E,h(g {é;; ot Ser B Chinese Annals of
DOT: 10.1007/s11401-022-0353-2 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2022

Positive Solutions for Asymptotically Linear
Cone-Degenerate Elliptic Equations®

Hua CHEN! Peng LUO? Shuying TIAN3

Abstract In this paper, the authors study the asymptotically linear elliptic equation on
manifold with conical singularities

—Agu+ I =a(2)f(u), u>0inRY,

where N =n+1>3, A >0, z = (t,z1,~~~ ,zn), and Ap = (t@t)2—|—8§1 —|—~~-—|—8§n.
Combining properties of cone-degenerate operator, the Pohozaev manifold and qualitative
properties of the ground state solution for the limit equation, we obtain a positive solution
under some suitable conditions on a and f.

Keywords Asymptotically linear, Pohozaev identity, Cone degenerate elliptic op-
erators
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1 Introduction

In this paper, we consider the following degenerate equation
—Apu+Au=a(z)f(u), u>0inRY (1.1)

for N=n+12>3, A>0and z = (t,z) € RY. The operator Ag is defined by (t9;)? + 02, +
R 857” which is an elliptic operator with totally characteristic degeneracy on the boundary
t =0 (we also call it Fuchsian type Laplace operator), and the corresponding gradient operator
is denoted by Vg = (t0¢, 0z, -+, Ox,, ).

The analysis on manifolds with conical singularities and the properties of elliptic operators
are intensively studied. Based on Schulze’s cone algebra (see [22]), Schrohe and Seiler [21]
introduced the so-called L,-theory for the cone Sobolev spaces. Recently, Chen, Liu and Wei
[7] established the so-called cone Sobolev inequality and Poincaré inequality for the weighted
Sobolev spaces. Such kind of inequalities are fundamental to prove the existence of the solutions
for nonlinear problems with totally characteristic degeneracy. First, by using these inequalities
and the variational method they got the existence theorem for a class of semilinear totally
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characteristic elliptic equations with subecritical cone Sobolev exponents in [7]. Then, they
studied equations with critical cone Sobolev exponents in [6]. At last, they obtained multiple
solutions for equations with subcritical or critical cone Sobolev exponents in [8]. For more
results on totally characteristic elliptic equations, one can refer to [5, 9, 17]. All the results of
above concerned the equations with super-linear term.

In this paper, we will assume the following conditions on f:

(f1) f € C(R,R*), f(s) =0 for s <0 and lim 18 —

(f2) lim £& =1,

3
s——+oo s

(£3) set F(s) = [ f(r)dr and Q(s) = & f(s)s — F(s). There exists D > 1 such that
0<Q(s) <DQ(r) forall0<s<r, ET Q(s) = +o0.

And the function a: RY — R satisfies:

(A1) a(z) € C*(RY,RT) with infpy a(z) > 0;
(A2) liminf a(z) = aoe > A;
|z| =400
(A3) (Int)tdalt,z) + 3 2:0,a(t,x) > 0 for all (¢, x) € RY, with strict inequality holding
i=1
on a set of positive measure;

(A4) a(t,x) + + [(Int)tdra(t, z) +

M=

2:0z,a(t, )] < as for all (t,x) € RY;

N
Il
-

n

(A5) (Int)tdra(t, ) + 3 2;0y,a(t,z) + +(Int,z) - Ho(t,z) - (Int,z) > 0 for all (t,2) € RY,

i=1
n n

where (Int,z) - Hy(t, x) - (Int,z) := (Int)*[t0a + t*07a] + 2 3 i(Int)tdy, . a + > xx;07,, a
i=1 ij=1

is the value of Hessian matrix H, (¢, x) of function a, in the sense of measure %d:z:, applying at

the vector (Int, x).

Note that, the condition (f2) means that the nonlinear term is asymptotically linear at
infinity. This model with standard version comes from nonlinear optics, see [24-25]. However,
when we consider a similar nonlinear elliptic problem on manifold with conical singularities, then
near the conic point, we can use the cylindrical coordinates transformation to make the model to

be problem (1.1) (see [22]). Since the nonlinear term is not homogeneous and is asymptotically

linear at infinity, not all functions u € H;% (RY)\{0} can be projected on the Nehari manifold
(see [11]) and the method in [12, 20] also fails, in which they exploited the fact that, under
suitable hypotheses including that the nonlinear term of the elliptic equation is homogeneous
and super-quadratic at infinity, the mountain pass min-max level of the energy functional
associated with the equations is equal to the minimum of the energy functional restricted to

the Nehari manifold. Fortunately, all functions on an open subset of ’H;’%(Rf )\{0} can be
projected on the Pohozaev manifold associated with the equation, and we can restrict on this
manifold to find the critical points. This is inspired by [15]. At the same time, we should
replace the Palais-Smale condition by the Cerami condition (see [4, 10]):

N
(Ce) the functional I satisfies the Cerami condition if, for any sequence {u;} C ’H;’ T(RY)
such that {I(u;)} is bounded and ||I’(u;)||(1+4|Ju;]|) — O, there exists a convergent subsequence.

Consider the energy functional I: 7—[;’% RY) - R,
1 dt 1 dt
I(u) = —/ |Veu|*—dz —/ {a(z)F(u) — —u?| —daz,
2 Rﬁ t R 2 t

N
+
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naturally associated with problem (1.1). Then we have following nonexistence result.

Theorem 1.1 Assume that (Al)—(A5) and (f1)—(f3) hold, then

= i f I = — I 12
pi= laf I(u) = c:= i wmax, 10v(7)) (12)

18 not a critical level of I and the infimum above is not achieved. Here, P is Pohozaev manifold
associated with problem (1.1) which will be defined bellow in (2.7) and

I o= {y e C(0, 1 Hy * (RY)) | 7(0) = 0,1(3(1)) < 0}.

Remark 1.1 Theorem 1.1 shows that the mountain pass value is not the critical level of
I(u). This means that to find the critical point of I(u), we can not use the idea by the classical
mountain pass lemma under the conditions on @ and f in Theorem 1.1. Moreover, one can only
except the existence of solutions with higher level energy.

Consider also the limiting problem corresponding with problem (1.1),
—Apu+ M= axf(u) inRY, (1.3)

and its associated energy functional
1 dt dt
Lo(u) = _/ Vpu[2S dz —/ [aOOF( ) — —)\u } & dz.
2 Rﬁ t Rﬁ t

In Section 3 we will show that problem (1.3) has exact one positive solution which is “radial”
and a least energy solution under some conditions. Then, we have following existence result.
Suppose

(f4) f € CY(R,R*)NLip (R,R™).

