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Linear Dissipative Systems II: Case of Multiple
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Abstract In this paper, the authors consider the asymptotic synchronization of a
linear dissipative system with multiple feedback dampings. They first show that under the
observability of a scalar equation, Kalman’s rank condition is sufficient for the
uniqueness of solution to a complex system of elliptic equations with mixedobservations.
The authors then establish a general theory on the asymptotic stability and the asymptotic
synchronization for the corresponding evolutional system subjected to mixed dampings of
various natures. Some classic models are presented to illustrate the field of applications of
the abstract theory.
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1 Introduction

Synchronization is a widespread natural phenomenon. It was first observed by Huygens
[11] in 1665. The theoretical research on synchronization from the mathematical point of
view dates back to Wiener in 1950s in [43] (Chapter 10). The previous study focused on
the systems described by ordinary differential equations. Since 2012, Li and Rao started the
research on the exact boundary synchronization for a coupled system of wave equations (see [18,
20-23, 26]), later the approximate synchronization has been carried out for a coupled system
of wave equations with various boundary controls (see [19, 25, 27, 30]). The most part of
their results was recently collected in the monograph [28]. Consequently, this kind of study of
synchronization becomes a part of research in control theory. The optimal control for the exact
synchronization of parabolic system was recently investigated in [42]. We quote [1, 6] for the
synchronization of distributed parameter systems on networks.

By duality, the approximate boundary controllability of a coupled system of wave equations

can be transformed to the uniqueness of solution to the corresponding adjoint system. Since
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the adjoint system is constituted of many wave equations of the same type and observed by an
incomplete system of observations, it is not a standard uniqueness of continuation, and only
Kalman’s rank condition is not sufficient for the uniqueness. In order to obtain the uniqueness of
solution to this complex system, our basic idea is to combine the uniform observability of a scalar
equation and the algebraic structure of the coupling matrices, namely, Kalman’s rank condition.
The first attempt for realizing this idea was carried out in [24-25] for a system of wave equations
with Dirichlet boundary conditions by incomplete Neumann observations. Later, this idea was
used in [19, 30] for Neumann and Robin conditions, and further developed in [29] for an elliptic
system with Neumann boundary conditions observed by incomplete Dirichlet observations. We
quote [34] for a close work on the observability of heat equations by internal observations.

The goal of the present paper is to generalize the results in [29] from the special case of one
sole damping to the general case of several dampings with different natures.

Let H and V be two separated Hilbert spaces such that V' C H with dense and compact
imbedding.

Let L be the duality operator from V onto the dual space V', such that

<L¢71/)>V'.,V = (Qbﬂ/J)Vv Vébadj eV. (11)

By Riesz-Fréchet’s representation theorem, L is an isomorphism from V onto V’'. Moreover,
taking H as the pivot space, for all ¢ € V and ¢ € H, we have

<¢7¢>V’7V = ((baw)H (12)

Let gs (1 < s < M) be linear compact operators from V into V', such that

<gs¢71/)>V’,V = <gs¢, ¢>V/.,V7 <gs¢7 ¢>V’,V Z 0 (13)

and
(959, P)v,v =0 if and only if gs¢ = 0. (1.4)
Denote by V and H the product spaces:
V=V H=H" (1.5)
For U = (u™, - ,u™)T et the vector operators £, respectively, G, be defined by

Lu® geu®
cv=| : |, GU= C|, 1<s<M. (1.6)
Lu®™) geu™)

Let A and Dy (1 < s < M) be symmetric and positive semi-definite matrices. Consider the

following second order evolution system with several dampings of different natures.

M
U'+ LU + AU + Y D.G,U" =0. (1.7)

s=1



Uniqueness and Asymptotic Synchronization 661

It is easy to show that (1.7) generates a semi-group of contractions with compact resolvent in
the space V x H.
The case M = 1:

U’ + LU+ AU + D1GU' =0 (1.8)
was studied in [29], and we showed that Kalman rank condition
rank(Dy, ADy,--- ,AN7ID)) = N (1.9)

is necessary for the asymptotic stability of system (1.8). Moreover, under suitable conditions on
the pair of operators (L, g1), Kalman rank condition (1.9) is also sufficient for the asymptotic
stability of system (1.8) (see [29, Theorem 3.4]). In [31], we carried out a complete study on
the uniform synchronization of system (1.8). In particular, we justified the necessity of diverse
conditions of compatibility on the matrices A and D;. Moreover, in [32] we considered a coupled
system of wave equations in a rectangular domain, which does not satisfy the usual multiplier
geometrical condition.

The aim of the present work is to investigate the asymptotic stability of system (1.7) under
the common action of M feedback dampings D1G1U’, -+, Dp;GaU’. In Proposition 2.2 below,

we will show that Kalman rank condition
rank(D, AD,---  AN7ID) = N (1.10)
with the composite matrix by blocks:
D = (D1,Dsy,--- ,Dyp) (1.11)

is still necessary for the asymptotic stability of system (1.7). Moreover, under suitable conditions
on the matrix A and on the pairs (L,gs) for 1 < s < M, we will show in Theorem 3.2
that Kalman rank condition (1.10) is still sufficient for the asymptotic stability of system
(1.7). The involved dampings in system (1.7) can be of different types, for example, boundary
damping, locally distributed viscous dampings, locally distributed Kelvin-Voigt damping or
bending moment damping etc. Therefore, it provides a rich freedom for the choice of feedback
controls in applications. This is the main advantage of the approach.

