | ξ
T , XT t

)dP

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, Xt = xt, X
T t

⋂
T (l)

= xT t
⋂

T (l)
)

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, Xt = xt, X
T (l)

= xT (l)
)

=
∑

xi,i∈Ln

l+1
\{t}

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=
∑

xi,i∈Ln

l+1\{t}

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o}

p(θ1i ;x1i , xi)dPξT

=
∑

xi,i∈L
n−1
l+1

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θ1t ;x1t , xt)p(θo;xo)
∏

i∈T (n−1)\{o}

p(θ1i ;x1i , xi)dPξT . (5.4)

Since

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n−1)

= xT (n−1)
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n−1)\{o}

p(θ1i ;x1i , xi)dPξT , (5.5)

we have by (5.5),
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

p(ξ1t ;X1t , xt)dP

=

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(l)

=xT
(l)
}

p(ξ1t ;X1t , xt)dP

=
∑

xi,i∈L
n−1
l+1

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n−1)

=xT
(n−1)

}

p(ξ1t ;X1t , xt)dP

=
∑

xi,i∈L
n−1
l+1

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n−1)

=xT
(n−1)

}

p(ξ1t ;x1t , xt)dP

=
∑

xi,i∈L
n−1
l+1

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θ1t ;x1t , xt)p(θo;xo)
∏

i∈T (n−1)\{o}

p(θ1i ;x1i , xi)dPξT . (5.6)
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Combining (5.4) and (5.6), we obtain (5.3) for l < n. Case 2. If l = n, noticing that T t
⋂

T (n) =

T (n)\{t} for t ∈ Ln, we have
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

P(Xt = xt | ξ
T , XT t

)dP

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, Xt = xt, X
T t

⋂
T (l)

= xT t
⋂

T (l)
)

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, Xt = xt, X
T (n)\{t} = xT (n)\{t}

)

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o}

p(θ1i ;x1i , xi)dPξT . (5.7)

On the other hand,

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T t

⋂
T (l)

= xT t
⋂

T (l)
)

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)\{t} = xT (n)\{t}

)

=
∑

xt

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=
∑

xt

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o}

p(θ1i ;x1i , xi)dPξT

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o},{t}

p(θ1i ;x1i , xi)dPξT . (5.8)

We have by (5.8),
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

p(ξ1t ;X1t , xt)dP

=

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n)\{t}=xT

(n)\{t}
}

p(ξ1t ;x1t , xt)dP

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θ1t ;x1t , xt)p(θo;xo)
∏

i∈T (n)\{o},{t}

p(θ1i ;x1i , xi)dPξT

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o}

p(θ1i ;x1i , xi)dPξT . (5.9)
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By (5.7) and (5.9), we can easily get that (5.3) holds when l = n. Case 3. Let l > n. Since
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

P(Xt = xt | ξ
T , XT t

)dP

= P
(

⋂

t∈T (m)

{ξt ∈ Bt}, Xt = xt, X
T t

⋂
T (l)

= xT t
⋂

T (l)
)

=
∑

xi,t≤i,i6=t,i∈T (l)

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (l)

= xT (l)
)

=
∑

xi,t≤i,i6=t,i∈T (l)

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (l)\{o}

p(θ1i ;x1i , xi)dPξT

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θ1t ;x1t , xt)p(θo;xo)
∏

i:i∧t≤1t,i∈T (l)\{o}

p(θ1i ;x1i , xi)dPξT . (5.10)

On the other hand,

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T t

⋂
T (l)

= xT t
⋂

T (l)
)

=
∑

xt,xi:t≤i,i∈T (l)

P
(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (l)

= xT (l)
)

=
∑

xt,xi:t≤i,i∈T (l)

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (l)\{o}

p(θ1i ;x1i , xi)dPξT

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i:i∧t≤1t,i∈T (l)\{o}

p(θ1i ;x1i , xi)dPξT . (5.11)

We have by (5.11),
∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

p(ξ1t ;X1t , xt)dP

=

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XTt
⋂

T
(l)

=xTt
⋂

T
(l)
}

p(ξ1t ;x1t , xt)dP

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θ1t ;x1t , xt)p(θo;xo)
∏

i:i∧t≤1t,i∈T (l)\{o}

p(θ1i ;x1i , xi)dPξT . (5.12)

By (5.10) and (5.12), we conclude that (5.3) holds when l > n. Thus we complete the proof of

(5.3), and (2.7) holds.

Proof of Theorem 3.2 To prove that (XT , ξT ) is a tree-indexed Markov chain in random

environment under the probability measure µP , according to (b) of Theorem 3.1, it is sufficient
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to prove the following two equations,

µP (Xo = xo | ξT ) = µP (Xo = xo | ξo) = p(ξo;xo) a.e., (5.13)

µP (X
Ln = xLn | ξT , XT (n−1)

) =
∏

t∈Ln

p(ξ1t ;X1t , xt) a.e.. (5.14)

Let m be an arbitrary positive integer, and Bt ∈ B for any t ∈ T . Since

∫

⋂

t∈T
(m)

{ξt∈Bt}

µP (Xo = xo | ξT )dµP

= µP

(

Xo = xo,
⋂

t∈T (m)

{ξt ∈ Bt}
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

K(θT , Xo = xo)dm

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)dm

=

∫

⋂

t∈T
(m)

{ξt∈Bt}

p(ξo;xo)dµP , (5.15)

where the second equation and the third equation are obtained by (3.2) and (3.1), respectively.