Theorem 1.2 Assume that (A1)—(A5) and (f1)-(f4) hold. Then problem (1.1) admits a
N
positive solution u € 7—(;" 2 (RY).

Remark 1.2 To prove Theorem 1.2, the main idea is to use linking argument together with
barycenter functional restricted to Pohozaev manifold P. A crucial step is to construct Cerami
sequence and we give a clear exposition.

Remark 1.3 Conditions (A2), (A3) and (A4) imply that

(Int) - tdra(t, ) szﬁwba (t,z) = 0 if [z2] = oo. (1.4)
i=1

Conditions (f1) and (f2) show that, given ¢ > 0 and 2 < p < 2*, there exists a positive constant
C = C(e,p) such that for all s € R,

[F(s)] < 5|sf? + sl (15)
Remark 1.4 An example of function f satisfying conditions (f1)—(f4) is

Y S22
fls)=q 1+ (1.6)
0, s <0.
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One can verify that

1 1
a(z) = oo — with k > — and as > A
(Int)? + |x|2 + k oo

satisfies previous assumptions (A1)—(A5).

This paper is organized as follows. In Section 2, we introduce the cone Sobolev spaces and
corresponding properties. At the same time, we establish the distance and Pohozaev identity
on cone. In Section 3, we study some properties for solutions of limiting problem, in particular,
the least energy solution is considered. Then, we give the nonexistence result in Section 4. At
last, we prove the existence of a positive solution for problem (1.1) in Section 5.

2 Preliminaries

2.1 Cone Sobolev spaces and inequalities on RJ_,’Y

Definition 2.1 For (t,z) € RY, v € R and 1 < p < +oo, we say that u(t,z) € L) (Rf, dttd )

if
Ni— dt  \»
lllg = (e ult a)PFdr) < oo
P Ri t
The definition of the weighted Sobolev space for 1 < p < +o0 is as follows.

Definition 2.2 For m € N and v € R, the space
My (®Y) = {ue DY) (10 05w e Lj(RY, %dx)}
for arbitrary k € N and multi-index o € N™ with k + |a| < m.
It is easy to see that HI"7 (RY, 4tdz) is a Banach space with norm
lulpgrrgy) = Y. / N7 (10, o u P da:) v
ktlaj<m = JRY

Proposition 2.1 (Cone Sobolev inequality, see [7]) Assume that 1 < p < N, p% =
and v € R. The following estimate

HUHLZZ(M) < all(t0)ull Ly @yy + (1 + acz) > 10 ull Ly revy + callull Ly @y
=1

holds for all u(t,z) € C§°(RY), where

a ‘ )(N—pv)
N’ N —-p

V=r-1 a=

Moreover, if u(t, z) € H)V(RY), we have
ol ey < ellalggo

where the constant ¢ = ¢1 + acs.

1 N
In what follows, we denote ||u|| := (fRf [Veul[? 4 dz+X fRf u?4tdz)? the norm in "y (RY).
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2.2 Distance on cone

n
Since the distance on cone is ds* = &(dt)? + Z(dxl) , we obtain the distance between
&

point z = (t,xl, e ,xn) and zg = (to,x?, e ,x%) on cone is
n
d(z,20) = , | (Int —Intg)2 + > (z; — 29)2. (2.1)
i=1
n
For simplicity, we denote the points z = (t,z), w = (s,y) in RY and |z| = [(Int)2 + Y 22

For functional g = g(z,u) = g(t,z,u) with ¢t € R4,z € R™ and u(t,z) € R, we denote
80.9: 3tg(t,x,u), 8lg:allg(t7$7u)7 a]\74—192 8ug(t7$7u)

We introduce the open “ball” in RY in the sense of measure %dx with center w = (s,y) and
radius r as follows:

n

Q. (s,y) := {(t,x) e RY; (lmé)2 —I—Z(xl —y)? < 7“2}.

i=1
We say v = u(z) is “radially symmetric” about w = (s,y), if u(z1) = u(z2) as d(z1,w) =
d(za2,w).

For 1> 0 and u € 7—[2’ % (RY), we introduce a scaled function u,,(t, ) := u(t tu E) And for
the point (s,y) € RY, let Ty u(t,z) := u(L,z — y) denote the translation function.

Remark 2.1 By (2.1), we have

||

a( (1, ;) (1.0)) = \/(1nti)2+ (7)2 :% (2 + o = id((t,x),(l,o))

and

a((2.00 —y). (S0 —y)) = VOt —Wte + 27— 2 = d((t0,2°), (1, ).

Therefore, the introduction of scaled function w, and translation function 7Ty,u has meaning.

2.3 Pohozaev identity and manifold
In this section, we deduce the Pohozaev identity on cone and introduce the corresponding
manifold. The original work is Pohozaev [19].

N
Proposition 2.2 Let u € 7—[; 2 (RY\{0} be a solution of (1.1), then u satisfies

N -2
—/ Ve u|2—da:—N

5 Gz, u)dtda:—l—/RN {(lnt)tata(t,x)

RN

+lea alt, )| P )dtd (2.2)

where G(z,u) = a(z)F (u) — 3 u?.
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Proof We write —Agu = a(2) f (u)—Au =: g(z, u) and introduce the transform T'(s)u(t, z) :=
u(t%, L), then T'(1) = id and

0

55 T(s) =—(Int,x) - Vg.

s=1

Set ¢ € D(R) satisfy 0 < p < 1,¢(r) = 1if r <1, and ¢(r) = 0 if r > 2. Define

Pr(t, ) =<p((mt)27;|x|2),

then there exists a constant ¢ > 0 such that for all integer k, we have
ok <c¢, |[(Int,2)|-|Vepi(t,z)| <c (2.3)

To obtain the Pohozaev identity, we multiple —Agu = g(z,u) by ¢k (t,2)((Int,z) - Vyu) and
get
Apu o (t,z)((Int, z) - Veu) + g(z,w)er(t,2)((Int, z) - Vgu) = 0.

On one hand,

Apu o (t,z)((Int, z) - Vyu)
=V (Vau ¢i(t,z)(Int,z) - Vyu) — (Vu - Ver)((Int, z) - Veu)
— p{Vp[(Int,z) - Vgu] - Vyu}
=V (¢ Veu (Int,z) - Veu) — (Vau - Vpr)((Int, x) - Veu)
2 [Vaul?
- s%{lV[Bu| +(Int,z) - Vg 5 }
= Vs (e Vpu (Int,z) - Vyu) — (Vpu - Vepr)((Int, z) - Veu)

\V4 2
| B;” ) — Veor - (Int, z)

Viul? Viul?
— {(pk|VBu|2—|—V]B' ((pk(t,$)(lnt,$) | Bu| N | Bu| }

On the other hand,
Ve - [G(z,u)pr(t,x)(Int, z)] = [t0oG + tg(z, u)Owu]pr Int + Gty Int + Gy,

+ Z[@‘G@kﬁfi + g(z,u)0r,u prx; + GOy, prwi] + Gor (N — 1)

i=1
= g(z,u)pr(t,z)((Int, x) - Vyu) + [(ln t) - t0G + inﬁiG} Ok
i=1
+ GV - (Int, z) + NGopy.