The materials in the paper are organized as follows. In §2, we first formulate the problem in
the framework of semi-groups. Then by the classic method of frequency domain, we reduce the
asymptotic stability to the uniqueness of solution to an over-determined elliptic system. In §3,
under the assumptions that A is closed to a scalar matrix and L can be uniformly observed by
the operator g, for 1 < s < M, we establish the corresponding uniqueness theorem. We study
the corresponding asymptotic synchronization in §4. In order to illustrate the abstract result,

we give some examples of applications in §5.

2 Setting of Problem

In this section, we will characterize the asymptotic stability of system (1.7) by the method
of frequency domain. We first make some necessary arrangement.
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Since for 1 < s < M, Dy are symmetric and positive semi-definite matrices, by conditions
(1.3)—(1.4), it is easy to check that

<DsgsU7 V> = <Dsgs‘/7 U>7 <DsgsUa U> > 0 (21)
and
(DsGsU, Uy =0 if and only if D,G,U = 0. (2.2)

Clearly, by (2.1)—(2.2), we have

> (DG.U,U) >0 (2.3)
s=1
and
M
> (D.G.UU) =0 ifand only if D.GU =0, 1<s< M. (2.4)
s=1

Then, defining the linear operator A by

M
AW, D) = ((7, LU - AU =Y Dsgsﬁ) (2.5)
s=1
with the domain
A~ M A~
D(A):{(U,U)EVXV: £U+AU+ZDSQSUEV}, (2.6)
s=1

we transform (1.7) into an abstract formulation as follows:
(U, U) = AU, D). (2.7)

It was shown in [29, Proposition 3.1] that operator A generates a semi-group of contractions
with compact resolvent in the space V x H.

We recall the following generalized rank condition of Kalman type, which will play an
important role in the study of uniqueness.

Proposition 2.1 (see [25, Lemma 2.1]) Let d > 0 be an integer. The Kalman rank
condition

rank(D, AD,--- | AN7ID) =N —d (2.8)

holds if and only if d is the largest dimension of the subspaces which are invariant for AT and

contained in Ker(DT).

Proposition 2.2 If system (1.7) is asymptotically stable, then we necessarily have Kalman
rank condition (1.10) with D given by (1.11).
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Proof If (1.10) fails, by Proposition 2.1, there exists a unit vector £ € RY and a real
number a such that

ATE=aE, DY'E=0. (2.9)
Noting that A and Dy with 1 < s < M are symmetric, we get
AE =aF, DgE=0, s=1,---,M. (2.10)
Then, applying ET to (1.7) and setting u = ETU we get
v’ + Lu + au = 0, (2.11)

which is conservative, therefore, unstable.

Theorem 2.1 System (1.7) is asymptotically stable if and only if for any given B € R, the
over-determined system of the state variable ® = (¢(1), e ,¢(N))T:

LD+ AD = (%D (2.12)
associated with the conditions
DGd=0, 1<s<M (2.13)

has only the trivial solution.

Proof Noting that A~! is compact in the space V x H, by the classic theory of semi-groups
(see [3, 4, 37]), the dissipative system (1.7) is asymptotically stable if and only if .4 has no pure
imaginary eigenvalues. Indeed, assume that A has a pure imaginary eigenvalue, namely, there
exist 8 € R and a non-trivial (®, ) € V x H, such that

A(®, ) = i8(®, D), (2.14)
namely,
M
U=iBd, —LO-AD-> DGV =ipV. (2.15)
s=1

Inserting the first equation into the second one, we get

M
LD+ AP +i8)  D.G.® = 5°0. (2.16)
s=1
Since £ + A is symmetric and coercive, we have § # 0. Then, noting that £ and DG, (1 <
s < M) are symmetric, we deduce that (2.16) is equivalent to the system

M
LD+ AD =P and Y D.G.P=0. (2.17)
s=1
Using (2.4), the second condition in (2.17) implies condition (2.13), then it gives a contradiction.
The proof is complete.
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3 Uniqueness Theorem Under Kalman Rank Condition

In this section, we will show both the necessity and the sufficiency of Kalman rank condition
(1.10) for the uniqueness of solution to the over-determined system (2.12)—(2.13).

Proposition 3.1 Assume that the over-determined system (2.12)—(2.13) has only the trivial
solution. Then the pair (A, D) necessarily satisfies Kalman rank condition (1.10) with D given
by (1.11).

Proof This is a direct consequence of Proposition 2.2 and Theorem 2.1. However, we prefer
to give a direct proof here.

Otherwise, let a and E be chosen as in (2.10). Let v € V be a non-zero element and A € R
be large enough, such that Lv = Av and A +a > 0.

Defining

52:/\—1—@ and ® =vF, (3.1)
we have
LO + AD = LvE +vAE = (\ + a)vE = 5*®. (3.2)

So, @ is a solution to (2.12). Moreover, noting that G is of diagonal form, we check easily that
O satisfies the dissipation condition (2.13):

DsGs® = g,vDsE =0, s=1,--- M. (3.3)

Thus, we get a contradiction.