Hence (5.13) is proved by (5.15). By (3.23)–(3.24), we see that for any positive integer m,

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n−1)

=xT
(n−1)

}

µP (X
Ln = xLn | ξT , XT (n−1)

)dµP

= µP

(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n)

= xT (n)
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

K(θT , XT (n)

= xT (n)

)dm

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n)\{o}

p(θ1i ;x1i , xi)dm. (5.16)

Similarly, we have

µP

(

⋂

t∈T (m)

{ξt ∈ Bt}, X
T (n−1)

= xT (n−1)
)

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

i∈T (n−1)\{o}

p(θ1i ;x1i , xi)dm. (5.17)
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We have by (5.17),

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n−1)

=xT
(n−1)

}

∏

t∈Ln

p(ξ1t ;X1t , xt)dµP

=

∫

{ ⋂

t∈T
(m)

{ξt∈Bt},XT
(n−1)

=xT
(n−1)

}

∏

t∈Ln

p(ξ1t ;x1t , xt)dµP

=

∫

⋂

t∈T
(m)

{θt∈Bt}

∏

t∈Ln

p(θ1t ;x1t , xt)p(θo;xo)
∏

i∈T (n−1)\{o}

p(θ1i ;x1i , xi)dm

=

∫

⋂

t∈T
(m)

{θt∈Bt}

p(θo;xo)
∏

t∈T (n)\{o}

p(θ1t ;x1t , xt)dm. (5.18)

By (5.16) and (5.18), (5.14) holds. Thus we complete the proof of this theorem.

Proof of Theorem 4.1 Given a constant r (|r| ≤ b). Let M0(r) = 1 and

Mn(r) =
e
r

∑

t∈T
(n)\{o}

gt

∏

t∈T (n)\{o}

E[ergt | F|t|−1]
. (5.19)

Since

E[Mn(r) | Fn−1]

= Mn−1(r) · E
[ e

r
∑

t∈Ln

gt

∏

t∈Ln

E[ergt | Fn−1]
| Fn−1

]

= Mn−1(r) ·
E[e

r
∑

t∈Ln

gt

| Fn−1]
∏

t∈Ln

E[ergt | Fn−1]
. (5.20)

By (3.1) and Lemma 4.1, we have

E[e
r

∑

t∈Ln

gt

| Fn−1]

=
∑

xLn∈χLn

e
r

∑

t∈Ln

gt(ξ
T ;X1t ,xt)

P(XLn = xLn | ξT , XT (n−1)

)

=
∑

xLn∈χLn

e
r

∑

t∈Ln

gt(ξ
T ;X1t ,xt) ∏

t∈Ln

p(ξ1t ;X1t , xt)

=
∑

xLn∈χLn

∏

t∈Ln

ergt(ξ
T ;X1t ,xt)p(ξ1t ;X1t , xt)

=
∏

t∈Ln

∑

xt∈χ

ergt(ξ
T ;X1t ,xt)p(ξ1t ;X1t , xt)
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=
∏

t∈Ln

E[ergt | Fn−1]. (5.21)

By (5.20)–(5.21), we have E[Mn(r) | Fn−1] = Mn−1(r) for n ≥ 1. Noticing that E[Mn(r)] =

E[Mn−1(r)] = · · · = E[M0(r)] = 1. So {Mn(r),Fn, n ≥ 0} is a nonnegative martingale. By

the Doob martingale convergence theorem, Mn(r) a.e. converges to a finite nonnegative r.v.

M∞(r) when |r| < b, that is,

lim
n→∞

Mn(r) = M∞(r) < ∞ a.e.,

which implies

lim sup
n→∞

1

|T (n)|
logMn(r) ≤ 0 a.e.. (5.22)

We have by (5.19) and (5.22) that,

lim sup
n→∞

r

|T (n)|

{

∑

t∈T (n)\{o}

gt −
1

r

∑

t∈T (n)\{o}

logE[ergt | F|t|−1]
}

≤ 0 a.e.. (5.23)

Let 0 < r < b. Dividing both sides of inequality (5.23) by r, and using the inequalities

log(1 + x) ≤ x, (x > −1); ex − 1− x ≤ x2e|x|,

we have

lim sup
n→∞

1

|T (n)|

{

∑

t∈T (n)\{o}

gt −
∑

t∈T (n)\{o}

E[gt | F|t|−1]
}

≤ lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{1

r

∑

t∈T (n)\{o}

logE[ergt | F|t|−1]− E[gt | F|t|−1]
}

≤ lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

1

r
E[ergt − 1− rgt | F|t|−1]

≤ r lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

E[g2t e
|rgt| | F|t|−1] a.e.. (5.24)

By (4.3) and (5.24), for 0 < r < b, we have

lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{gt − E[gt | F|t|−1]} ≤ rM a.e.. (5.25)

Letting r → 0+ in (5.25), we get

lim sup
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{gt − E[gt | F|t|−1]} ≤ 0 a.e.. (5.26)

If −b < r < 0, dividing both sides of inequality (5.23) by r, by similar arguments for (5.26), we

obtain

lim inf
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{gt − E[gt | F|t|−1]} ≥ 0 a.e.. (5.27)
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Combining (5.26) and (5.27), we obtain

lim
n→∞

1

|T (n)|

∑

t∈T (n)\{o}

{gt − E[gt | F|t|−1]} = 0 a.e..

Thus we complete the proof of Theorem 4.1.
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