Therefore, we get
Vs - (Veu @i (t,z)(Int, z) - Veu) — (Veu - Vaer)((Int, ) - Veu) — ok |Veul?

Viul|? i Vpul?
Ve (eut. )t ) V2D 4 o ey V2L g, VB

+ Vi [Gop(t,z)(Int, x)] — [(m 1)t0oG + Z xi&-G} vr — GV - (Int,z) — NG(z,u)pr = 0.

=1
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Integrating on Q,.(1,0) with measure %dx, we obtain

2
/ {V]Bu (Int,z) - Vpu — (Int, x) |V]B;L| + G(z,u)(Int, a:)] pr - vdS
99,(1,0)

= / { {NG(Z, u) _ E|V]Bu|2 —+ (ln t)ta()G + Z :131816*} Pk
Q,.(1,0) 2

i=1

2 dt
+ (Vpu - Veer) (Int,x) - Veu — Vppy - (hlt,x)' ]B;u| + G(z,u)Vpepy - (lnt,x)}?da:,
where v = (lnrﬂ is the unit outward normal vector of 9Q,.(1,0).

Hence (2.3) and the Lebesgue dominated convergence theorem imply that

|Vul?
2

/ [VBU (Int,z) - Vpu — (Int, x) + G(z,u)(lnt,x)} -vdS
89,.(1,0)

- / NGz u) - N 2192 + (Int)tdeG + > i) 4 4z, (2.4)
Q,(1,0) 2 t

i=1

Since

dt
[ 6+ 519eP] s
R}

- /OOO { /69 - Gz w)l+ %WguﬂdS}dR < +o0, (2.5)

then there exists a sequence R,, — 400 such that as n — +o0,
1
Rn/ (162, u)| + 5| Vsul?]ds — 0. (2.6)
09,.(1,0) 2
If this is false and

1
lim R [|G(2,u)| + —|VBu|Q]dS —a>0,
Ro+oo  Jo.(1,0) 2

then |G(z,u)| + 2|Vpul* ¢ LY (RY, 4¢dz), which contradicts (2.5).
Thus, combining (2.4) and (2.6) we get

N -2

T/Rf |V]B;u|2%dx = /Rf [NG(z,u) (Int)t0oG(z,u —l—;xl@ G (2 u)] itdx
which means (2.2).
Now we define the Pohozaev manifold associated with (1.1) by
P:={uc ’H;%(Rf)\{O}, u satisfies (2.2)}. (2.7)
In the following discussion, we denote %d:z: by do.
Lemma 2.1 Let functional J: 7—[5% (RY) = R be defined by
J(u) = —/ |Vpu|>do — N/ G(z,u)do— /]RN [(lnt)tata (t,x —I—Z 20z, a(t a:)}F( )do.

=1
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Then, it holds that

(1) {u = 0} is an isolated point of J~1({0});
N
2)P={ue H;’T(Rf)\{O}: J(u) =0} is a closed set;
(3) P is a C* manifold;
(4) there exists o > 0 such that ||u]| > « for all u € P.

Proof (1) By condition (A4), we have

N -2
J) = Y =2 / VsuPdo ~ N [ ([att,2)
2 R{X ]Rf

(Int)tora(t, x) + i 2;0z,a(t, x)

=1 1 2
+ ¥ }F(u) 2/\u )dcr
N -2 1
> — |Vu|>do — N/ {aooF(u) — —)\uz]dcr

N -2
> HuH?—N/ 4o F(u)do.
2 Rf

Then the Cone Sobolev embedding and condition (1.5) imply that

N —2 Naso
Tw) > Y2y - e /\|u|2da—CNaoo/ lu[Pdo
2 2A Rﬁ Rﬁ
1 Naso
> 5 (N =2 = S5 Jull? — CNaoe Jull”

If we take € > 0 small enough and 0 < p < 1 such that

(N—=2)A—eNay, >0, pl<

4CNaw (N —2- ENAaoo)pz’

then if ||u|| = p, we have

J(u) > —(N—2— E]\7;00);)2>0.

And J(u) > 0if 0 < |lul| < p.

(2) Since J(u) is a C! functional, thus P U {0} = J~1({0}) is a closed subset. Moreover,
{u =0} is an isolated point of J~1({0}) and then P is a closed set.

(3) Considering the derivative of J at u, we have

(Int)tdra + > x;0:,a
=1

(' (u),u) = (N = 2) /R VeuPao = [ ([o+ i

]f(u)u - /\u2)do.
Since u € P, if follows that

(nt)tdhalt,a) + 3 2,0, a(t, 7)

(' (u),u) = 2N . [a(t,x) + — ]F(u)da
(Int)tora(t, x) + zn: 2;0z,a(t, x)
- N . [a(t,x) + szl }f(u)udcr

+
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(In6)tdealt,z) + 3" 2.0y, alt,z)

=2N o {a(t,x) + Nifl } : [F(u) — %f(u)u do <0,

where we used (Al), (A3) and (f3).

Therefore, if v € P then (J'(u),u) < 0. Thus by implicit function theorem, we know that
P is a C'! manifold.

(4) Since 0 is an isolated point of J~*({0}), there must be a “ball” ||u|| < a which does not
intersect P and the assertion is proved.

3 Enmnergy Levels for Limiting Problem

In this section, we study some crucial properties of solutions for the limiting problem

—Apu + A\u = ax f(u) inRY, (3.1)
where A > 0 and asc > .
Let I: H;’% (Rf) — R be the energy functional corresponding to (3.1), namely
1 1
Io(u) = —/ |Vpu|?do —/ Goo(u)do  with Goo(u) = aso F(u) — =M.