Now we make some preparation for the proof of sufficiency. Since Kalman rank condition
(1.10) is stable under invertible linear transformation, without loss of generality, the symmetric
matrix A can be written as

o1 Om

—_—— —_——
A=diag\g, -+ Ag,ee-e- Ay Am),s
where A\ > 0 are eigenvalues of A with multiplicity o (kK =1,---,m).
Accordingly, let
o =0: pp = pig—1+og, k=1, ,m. (3.4)

For any given p with 1 < s < M, we write

D, = (dgs), A ) ,dﬁliﬁl’ .. 7d£2)7 (3.5)

y Qs
where the vector d'*) € RV denotes the i-th column of the matrix Dj.
Let
D1
DT: :(dh...’d‘u“...7CZM77171_’_1’...7d'um)7 (36)
Dy
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where the vector d; € RMN ig composed of the i-th column of the matrix D with 1 < s < M:

d"
a™
Proposition 3.2 For any given integer k with 1 < k < m, the vectors d, 41, -+ ,d,, of

the composite matriz DT are linearly independent.

Proof Denote by ¢; the canonical basis vectors in RY. Since DTe; = d; and the subspace
Span{e, 41, ,€pu, } is invariant for A, by Proposition 2.1, Kalman rank condition (1.9)

implies that

Mk
i=pg—1+1
if and only if oy, ,41 = --- = ay, = 0. Therefore, the column vectors d,, ,+1,---,d,, are

linearly independent.

Definition 3.1 For any given s with 1 < s < M, the operator L is gs-observable, if there
exists a constant ¢; > 0, independent of B € R and f € H, such that the estimate

[¢sller < cill fllm (3.9)
holds for any given solution ¢4 to the over-determined scalar problem
B2¢s — Los = [ with gsps = 0. (3.10)
By the continuous embedding H C 'V, there exists a constant co > 0, such that
10l < c2llpllv, VoeV. (3.11)

Theorem 3.1 Assume that
(a) there exists a € R, such that the following e-closing condition

[A—alllz<e (3.12)

holds with £ < L, where ¢ = max(cy, c3);
(b) the pair (A, D) satisfies Kalman rank condition (1.10) with D given by (1.11);
(¢) the operator L is gs-observable for 1 < s < M.

Then, the over-determined system (2.12)—(2.13) has only the trivial solution.

Proof Applying Dy to (2.12) and noting W = D;®, we get
(8% —a)W — LW = D AD — aWV. (3.13)
Setting

W= (w;), DA® —aW =(f;), Ds=(d}) (3.14)
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for 1 <i,5 < N, we have

N m Pk
meYde-3 3 e
i=1 k=1i=pr_1+1
and
m 1223
=Y —a) Y dYe:
k=1 i=pr—1+1

On the other hand, noting that Gs is diagonal, condition (2.13) leads to
GsW =G,Ds® = D,G,® = 0.
Then, taking the j-th component of (3.13) and (3.17), we get
(8 = a)w; — Lw; = f;
with the additional condition
gsw; = 0.
If 8% — a < 0, multiplying (3.18) by w;, we get
=82 = a)llw;7r + Nw;llY = = (f5, wi)a < |Lfjllallw;lla.
Then, noting (3.11), we have
lw;ll e < el f5lla

If 3% — a > 0, the observability of (L, g;) implies again (3.21).
On the other hand, noting that L is self-adjoint, we have

(i, 0j)r =0, pp—1+1<i<pp, 1 +1<5 <, k#L

Then it follows from (3.16) that

m

M 2
1530 < s Ja=XPYo| 0 de,
1<k<m k=1 i=pr_1+1
= sup |a—Mfllwillf =1, N
1<k<m

Hence, noting the e-closing condition (3.12) and (3.21), we get

1fillr < sup |a— Aelllwillo < ellw;lla < cell fll a-
1<k<m

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Then, it follows from (3.24) that f; = 0 and then w; = 0for j =1,--- , N, provided that ec < 1.

Thus we get

(3.25)
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namely

Mk
S dP¢i=0 1<k<m, (3.26)

i=pg—1+1

where d\*) is the i-th column vector of the matrix D,.
Noting (3.7), we arrange (3.26) by blocks into the following expression

d
M i HE
> Do lgi= > digi=0, 1<k<m, (3.27)
t=pp—1+1 d(_M) i=pp_1+1
By Proposition 3.2, the column vectors d,, ,+1, -+ ,d,, of DT are linearly independent, then
we get
¢ =0, pp1+1<i< g, 1<k<m, (3.28)

namely, ® = 0. The proof is thus complete.

Theorem 3.1 can be read as “under suitable conditions, the observability of the scalar
equation implies the stability of the whole system”. By this way, we provide a simple and
efficient approach to solve a seemingly difficult problem of asymptotic stability of a complex
system.

As a direct consequence of Theorems 2.1 and 3.1, we have the following important result.

Theorem 3.2 Under the same assumptions as those in Theorem 3.1, system (1.7) is asymp-

totically stable.

4 Asymptotic Synchronization by Groups

By Proposition 3.1, when the pair (A, D) does not satisfy Kalman rank condition (1.10),
system (1.7) is not asymptotically stable. Instead of stability, we consider the asymptotic
synchronization by groups.