We say that a solution ® of (3.1) is a least energy solution to (3.1) if

N
2

Io(®)=m, m:=inf{lo(u): ue H; (RY)\{0} is a solution of (3.1)}.
The Pohozaev identity corresponding to (3.1) can be stated as

N -2
—/ |Veu|?do = N/ Goo(u)do,
2 RN Rﬁ

+

and we introduce the manifold
1)&
Poo i= {u € Hy'? (RY)\{0}, Joo(u) = 0},
where Joo(u) = 252 [on |Veu|?do — N [on Goo(u)do. Consider the set of paths
+ ¥

1N

Poo = {y € C([0,1];H, * (RY)) | 7(0) = 0, I (%(1)) < 0},
and define the min-max mountain pass level

oo (= i I .
Coo 1= 10 max Ioo(7(7))

Then, we have following property, which is important for the proof of nonexistence.
Proposition 3.1 [t holds m = c.
In order to prove this result, based on a key observation, we deduce the following property.

Proposition 3.2 Suppose that ax, > A > 0 and (fl1), (f2) hold. Then there exists a
nontrivial “radial” least energy solution w for problem (3.1) such that

Io(u)=m= inf I(v).
(u) =m f (v)
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Proof We divide the proof into three steps.
N
Step 1 The set {u € Y (RY), Jan Goo(u)do =1} is not empty.
+
Since aoo > A and lim £s) 1, there exists ¢ > 0 such that

s——+oo s

1
Goo(€) = ancF(¢) — §Ag2 > 0.
Now for R > 1, we define
¢ for |z| < R,
ur(z) =< ((R+1—7) for r =|z] € [R, R+ 1],
0 for |z| > R+ 1.

Then, ugr(z) € H;%(Rf) and

GOO(UR)dU 2 Goo(C)|QR‘B — ‘QR+1\QR|B max |GOO(S)|,
Rﬂ\r] SE[O7C]

where |Qg|p is the volume of Qp in the sense of measure %dx. Therefore, there exist constants

C,C" > 0 such that

Goo(ug)do > CRN — C'RNL.
RN

For R large enough, this shows that f]RN wo(upr)de > 0.

Since fRf o ((ur)y)do = pN fRN s (ug)do, there exists a proper constant p > 0 such
that [y Goe (ur))dor = 1.
+

Step 2 For any u(t,z) € H;% (RY), there exists v(t, ) := u(e’,z) € H'(RY). And for any
v(t,r) € HY(RYN), there exists u(t,r) := v(Int,z) € ’H;%(Rf) At the same time
[ [eote.0p2 + 50 ult,2)?] Lo - [ [tantat.a)? + + 3@, oltnt )] Lo
R«Iz ’ ‘ ’ t RN ’ t

=1 + =1
n

_ /R @)+ 3 @0t deda

i=1
and
[ owrto-3usf - [ oo~ oo

Thus, problem

min { / |Vpul*do; u € 7—[5% (RY), Goo(u)do = 1} (3.2)
RY RY
is equivalent to the problem
min {/ |Vol?dtdz; ve HY(RY), Goo(v)dtdz = 1}. (3.3)
RN RN



Cone-Degenerate Elliptic Equations 695

From Berestycki and Lions’s paper [2], we know that there exists a positive, spherically sym-
metric solution v € H(RY) for problem (3.3). By (2.1), if 5(t, ) is symmetric with (0,0), then
u(t, ) := v(Int, z) will be symmetric with (1,0). Thus, we have a positive, “radially symmetric”
solution w € ’H;’%(Rf ) for problem (3.2). What’s more, there exists a Lagrange multiple 6
such that

—Apt = 0(ace f (1) — \T).

If & = 0, we have @ = 0, which is impossible. Let us show that 6 > 0. Suppose by
contradiction that 6 < 0. Observe that ac f () — A\u # 0, since aoo f(s) — As # 0 for s > 0 small,
aso f(W) — X = 0 gives W= 0 or f(w) = (22 )u # 0, both cases contradict Jpr Goo(@)do = 1.

oo T

N
Consider a function ¢ € Hy 2 (RY) such that (acs f(7) — Au, ) > 0. Since

Goo(U+ ep)do ~ Goo(W)do + e{aoe f (W) — AT, @)

N N
RY RY

and

/RN V(T + ) > do ~ /RN \Vetu[*do + 2e0{ac f (@) — Nu, ) fore —0 and 6 <0,
+

+

one can find £ > 0 small enough so that g = u + € satisfying

Cu@)do> | Gu(@do=1 and / Vep2do < / Vsa[2do.
RY RY

N N
RY RY

Again by a scaled change, there exists a 0 < p < 1 such that

Gou(@)do =1 and / Vs do < / IV5[2do,
RY REY

Yy
which is impossible. Hence 6 > 0.
Therefore, u satisfies, at least in H;’% (RY), the following equation with 6 > 0,
—Apt = 0(aco f (W) — M),
and so U, 5 = E(tﬁ ) is a solution of problem (3.1).

7 Ve
Step 3 We prove that u = U s is a least energy solution for problem (3.1). Note that

Goo(@)do =1, / |Vpu|?*do = 2N G oo(u)do

RY RY N =2 Jzy
and

—i2 . 2 L5 N

|VeT| dU:mln{ |Vu|*do; u e My ? (RY), Goo(u)dozl}.
RY RY RY
Since
/ |Vpu|?do = 077 / |Vea2do  and Goolu)do =07 | Gu(u)do =07,
RY RY RY RY
we have N9
0= —— |Vez|*do.

2N Rf
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Moreover,

N
2

o= [ et () 7
+ +

On the other hand, let v be another solution of (3.1). Then
2N

/ |Vpo|’do = —— [ Gu(v)do.

RN N

y —2J/ry
Let p > 0 satisfying [,x Goo(v,)do = 1, then
+

o= ([ otie) " = (OG5 [ wavpao)”

2~

Therefore, we get

N-—-2 N
2

Lo(v) = %/RN Vio|2do = %(%) : (/RN Vs, do)
+ ¥

Since u solves problem (3.2) and fRf Goo(vy)do = 1, we obtain

/ |VEE|2dU§/ Vv, |*do.
RY RY

+ +

Thus
Io(u) < Io(v) for all solution v of problem (3.1), i.e., Ioo(u) = m.

What’s more,

1 /N —2\%2 N
Ioo(u) = i 1 (_) (/ Vaol2d )
() fkf Glo?(lg)dazl N\ 2N - [Vep|“do

min ! (N_2)¥(/ |Vrp|?d )% min I (v) = min I (v)
= _— — o = o = 00 .
Joo(¢m):0 N\ 2N RY B Joo (v)=0 VEPoo

Lemma 3.1 For all v € I'so, we have v([0,1]) N Pos # 0.
Proof Similar to the proof of Lemma 2.1, we know that there exists p > 0 such that
Joo(u) >0 if 0 < |Jul| < p.
Observe that
oo (1) = Nl (1) — / Vul2do.
Y
For any v € I', it holds
Jo(7(0)) =0 and Jo(y(1)) < NI(v(1)) <O0.
Thus, there exists 7 € (0, 1) such that
V(DI =p and  Ju(y(7)) = 0.

This means (1) € v([0,1]) N Pwo.
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Lemma 3.2 Let ® be a least energy solution to problem (3.1). Then there exists v € T
such that

® € ([0,1]) and rrél[%ﬁ] Io(y(7)) = Ino(®) = m.

Proof Let ® be aleast energy solution of (3.1) and [,x |[Ve®[?do = 225 [on Goo(®)do. We
T T

can define a continuous path vy (7) (¢, z) = @(t%, ) for 7 > 0 and 1(0) = 0. Then I (1(0)) = 0

and
N-2

Lo(i(r)) = = 5 /RN |Ve®|?do — 7V /RN Goo(®)do  for 7 > 0.
+ +

In particular, 71 (1) = ®. By taking derivative, we get

d N —2

S Lo(n(r)) = SN / Va02do — N1 [ G (@)do

dr 2 Rf Rf

N —2

— N30 —7'2)/ |Vp®|*do.
2 RN

+

Thus Io(11(1)) = max I (71(7)).
T€[0,1]

Since fRf Goo(®)do > 0, we can take L > 1 large enough such that Io.(71(L)) < 0. Let
~Y(7) = v1(7L), then we have v € T'o, and the result follows.

Proof of Proposition 3.1 Combining Proposition 3.2 and Lemma 3.1, we get m < coo.
Considering the path v € 'y provided by Lemma 3.2, we have

I —m.
Inax (y(1)) =m

Taking the infimum over I',, we obtain

inf I < m.
Jof max Teo(y(7) < m

Therefore, coo < m. And we get the assertion.
Put [ = inf{u € (0,00) | Goo(u) > 0}. Then we have following uniqueness result.
Proposition 3.3 Suppose

=AU+ a0 f (1)

;i is non-increasing on the subset of (I,00) where — A+ aco f(u) > 0. (3.4)
w—
Then problem (3.1) has at most one positive solution.

In fact, if f is defined in (1.6), then condition (3.4) is satisfied. Therefore, in this case,
together with the result in Proposition 3.2, we know that problem (3.1) has exact one positive
solution and this solution is radial. We will give the proof in Appendix.

4 Nonexistence Result

We begin by presenting the main relations between Pohozaev manifold P associated with
non-autonomous problem (1.1) and Pohozaev manifold P, associated with limiting problem
(3.1). Note that condition (A3), (A4) imply that

Lo(u) < I(w) for all u € Hy'® (RY)\{0}.
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We will show in this section that
pi= 1}r&f)[(u) = Coo
and this level is not a critical level for functional I.

Lemma 4.1 If fRN Goo(u)do > 0, then there exist unique 1, s > 0 such that
+
Uy, € Poo and uy, €P.

Proof First, we consider the case Ps. Let ¢: (0,00) — R defined by
Lz L N-2 2 N
(1) = Too () = Ioo (u(#5,2) ) = S Veul?do — i | Goo(u)do.
Wil 2 RY RY

Taking derivative of ¢, we get

N -2 T (u
w%u)=——5—uN‘3/1IVRM%M=—NﬂN‘1 Goo(u)do = ()
RY RY Iz

(N=2) [on |Veul?do 1
—+ )2 >0
2N ij G (u)do )

By the formula of ¢'(p), we know u, € P if and only if ¢'(1) = 0 for some p > 0 and

Thus, ¢’ (1) = 0 if and only if either g =0 or p = p1 = (

then we have u,, € Ps. Observe that ¢ is positive for ¢ > 0 small enough while is negative for
1> 0 large, thus the unique critical point of ¢ is a global maximum point for .
Now, we turn to the case P. First, we define the function

1
U(p):=1I(u,) = —MN_Q/ |Vpu|?do — G(t,z,uy)do
2 Rﬁl ]Rf

1 2
LS / Vsul2do — N / [at, ) F ()~ A2 ] do
2 RN RN 2

+ +

Taking derivative of ¥(u) and recalling that N > 3, we get

N—-2 _ _
V() = S5 [ Vaufdo - N [
+

N
R

2

[a(t“, ux)F(u) — )\%} do

—uN/
RY i=1 K

Thus we find that
u, € P if and only if U'(u) =0 for some u > 0.

Note that, by condition (A2) and the Lebesgue dominated convergence theorem, we have

u? u?
lim [a(t“, ux)F(u) — )\—}do = / {aOOF(u) - /\—] do = Goo(u)do. (4.1)
Hoe Jry 2 RY 2 RY

Also using (1.4) and again Lebesgue dominated convergence theorem it follows that

lim [t“ Int*Opa(tt, px) + Z pa;Oa(th, ua:)] F(u)do = 0. (4.2)

— 00 N
" Ry i=1
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Therefore, if p > 0 large enough, then

s (N =2
U (p) = pv 3{T / |Vu|>do — N,uz(/ Goo(u)do + oﬂ(l)) }
RY RY
Since [px Goo(u)do > 0, it follows that W'(u) < 0 for 4 > 0 large enough.
+

On the other hand, for g > 0 small enough, from conditions (A1), (A3), (A4) and (1.5), we

have
1 n
0<alt,x) + N {(111 t)tora(t, x) + Z; 204, a(t, a:)] < Goo

and

) tHInttOpa(th, px) + > pa;0ia(th, px) )

-2 /R

{ {a(t“, pux) + N = }F(u) - )\u—}da

w?do < /
R

Cao
< Goo(u)do < —fe u?do,
RY 2 ey

N N
+ +

where C' is a positive constant independent of p.

Then, taking 1 > 0 small enough, we have U’(x) > 0. Since /() is continuous, there exists
po = po(u) > 0 such that ¥'(u2) = 0. This means that u,, € P.

To show the uniqueness of ug, ¥/(u) = 0 implies that

N9 tH Inttopa(th, px) + > px0ia(tt, px) )

— 2o — N 2/ i=1 Flu) — N\ '
5 /Rf |Viu|*do 1] s {[CL—F N (u) — A 5 }dcr
Denoting

tHInthdpa(th, px) + > pa;0ia(tt, px) 5
o m =1 - u_
o= [ {fatenn) + - [F(w) =A% o,
then we have

1 E 1

Y (p) = m /N {t“ Int"Opa(t", px) + Z/mi@ia(t“,/w) + N {(ln )2t Opa(t, )
R i=1
+ (Int")2 821 92a(t", px) + 2275“ In t# p; O3 a(t”, pr) + Z 2,0 ,/mc)}
i=1 1,j=1

1 n
el TR n T
+ {t Int*dpa(t", px) + ;21 ux;0;a(t ,/wc)}}l?(u)da.