Let p > 1 be an integer such that

O=ng<ni<---<ng=N (4.1)
with n, —n,_1 > 2 forr=1,---,p. We re-arrange the components of the state variable U into
P groups

(WM M)y (D) L g (r2)y  (ume=t ) (e (4.2)

Let S, be a full row-rank matrix of order (n, — n,—; — 1) X (n, —n,_1):

Sy = ) ) , 1<r<p. (4.3)
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Define the (N — p) x N matrix C, of synchronization by p-groups as

S1
Sa
Cp= (4.4)
Sp
Let
("T*l"'l) ("T) T
er = (0,---,0, 1 -, 1,0,---,0%, 1<r<np. (4.5)
Then
Ker(C,) = Span{er,--- ,e,}. (4.6)

Definition 4.1 System (1.7) is asymptotically synchronizable by p-groups, if for any given
initial data (Up,Uy) € V X H, the corresponding solution U satisfies

(u® — u(l),u(k)/ — u(l)/) —(0,0) mVxH (4.7)
ast — 400 for alln,_1 +1 <kl <n, and 1 <r <p, or equivalently
Co(U,U") = (0,0) in (V x H)N™P ast — +oo. (4.8)

Let us recall some known results.
If system (1.1) is asymptotically synchronizable by p-groups, by [29, Theorem 4.7], we have

rank(D, AD,--- ,AN"ID) > N —p. (4.9)

Moreover, if system (1.1) is asymptotically synchronizable by p-groups under the minimum

rank condition
rank(D, AD,--- ,ANTID) =N —p, (4.10)
by [29, Theorem 4.8], A satisfies the condition of C)-compatibility:
AKer(C,) C Ker(C,) (4.11)
and D satisfies the condition of strong Cp-compatibility:
Ker(C,) C Ker(Ds), 1<s<M. (4.12)

In this situation, by [29, Proposition 4.2], there exist a symmetric and positive semi-definite
matrix A of order (N —p) and a symmetric and positive semi-definite matrices D, (1 < s < M)
of order (N — p), such that

(C,CH~2C, A =A(C,CT)73C, (4.13)
and
(C,CH~2C,D, = Dy(C,CH)72C,, 1<s< M. (4.14)
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Applying (CpCpT)_%Cp to system (1.7) and setting W = (CpCpT)_% CpU, we get the follow-
ing reduced system

M
W + LW + AW + > " D.GW’' =0. (4.15)

s=1

Obviously, the asymptotic synchronization by p-groups of system (1.7) is equivalent to the
asymptotic stability of the reduced system (4.15).

Since the reduced matrices A and Dy (1 < s < M) are still symmetric and positive semi-
definite, the asymptotic stability of the reduced system (1.7) can be treated by Theorem 3.2.
More precisely, let

ﬁ:(ﬁ17ﬁ27 7ﬁM) (416)

Since A is of order (N — p), by Proposition 2.2, the following rank condition on the reduced

matrices A and D:

—N—p—1—
)

rank(D,AD,--- , A D)=N-p (4.17)

is required for the asymptotic stability of the reduced system (4.15).
We first present a basic relation between the rank of the original matrices and the reduced

ones.

Proposition 4.1 Let A satisfy (4.11), respectively, D satisfy (4.12). We have

rank(D,AD, - , A" ""'D) = rank(D, AD, --- , AN"1D). (4.18)

Proof First, it follows from (4.14) that
D, = (C,CT)"2C,D,CH(C,OF) 73, 1<s< M.
Then, using (4.16), we have

D = (C,CF)~2C, D{CT I\ {(C,CT) "2 s,

where
CT
P or
{CF Y m = : (4.19)
G/ ua
is a diagonal matrix of M blocks of C’E , respectively,
(€0 1
. (CpCp)2
{(CoCY) 2} = nr . (4.20)
(CPCpT)_% M
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is a diagonal matrix of M blocks of (C,C) )"z,
Noting (4.13) and (4.19), we have

AD = A(C, )2 CuD{CY }ar{(CoCy )% b
= (C,C) "2 CAD{C I ar{(CyCy ) ™2 har. (4.21)
Successively, we have
A°D=A(AD)
= A(C,Cy) "2 CHAD{C Y {(CoCy) ™ b
= (C,OF) 20, A2 D{CT A {(C,CF) "2 g, - (4.22)
Thus, we have
(D,AD,--- , A" 'D)
= (CyCy) 2 Cy(D, AD, -+, AN D){C) b ar}n{{(CoCl) "2 har b, (4.23)
where
{Cy Yur .
{{Cptm}n = 1 Ju . (4.24)
{CZDT}M N

is a diagonal matrix of N blocks of {C} } s, similarly, {{(CpCpT)_%}M}N is a diagonal matrix
of N blocks of {(CpCpT)_%}M.

Since (C,CF)~2 and {{(C,CF)~2}ar}n are invertible, by Cayley-Hamilton’s theorem, it
follows from (4.23) that

rank(D, 4D, A" "'D)
=rank(D,4AD, -, A" 'D)
=rankCy(D,AD, - AN ' DY{{C Y} (4.25)

On the other hand, since A is symmetric, by the condition of Cp-compatibility (4.11), we
have AIm(C}) C Im(C}). On the other hand, the condition of strong Cp-compatibility (4.12)
implies that Im(D) € Im(C}}). Then, we can successively get

m(AD) = Alm(D) € Alm(C})) € Im(C,)),-- . (4.26)
It follows that
m(D, AD,--- ,AN"'D) C Im(C)). (4.27)

Then, we get

Ker(Cp) NIm(D, AD, -+, AN"'D) C Ker(C,) NIm(C})) = {0}. (4.28)
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By [28, Proposition 2.7], we get

rankCy, (D, AD --- | AN 'DY{{C) }m}n
=rank(D, AD--- AN T'DY{{C Y} (4.29)

Now, consider the transposition of the matrix in the right-hand side of (4.29) :

DT
DTA
HCpmtn : . (4.30)
DTAN—l
First, we have
Ker({Cy}ar}w) = (Ker(Cy) "™ (4.31)

Next, by the condition of strong Cy-compatibility (4.12), we have Im(D,) C Im(C}}) for 1 <
s < M, namely,

Dy
T Dy T\ M
Im(D") =Im . C (Im(Cp ). (4.32)
Dy
Then we get
DT DT
DTA DT
Im , Clm| . [ < m(C))M. (4.33)
DTAN—l DT
It follows that
DT
DTA

Ker({{Cp}m}n)NIm :
DTAN—I

C (Ker(Cp))M™ 0 (Im(Cy )M
= (Ker(Cp))"™ N ((Ker(Cy)) MY
€ (Kex(Cy))M™N 1 ((Kex(Cy)) ™) = {o}. (434)
Once again, by [28, Proposition 2.7], we get
DT DT
DTA DTA
rank{{Cp}a}n : = rank : , (4.35)

DTAN—l DTAN—l
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namely,

rank(D, AD, - - ,AN_lD){{OpT}M}N
nk(D, AD, - , AN"1D). (4.36)

Finally, combining (4.25), (4.29) and (4.36), we get the desired rank relation (4.18). The

proof is achieved.
As a direct application of Theorem 3.2, we have the following result.

Theorem 4.1 Let A satisfy (4.11), respectively, D satisfy (4.12). Assume that

(a) the e-closing condition (3.12) holds,

(b) the pair (A, D) satisfies the rank condition (4.10),

(c) the operator L is gs-observable for 1 < s < M.
Then, system (1.7) is asymptotically synchronizable by p-groups. Moreover, for any given initial
data (Up,Uy) € V X H, there exist linearly independent functions uy,--- ,up such that

(u® () — up(t), (uFY () — ul(t)) = (0,0) nV x H (4.37)

ast — +oo for alln,_1 +1 <k <n, and1 <r <p.

Proof First, by [28, Proposition 2.21], the spectrum of A is a part of that of A, so, the
e-closing condition (3.12) still holds for the reduced matrix A. On the other hand, combining
the rank condition (4.10) and the rank relation (4.18), we get

N—p—1

rank(D,AD,--- A D) =N —p. (4.38)

We can thus apply Theorem 3.2 to the reduce system (4.15) for obtaining the approximate
stability.

Moreover, for any given initial data (Ug, U 1) € (VxH)N, let U be the corresponding solution
to system (1.7). Let u, = (|[\J <) for p =1,---,p. Then, projecting to Ker(Cp) and to Im(C))),

respectively, we get

(+QH@Q5*@U (4.39)

P Ur€
v-3
7‘:1”6

Moreover, by (4.8), we get

el
= ( (CUCU’)—>(0,0) inVxH ast— +oo. (4.40)
Noting (4.5), we see that (4.40) exactly means (4.37).
Now we will precisely show the dynamics of the functions wuy,--- ,u,. Since A is symmetric,

noting (4.11), there exist some real numbers «,; with a;,; = «y;-, such that

P
e
Ae, = . Cor=1,---,p. 4.41
2 e 7 y (441
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Moreover, by (4.12) we have
Dse’l“zov Tzl,"',p;Szl,"',M. (442)

Then, applying e, to (1.7), we get

p
u! + Lu, + Z oy =0 (4.43)
I=1

associated with the initial data

t=0: u, = (Uo,er)7 u, = M. (4.44)
ez ] lle]

The proof is complete.

Remark 4.1 The convergence (4.7) is called the asymptotic synchronization by p-groups
in the consensus sense, while the convergence (4.37) is in the pinning sense. (ug,---,u,)7T is
called the asymptotically synchronizable state by p-groups. Theorem 4.1 indicates that the two
notions are simply the same. Moreover, since the functions wy, - - - ,u, are linearly independent,

there does not exist an extended matrix CN'q (¢ < p) such that

C,(U),U'(t)) = (0,0) in (V x HN™7 ast— +oo. (4.45)
Therefore, unlike the case of approximate boundary synchronization by p-groups (see Chapter
11 in [28]), there is no possibility to get any induced synchronization in the present situation.
5 Applications

In this section, we denote by €2 C R" a bounded domain with smooth boundary I and by
w C © a neighbourhood of the boundary I'.

Let a and b be given smooth and positive functions in € such that
a(x) >ap >0, blzr)>by>0, Vrew. (5.1)

The coupling matrix A, as well as the damping matrices Dy, Do, - -+ , appearing in diverse

models, are assumed to be symmetric and positive semi-definite.

5.1 Wave equations with mixed dampings

Consider the following system of wave equations with boundary viscous damping and locally
distributed viscous and Kelvin-Voigt dampings (see [36])

U" — AU + AU + aDU’ — Dy div(bVU') = 0 in €,
0, U +D3U" =0 on I,

where 0, denotes the outward normal derivative on the boundary.
Let

H=1*Q), V=HY(). (5.3)
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Multiplying system (5.2) by a test function ® € (H'(2))" and integrating by parts, we get the

variational formulation:
/(U”,@)dx—i—/(VU, V<I>)dx+/(AU, D)dx
Q Q Q

—l—/(aDlU’,(I))dx—i—/(ngVU’,VCD)dx—i—/(D3U’,<I>)d1“:O, (5.4)
Q Q r

where (-, -) denotes the inner product in R or in M" (R).
Let L be defined by

(Lu, ¢) = / Vu - Vedr, (5.5)
Q
respectively, g1, g2 and g3 be defined by
<glua ¢> = / au¢dx7
Q

(g2, ) = [ b9u-Vida, (5.6)

(gou.) = [ uodr.

r

Setting £, G1,G2 and G3 as in (1.6), the variational equation (5.4) can be rewritten as
UI/+£U+AU+D1Q1UI+DQQQU/+D3Q3U’:0. (57)

Obviously, the operators L, ¢1,¢92 and g3 satisfy conditions (1.1)—(1.4). Then, system (5.7)
generates a semi-group of contractions with compact resolvent in the space (H*(Q) x L2(Q2))".