Conditions (A3) and (A5) tell us that ¢’'(u) > 0. Therefore, ¥ (u) is an increasing function of u

and there exists a unique g > 0 such that
N -2
5 /RN [Veuldo = Np?e(p).
+

The uniqueness of us is verified.
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Remark 4.1 Note that the hypothesis (A5) was used in the previous lemma only to show
the uniqueness of po.

w|z

N
Lemma 4.2 Let O := {u € ’H; 2 (RY); fon Goo(u)do > 0} be an open subset of’H;’
+
The map pz: O — RY defined by u— pz(u), such that Uy (u) € P, 18 continuous.

(RE).

Proof Consider the sequence {u;} C O such that u; — u € O. We will show that
p2(ug) — po(u).

First, {p2(u;)} is bounded. Indeed, recall the expression ¥/(x) = 0 in the proof of the
previous lemma applied to u; and po(u;):

2

N -2 {a(tM(“j), po(u;)x)F(u) — /\%]da

S [ Vs o = Nua(u)? [
Rﬁ R

+ () [

R

N

+

i {tm(uj) In 4249 8o (42 (4| 1y () )

y

+ 7 ma(ug)widialt" ), o (uy)w) | F(u)dor
=1

Since pa(u;) > 0 for all j € N, suppose by contradiction that pa(u;) — +o00 as j — co. Then,

by (4.1)—(4.2) and Lebesgue dominated convergence theorem we get that the right hand side

of above equality goes to infinity while the left hand side tends to % f]RN |Veu|?do < oo,
+

which is a contradiction. Therefore, we know that {pa(u;)} is bounded and has a convergence
subsequence, say p2(u;j) — fiy. In turn, by Lebesgue dominated convergence theorem, as j — oo,
we obtain

/]R a(t"2() |y (uj)z) F(u)do — a(t">, fiyx) F(u)do

N N
+ R
and

/N {tw("f‘) In t#2(43) Gy a (812 () | g (uj)x) + Z pio ()i 0;a(t2 () o (uj)z) | F(u)do
R

¥ i=1

- [t% In t7200a(t72, Fiyw) + Y flpxiOia(t™, ﬁQx)} F(u)do.
RY i=1
Since uj; — u € O, we get

N —2 u?

— /M |Vsul*do = N(1,)* /RN [a(tﬁ2,ﬁ2x)F(u) - Aﬂda

2 ¥
+ (ﬁ2)2/R

This means that up, € P, and by the uniqueness of the projection in P we get 7iy = pa(u).

{t% Int72dga(t, Tyx) + Zﬁgxiaia(t% : ﬁQx)} F(u)do.

N .
n i=1

Lemma 4.3 For u € Pu, there exists a unique p > 1 such that u, € P.

Proof Let u € Py, then [pn Goo(u)do > 0 and Lemma 4.1 assert the existence of a unique
+
i > 0 such that u, € P. Moreover, we have

N -2
—/ |Veul?do
2 e

N
+
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R

Using the hypotheses (A4), we have

n
t* IntFdpa(t, px) + > pxida(t’, ux) )
=1

{[a—i— T }F(u) —)\—}da.

N
+

N-2 2
. / \Veul?do < N2 / [aOOF(u) - A“—}da =Ni? | Goo(u)do.
2 RN RN 2 RN
+ + +

But by u € Pu, we know £2 fRf |Vpu|?do = NfRf Goo(u)do. Hence we find p > 1.
Lemma 4.4 For u € P, there exists a unique 0 < p < 1 such that u, € Px.

Proof First, we verify that if u € P, then fRf Goo(u)do > 0. In fact, by v € P and

condition (A4), u satisfies

(Int)topa(t,x) + zn: 20y, a(t, x)
N-2 / |Veul?’do = N { [a(t, x) + = }F(u) - l/\UQ}dO'
RY RY N 2

2

<N {aooF(u) - %)\uQ] do=N Goo(u)do.

N N
R RY

N
Since u # 0 and u € 7{;’ Z(RY), we get [pn |[Veu[*do > 0 and hence [nx Goo(u)do > 0.
+ +
Therefore, there exists a unique p > 0 such that u, € P. Notice that

N -2
—_— |Vgu|?do < Goo(u)do,
2N Jry Y

and u,, € Po, then we have

(N =2) [y |Vaul*do

uo= < 1.

Thus we have p < 1.

Remark 4.2 As a result, the function u € 7—[;’% (RY)\{0} can be projected to P and Ps
if and only if [,x Goo(u)do > 0.
+

Lemma 4.5 If u € Py, then Tou(t,x) = u(t,x — y) € Poo for all w = (s,y) € Rf.

S

Moreover, there exists p, > 1 such that

(Toy)p, € P and  lim p, =1.

|w|—o00

Proof For u € P, since

0 =252 [ (=) s 5 =)
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N -2 dt 1 dt
== / |Vpu|*> —dz — N/ {aooF(u) — | —dz = Jo(u),
2 Ri\f t R«Iz 2 t

we know Tyyu(t, ) € Ps for all w = (s,y) € RY. What’s more, from Lemma 4.3, there exists
fw > 1 such that (Tsyu),, € P.

Suppose by contradiction that there exists a sequence w; € Rf such that |w;| — 400 and
pw; — A > 1 or +00. Now for (Tsyu),, € P, we have

N -2
5 / |Vpul’do = Ny / {a(st“”,y + )
RY RY

1
+ N [st“w In(st")0pa(st", y + puwx)

n 2

u
. . . Hw N
+ i:E 1 (yi + px;)Oza(sth y + uwaz)] F(u) — X 5 }dcr
u2
_ Nui/ [K(st“w,y + proz)F(u) — A—}da, (4.3)
RY 2

where

st In(sth)dpa + Z (yi + pwx;)0ia
K(st' y + ppx) = a+ =1

N (sthw y+pupx)
From condition (A4) and (1.5) we have

u?(t, )
2

0 < K(st',y+ pwz)F(u(t,z)) — X

< acoF(ult,x)) — /\M

< Cu?(t,x) for ae. (t, ) € RY.
Applying (4.3) to (Tsyu)uwj, if pi; — 400, we get that the right hand side goes to infinity

while the left hand side is a constant &2 [ |Vgu|?do < 4oo. This is a contradiction. If
Y
P, — A > 1, then
u?
lim [K(st“w,y + ppx)F(u) — )\7} do = Goo(u)do.

i|— N N
|wj|—+o0 RY R

This means that the right hand side goes to NA? [ox Goo(u)do while the left hand side is a
+

constant % fRN |Vpu|?do < +00. But A > 1 and u € Pa,, we get also a contradiction.
+

Under the assumption of Lemma 4.5, we have following lemma.