Theorem 5.1 Let A satisfy (4.11), respectively, D satisfy (4.12). Assume furthermore that
A satisfies (3.12) and the pair (A, D) satisfies (4.10) with D = (D1, D2, D3). Then system (5.2)
is asymptotically synchronizable by p-groups in the space (H(Q) x L2(Q))V.

o~ o~

Proof By Theorem 4.1, it is sufficient to show that there exists ¢ > 0 independent of 5 € R
and f € L*(Q), such that the following uniform observability inequality

[ lofaz <c [ |1z (59)
Q Q
holds for any given solution ¢ € H'(Q) to the over-determined system

Bo+Ap=f inQ,

{8,,¢ =0 on I (5.9)

associated with each of the following conditions

¢=0 inT,

ap =0 in €, (5.10)

div(bVé) =0 in Q.
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Let m = z — x¢. Recall the following formula
/ d(m - Vp)dx = —n/ |p|?da + /(m v)|¢|?dl’ (5.11)
for all ¢ € H'(Q2), and Rellich’s identity (see [33])
2/Q Ap(m - Vo)dx
—(0-2) [ [VoPas + [ (20,60m- Vo)~ (m )| ToP)r (5.12)

for all ¢ € H*(Q).
Case 1 ¢ =0 on I'. Multiplying the equation in (5.9) by 2m - V¢ + (n — 1)¢, we get

52/ o(2m-Vo+ (n—1)¢)dx + / Ap(2m - V¢ + (n— 1)¢)dx
Q Q
- / F@m -V + (n— 1)é)da. (5.13)
Q
Since ¢ € HZ(Q), applying formula (5.11) to the first term on the left-hand side of (5.13) gives
52 / #(2m - Vo + (n — 1)¢)dz = —52/ |p|?da. (5.14)

Similarly, applying Rellich’s identity (5.12) to the second term on the left-hand side of (5.13)

gives
/A¢ @m-Vé+ (n—1)é /|v¢| dz. (5.15)

Inserting (5.14) and (5.15) into (5.13) gives

/ (80P + Vo) / f@m -V + (n—1)¢)dz. (5.16)

For any given € > 0, by Cauchy-Schwarz’s inequality, there exists a positive constant C. such
that

/ (186 + Vo )da < C. / P+ e / |62 da. (5.17)
Q Q Q

Since ¢ € HZ(Q), by Poincaré’s inequality, for ¢ > 0 small enough, we can find a positive
constant ¢ such that

/(|¢|2 + |VoH)dz < c/ |f|2dz. (5.18)
Q Q

This is a stronger version of (5.8).
Case 2 a¢ =0in . Using (5.1), we get ¢ = 0 on I, then, we return to Case 1.
Case 3 div(bV¢) = 0 in . Integrating by parts, we get

/div(bv¢)¢dx = / b|Vo|2dz = 0. (5.19)
Q Q

Since b > 0, we get bV¢ = 0 in Q. Noting (5.1), it follows that V¢ = 0 in w. Then by the
homogeneous boundary condition on I', we get ¢ = 0 in w, in particular, ¢ = 0 on I', then we
return to Case 1.
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Remark 5.1 In fact, the uniform estimate (5.8) is based on the uniform stability of equa-
tion (5.2) for a scalar equation (i.e. for N = 1), which was abundantly studied by different
approaches in literatures. We only quote [13, 16-17] and the references therein for boundary
feedback. The uniform decay was first established by multipliers in [10] as w is a neighbourhood
of the boundary. The explicit decay rate was given in [41] under suitable geometric condition.
Later, the result was generalized in [44] to semi-linear case. When ) is a compact Riemann
manifold without boundary and w satisfies the geometric optic condition, the uniform stability
was established by a micro-local approach in [39]. Moreover, the volume of the damping region

w can be sufficiently small in [5] etc.

5.2 Kirchhoff plate equations with locally distributed Kelvin-Voigt dampings

Consider the following system of Kirchhoff plate equations with locally distributed viscous
and Kelvin-Voigt dampings (see [8, 14-15]) for more precise description):

(5.20)

U" + A2U + AU + aD1U’ + Do A(BAU') =0 in Q,
U=0,U=0 on .

Let
H=1%Q), V=HQ). (5.21)

Multiplying system (5.20) by a test function ® € (H2(2))" and integrating by parts, we get

the following variational formulation:
/(U”,@)dx—i—/(VU,V@)dx—i—/(AU,<I>)dx
Q Q Q
+/(aDlU’,CD)dx—i-/(ngAU’,A@)dx:O, (5.22)
Q Q

where (-, -) denotes the inner product in RY or in M¥ (R).
Let L be defined by

(Lu, ¢) = /QVU -Vede, (5.23)
respectively, g1, g2 be defined by
(g1u, @) = /Qauqbdx, (gau, @) = /QbAqubdx. (5.24)
Setting £, G; and Gs as in (1.6), the variational equation (5.22) can be rewritten as
U" + LU + AU + D1G1U’ + DoGoU' = 0. (5.25)
Theorem 5.2 Let A satisfy (4.11), respectively, D satisfy (4.12). Assume that A sat-

isfies (3.12) and the pair (A, D) satisfies (4.10) with D = (D1, D2). Then system (5.20) is
asymptotically synchronizable by p-groups in the space (HZ(2) x L*(Q))N.
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Proof By Theorem 4.1, it is sufficient to show that there exists ¢ > 0 independent of 5 € R
and f € L%(Q), such that the the following uniform observability inequality