Lemma 4.6 sup fp, =p < +oo and @ > 1.
weRY

Proof Lemma 4.5 tells us that there exists R > 0 such that |u,| < 2 for |w| > R. We show
that there exists M > 0 such that

sup { p; |w| < R} < M.
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Suppose that there exists a subsequence {w;} C RY with |w;| < R such that p,, — 400 as
J — +00. As in previous lemma, but now with p,,;, — 400, we have

2
lim / [K(St“” Y+ ) F(u) — )\u—}da = Goo(u)do
Huw; =00 JRN 2 RY
and then N2
__/ |Veul?do = Np?2 [/ Goo(u)do + owj(l)]
2 Jry LRy

But piy; — +o00 and the left hand side is a fixed number, this is absurd. Thus sup ., < +oo.
weRY

Lemma 4.7 It holds p = ing I(u) = ¢oo-
ue

Proof Let ® € ’H;’% (RY) be a ground state solution of limiting problem (3.1), ® € Py and
I (®) = coo. Given any w = (s,y) € RY, from previous discussions, we know that Ty, ® € Po
and I (Tsy®) = coo. From Lemma 4.5, there exists a j,, > 1 such that éw = (Tsy®)pu,, € P.
Thus, we get

1(®u) = cool = [1(Pw) — Loo(Tsy D)

1 ~ ~ 1
_ ‘_/ Vedul2do — [ G(t,2,By)do — —/ VeT,,d|?do +/ oo (Toy®)do
2 RN RN 2 RN RN
+ T + T
pa -1 2 N
= ‘7 |[Ve®|*do — [y a(sth™, y + ) — oo F(P)do
2 RN RN
+ +

+ (X —1)3/ <I>2da’
2 Rf

=2 — 1] ) N
< wf/ |Ve®|“do +/ N a(st Y + o) — aoo| - F(®)do
Rf R«Iz

A
+ |l — 1|§/RN d%do.

+

Since p,, — 1 and a(st,y + ) = aoo as |w| — oo, we obtain

[1(Do) — Coo| = 0w(1) + /]RN la(st,y + x) — aoo| - F(P)do + 04 (1) = 04(1),

and lim I(®,) = cso. Therefore, p = in;; I(u) < ¢oo-
ue

|w]|—o0

On the other hand, for v € P, then from Lemma 4.4 we get 0 < p < 1 such that v, € Px.
At the same time, using N > 3, (A3) and Proposition 3.1, we have

I(v) = %/RN |Vgv|2do + %/RN {(lnt)t(?ta(t,x) + inﬁma(t,x)}F(v)do
+ + i=1

1 N—-2
—/ |Vpo|?do > K / |Vpo|’do = I (v,) > inf Io(u) =m = coo.
N Rﬁ N RN

UEPoo
T

Y

Therefore we find p > ¢o,. And then we get the assertion.

Lemma 4.8 P is a natural constraint of problem (1.1).
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Proof Let u € P be a critical point of I, restricted to the manifold P. We obtain that
there exists a Lagrange multiple € such that

I'(u) +60J" (u) = 0.

We will show that 8 = 0. Apply the linear functional above at any v € 7—[;’% (Rf ),

0= VIBU . V[B’UdO' — /

N N
RY RY

[a(t,z) f(u)v — Auv]do + 0 [(N -2) Vgu - Veodo
Y

_ /RN [Na(t, x) + (Int)tdealt, z) + i x;04,a(t, x)] flu)v — /\uvdo] ,
¥ i=1
so that u satisfies
—(1+0(N —2)) Asu+A1+0N)u = {(1+9N)a(t,x)—i-G((lnt)t@ta(t,x)—i—ixi@ma(t,x))} (u).
i=1
The solution of this equation satisfies a Pohozaev manifold identity J*(u) =0, i.e.,

N —2
Y

= /RN [NG*(z,u) + (Int)tdoG* (2, u) + anziaiG*(2’,U)}dUa

i=1
where

G*(z,u) = {(1 + ON)a(t, z) + 0((Int)tdoal(t, z) + Z z;0;a(t, 3:))} F(u) - (L1+9N) +29N)

=1

u?,
and then

(010G (2,w) + Y #:0iG* (z.u) = {(1 LN + 1)) [(m )tdpalt, z) + Z zidialt, :z:)]

+0|(Int)*(tdpa(t, x) + t*03a(t, x)) + ZZ i(Int)to3;a( Z xzxja a(t, }}F(u)

=1 7,7=1

Thus, we have

N -2
(14 0(N —2))—= / Vsu[*do
2 Rf
(ln t)taoa + Z xiﬁia 1

:N(1—|—9N)/RN{[Q+ Nizl }F(U)—i/\UQ}dO'

+(N+1)8 {(m t)tdoa + Z vidia
RY ,

+ {(lnt) tdoa + (Int)*t*03a + 221‘1 Int)td3;a + Z xlxj(? a}} (u)do.

N+1 =1 i,j=1
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Since u € P, substituting (2.2) in the above equation, we get

—O(N — 2)/ |Vpu|?do
RN

+

_ S 9. 1 2 2,202
=(N+1)0 {(mt)taoa + Zx@a t N1 1 [(lnt) tdoa + (Int)“t“dja

RN

+ 221‘1 Int)to3a + Z z;2502 a}} (u)do.

i=1 i,j=1

By the assumption (A5), if 8 > 0, then the right hand side of above equality is nonnegative as

1
(Int)tdpa + sza a+ —— Nl [(hlt) tdoa + (Int)*t*03a + 22331 (Int)tdg;a + Z xi2;07 a}
1=1 1=1 7,7=1
> N ((1n t)tdpa + Zn: x;0;0 + S {(ln t)*tdoa + (Int)*t?dza
T N+1 ~ N
—|—22x1 lntt@OZa—Flexj D,
1,j=1

while the left hand side is negative. If 6 < 0, we can also get a contradiction. Therefore § = 0,
N
and I'(u) = 0 which means that u is a critical point of I in ’Hé T (RY).