[1opar<c [ 17Pas (5.26)
Q Q
holds for any solution ¢ to the system

—BPo+ A9 =f inQ,

{¢ —9,b=0 on T (5.27)

associated with each of the conditions

ap =0 in Q,
{A(bAaS) =0 inQ. (5.28)

Let us recall a formula of integration by parts (see [33]):
2/(A2¢))(m -Vo)dz = (4 — n)/ |AGdz, ¢ € H(Q). (5.29)
Q Q

Case 1 a¢ =0in Q. By (5.1), we get ¢ = 0 in w. Multiplying the equation in (5.27) by
2m - V¢ + (n — 2)¢, we have

— 52 /Q ¢(2m - Vo + (n—2)¢)dz + /Q A*(2m -V + (n — 2)¢)da
=— /Q f(2m -V + (n —2))pda. (5.30)
Since ¢ € Hi(Q), applying formula (5.11) to the first term on the left-hand side of (5.30) gives
_p? /Q 6(2m - Vo + (n— 2)¢)dx — 252 /Q 16[2dz. (5.31)

Applying formular (5.29) to the second term on the left-hand side of (5.30) gives
/QA2¢(2m Vo + (n—2)p)dx = 2/Q |Ap|?da. (5.32)

Inserting (5.31) and (5.32) into (5.30) gives

2/Q 8|2z + 2/Q |Ag|2dz = /Qf(2m Vo + (n— 2))pda. (5.33)
For any given € > 0, by Cauchy-Schwarz’s inequality, there exists a constant C; > 0 such that
[ 1gor 180 <. [ (7Pd -+ [ (90P +16P)de. (534

Since —A is an isomorphism from H}(Q) N H?(Q) onto L?(Q), for £ > 0 small enough, we can
find a constant ¢ > 0, such that

[0 ~ [ 180Pde < [ [P (5.35)
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which is a stronger version of (5.26).
Case 2 A(bA¢) =0 in 2. Integrating by parts, we get

/ A(bAp)pdx = / b|AG|*dz = 0. (5.36)
Q Q

Since b > 0, we get bA¢ = 0 in Q. Using (5.1), it follows that A¢ = 0 in w. Then, noting the
homogeneous boundary condition on T'; Carleman uniqueness theorem (see [7, 40]) implies that

¢ =0 in w, then we return to Case 1.

5.3 Euler-Bernoulli beam equations with mixed dampings

In the two previous subsections, we have considered the case of mixed dampings for wave
equations and of locally distributed dampings for plate equations. However, when w is not a
neighbourhood of T', the situation is technically complicated! As a beginning, we will consider
a system of beam equations. There are many to pursue--- In particular, the discussion below
can also be carried out for many other situations, such as Timoshenko beam [2, 12], Bresse
beam [35] etc.

Let a,b be smooth and positive functions in (0,1) such that

a(x) >ap >0, bx)>b >0, 0<a <z<abt <l (5.37)

Consider the following system of Euler-Bernoulli beam equations with locally distributed and

boundary dampings:

U" + Upaaa + AU + aD3U’ — Dy(bU), =0 in (0,1),
U(0) = U,(0) =0,

Usn(1) = DyU'(1), (5:38)
U.o(1) = —=DoUL(1).
Let
H=1%0,1), V={uec H?*0,1): u(0)=u,(0) = 0}. (5.39)
Multiplying system (5.38) by ® € V¥ and integrating by parts, we get
1 1 1
/ (U", &)da +/ (Usss ) +/ (AU, &)z + (DyU"(1), (1))
0 0 0
1 1
+ (DoUL(1), B4 (1)) +/ (aDsU’, ®)dw +/ (bD4U.,, ®,)dz = 0, (5.40)
0 0
where (-, -) denotes the inner product in RY.
Let L be defined by
Q

respectively, g1, g2, g3 and g4 be defined by

giu=u(l), gou=u,(1) (5.42)
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and

(g3u, @) = /01 aupdzr, {gsu,P) = /01 bu,ddx. (5.43)

Setting £, G1 and G5 as in (1.6), the variational equation (5.40) can be rewritten as
U" + LU + AU + DG U’ + DyGoU’ + D3GsU’' + D,GaU’ = 0. (5.44)
Obviously, the operators L and g1, g2, g3 and g4 satisfy well conditions (1.1)—(1.4). Then, system

(5.44) generates a semi-group of contractions with compact resolvent on the space (V x H).

Theorem 5.3 Let A satisfy (4.11), respectively, D satisfy (4.12). Assume that A satisfies
(3.12) and the pair (A, D) satisfies (4.10) with D = (Dy, D2, D3, D4). Then system (5.38) is
asymptotically synchronizable by p-groups in the space (V x H)N.

Proof By Theorem 4.1, it is sufficient to show that there exists a positive constant c,

independent of 3 € R and f € L?(0, 1), such that the following uniform observability inequality

1 1
/ 16[2dz < c/ | f2dz (5.45)
0 0
holds for any solution to the system

62¢_¢rrrm:f7 O<$<1,

associated with each of the conditions

#(1) =0,
d)r(l) =0,
ap =0, 0<x <1, (5.47)
(bdz) =0, 0<ax<l.
Case 1 ¢(1) = 0. Multiplying the equation in (5.46) by 2x¢, and integrating by parts, we
get

1 1 1
z/ |Bo|?dz + 3/ |pza|*d +/ 2z fo dx. (5.48)
0 0 0
Using the boundary conditions in (5.46), it follows that
1 1
[ (60Pds + 310t = - [ 2070, (5.49)
0 0

Noting the boundary conditions ¢(0) = ¢,(0) = 0, by Poincaré’s inequality

1
| 160sda > cllBraon, (5.50)
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and Cauchy-Schwarz’ inequality, we get

1 1
| 862 + foalre < [ 17Paa. (5:51)
0 0
Here and hereafter, ¢ will denote a positive constant. It follows that

161l 20,1y < el fll20,1) (5.52)

which is a stronger version of (5.45).
Case 2 ¢, (1) = 0. Multiplying the equation in (5.46) by 22¢,,, and integrating by parts,

we get
28%[pxdealy — B2 lxd2]6 — 267 (00t — [2030nld
1
=382 2d d 21 f pupudix. 5.53
6‘/‘¢ z— ‘/'¢ﬂm z*ﬁé £ Grandz (5.53)

Using the boundary conditions in (5.46), it follows that

1 1
0 0

By Cauchy-Schwarz’ inequality, we have

1 1
/ (1862|? + |puaa|”)dz < c/ |f?da. (5.55)
0 0

Noting the boundary conditions ¢(0) = ¢,(0) = ¢4, (1) = 0, by Poincaré’s inequality

1
/0 |Paaal*d > ¢ 6|l (0,1 (5.56)
we get a stronger version of (5.45):

161l 30,1y < el fll2(0,1)- (5.57)

Case 3 a¢ =0 for 0 < x < 1. The condition implies that ¢ = 0 for a~ < 2 < o™, then, in
particular, ¢(a”) = ¢.(a”) = ¢ue(a”) = 0. Applying (5.51) on the interval (0, ™), we have

/ WW+W$W§/ | da. (5.58)
0 0

On the interval (o™, 1), we have ¢(a™) = ¢, (a™) = ¢rr(a™) = 0. Multiplying the equation
in (5.46) by 2(x — 1)¢, and applying (5.48) on the interval (a™, 1), we get

1 1
/+(|ﬁ¢|2 + 3| ) = — /+ 2 f o da. (5.59)

By Cauchy-Schwarz’ inequality, we have

1 1
[ 80P + ousPrdo < [P, (5.60)

at
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Since ¢ = 0 on the interval [a@~, a*], combining (5.58) and (5.60), we get

1 1
/ (B + ¢aal?)da < ¢ / . (5.61)
0 0

which, together with (5.50), yields a stronger version of (5.45).

Case 4 (bg,), =0 for 0 < z < 1. Then bg, is a constant for 0 < z < 1. Since ¢,.(0) = 0,
we have b, = 0.

In particular, ¢, (™) = ¢ru(@™) = ¢rax(a™) = 0. Applying (5.55) on the interval (0, o),

we have

/ (1862]? + |puaal*)dz < c/ |fda. (5.62)
0 0

On the interval (a™,1), we have ¢z(a™) = Ppa(a™) = ¢rae(a™) = 0. Multiplying the
equation in (5.46) by 2x¢.., and using (5.53) on the interval (o™, 1), we get

2B%[2¢anlns — B2 lxd2]he — 28%[0da)or — (2000t
1 1
/ $2, dx — 332 / p2dx + / 22 f pppda. (5.63)
at at
Using the boundary conditions on z = o™ and on x = 1, we get

1
/ (3180 + 220 )do

1
- / 2ufoudo+ B2 (07) + 28700 )6 (0"). (5.64)

Multiplying the equation in (5.46) by ¢, and integrating by parts on the interval (o™, 1), we
get

1
B [ualar — Bd2]0r = / | fPaeda. (5.65)
Using the boundary conditions on z = o™ and on x = 1, we get

B2 (1 / féwada. (5.66)

Inserting (5.66) into (5.64), we get
1 1
[ B0u + bumaPriz < [ 17Pdz+ |00 (5.67)
Using (5.62), we get
|86(a)[* = 8¢(a™)|* < ellBélln 0.0y S | IfIPda. (5.68)
( ) 0
Inserting (5.68) into (5.67), we get

1 1
/ (1862|? + |puaal”)dz < c/ |f?da. (5.69)
at 0
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Since ¢, = 0 on the interval (o™, a™), combining (5.62) and (5.69), we get

1 1
[ 180: + loraaPrie < [ 5120, (5.70)
0 0

which, together with (5.56), yields a stronger version of (5.45).

Remark 5.2 Roughly speaking, we can stabilize the beam system (5.38) by using several
dampings of different types. This is the great advantage of the method. However, there are
many variances, for example, the supports of the damping coefficients a and b in (5.37) can be
different. In particular, the support of b can be a neighbour of the ends of the interval [0, 1].
We can also add the Kelvin-Voigt damping D5(cU., )z -

Remark 5.3 For all the models considered here, the observability inequality is obtained
by the multiplier method under the geometrical multiplier condition. It is stronger than the
required observability inequality, for example, (5.18) is much stronger than (5.8) etc. We hope
that this regularity should be served to establish a polynomial decay rate for the smooth initial
data:

IC(U (), U' (0| rr () x 22~ —» = O((1 +1)7%), (5.71)

where the constant ¢ > 0 is independent of the initial data. We refer to [9, 38] for the recent
progress on the polynomial stability of indirectly damped wave equations.
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