Proof of Theorem 1.1 The fact p = ¢ will be proved in Lemma 5.3. Suppose by
N
contradiction that there exists a critical point v € H; 2 (Rf ) of I at level c. Then, particularly,
veP and I(v) =c=p. Let 0 < p < 1 satisfies v, € Ps. One has,

p=1I(v)= % /Rf |Vgv|*do + % /RN [(ln ttora(t, x) + ixiﬁzia(t,x)} F(v)do

¥ i=1

1 ‘uN—Q
> — |Vpv|2do > / |Vpv|*do = I (v,) > inf Ioo(u) =m = coo,
N RN N UEPoo
+ R
i.e., p > Cx, which is contradict to Lemma 4.7.
N
What’s more, the infimum p is not achieved. Otherwise, if there exists u € ’H;’ T(RY)
N
such that I(u) = p and I’|p(u) = 0, then by Lemma 4.8 we know I'(u) = 0 in ’Hé T(RY),
contradicting to the first part of this proof. Therefore, we get the assertion in Theorem 1.1.

5 Existence of a Positive Solution

In this section, we will prove that problem (1.1) has a positive solution. Note that p is not
critical level for functional I and we should search for solutions in higher level energy. We will
use linking argument together with barycenter functional restricted to Pohozaev manifold P.

We begin by showing that the min-max level of the mountain pass theorem for the functionals
I and I, are equality.

Lemma 5.1 Functional I satisfies the geometrical properties of the mountain pass theorem.

Proof First, it is clearly that 7(0) = 0. Then similarly to the proof of Lemma 2.1, we know
that there exists p > 0 such that I(u) > 0 if 0 < |Ju|]| < p. At last, let u be a least energy



706 H. Chen, P. Luo and S. Y. Tian

solution to problem (3.1), then Lemma 3.2 tells us that there exists a v € I's, such that (1) =
u(tﬁ, £ for 7 > 0 and L > 0 sufficiently large. Taking v, (7) = Tsyy(7) = u((g)ﬁ, =Y
and by condition (A2), we obtain

I N-2

2

I(v,(1)) = /]RN |Vpu|*do — LY /N [a(stL,y + La)F(u) — %/\u2]dcr

R+
= Io(y(1) + LY /RN [a0o — a(st”,y + L) F(u)do
=Io(v(1)) + 0w (1) +< 0 for |w| large,
since Ioo(7(1)) < 0. We deduce the assertion.
Lemma 5.2 It holds ¢ = c.

Proof For v €T, I(v(1)) < 0. Since Io(u) < I(u), we get Ino(y(1)) < 0. Thus I' C T'
and

e B =00 = i gy =0 0) < i gy 1000 =

which means that ¢, < c.

On the other hand, for any & > 0, let 7 € 'y, such that I (7(7)) < ¢ +¢ for all 7 € [0, 1].
Choosing w = (s,y) € RY and translating T,7(7), for w large enough, we have Ty, 0oy € T
(see the proof of Lemma 5.1). Let 79 € [0, 1] such that I(T,v(7)) taking its maximum at 7o,
then

cw+EZIWWUw%=dg;IWﬁw%=£%EIU@%ﬂ)2g§£%§IWUD=a

Since € is arbitrary, we get ¢, > ¢ and the equality follows.
As a result, Lemmas 4.7 and 5.2 imply the following lemma.
Lemma 5.3 It holds p = ¢, where p and ¢ are defined in (1.2).

Recall that a sequence {u;} is said to be Cerami sequence for functional I at level d € R,
denoted by (Ce)q, if I(uj) — d and [|I'(u;)|[(1 + ||u;]|) — 0. Applying the concentration-
compactness Lemma of Lions (see [23]), we show that, for d > 0, any (C'e)4 sequence is bounded,
up to a subsequence.

Lemma 5.4 If {u;} is a (Ce)q sequence for functional I, then it has a bounded subsequence.

Proof Suppose by contradiction that ||u;|| — co. Define @; := IIZ—ZH’ then {u,} is a bounded
sequence and ||| = 1. Therefore, u; — u, up to a subsequence, and one of the following two
cases OCcurs:

Casel: dR>0 st. limsup sup / |ﬂj|2da > 0;
Jj=00 (s,y)eRY JQr(s,y)

Case2: VR>0 limsup sup / [u;*do = 0.
Qr(s,y)

J=oo (s,y)eRY
If Case 2 holds, taking L > 2v/dD, with D from the condition (f3), then we get

L 1
IG—waz—ﬁ—/
[lusll 2 R

a(t, x)F(ﬁuj)da.

N
+
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For any £ > 0, (f1) and (f2) give

/]R a(t,x)F(”u—l;”uj)dU < aOO/R

where fRN |uj[?do — 0 by a variant of Lion’s lemma. Take ¢ = -2~ and then we obtain
+

20007

£ ~ ~ Elo
§L2u§da + C. /N [u;|Pdo < WLQ +0;(1),
R+

N N
+ +

L L2
I{—u;) > — —0;(1).
(Fg) 2 7 -2

Since ||u;|| — oo, we have Hu—LH € (0,1) for j > 0 sufficiently large and
J

L L?
max I (7u; 2[(—1,) > —0:(1).
T€[0,1] (Tu5) flujill 4 5(1)
Let 7; satisfy I(Tj’(},j) = m[%)i] I(ru;). Thus
7€|0,
L2
I(rjuj) 2 — = 0j(1). (5.1)

On the other hand, since 7; < 1, using (£3) we have

I(tjuz) = I(7ju;) — %I'(Tjuj)(Tjuj) = /RN a(z) [%f(Tjuj)(Tjuj) - F(Taua)} do
1
<D o |5/ () (w) = Fluj)] do
= D|1(u)) - %1/(%—)(%)] — Dd +0,(1). (5.2)

Combining (5.1) and (5.2), we obtain
12
4
But L > 2v/dD, we get a contradiction.

If Case 1 occurs, i.e., there exists R > 0 such that limsup sup fQR(S ) |i;|?do = a > 0.
oo (s,y)eRY h

If {w; = (sj,y;)} is a sequence such that |w;| — 400 and fQR(S‘ ) [uj|*do > §. Recalling that
Ty, ui(-) — (), we get

- Oj(l) S I(TjUj) S Dd+ Oj(l).

[ s ryPa> S wd [ eare> 2
Qr(1,0) 2 Qr(1,0) 2

which means @ # 0. Then, there exists Q C Qg(1,0) with |Q|p > 0, such that

_ o . uitsy, T +yj)
0#u(t,x) = j_lilfoo wj(ts;,  +yj;) ZJETOO W

, ae (t,x) € Q. (5.3)

Since ||u;|| = oo, this implies w;(ts;, x + y;) — co. We claim that, u;(ts;, x +y;) — +oo for
(t,z) € Q. In fact, let v;(t,x) = u;(ts;, = + y;) and for a sequence ¢; — 0 in the dual space of

N
Y2 (RY) as j — oo, we get

a(tsj, z +yj;)

[l

G

[l

—Apvj + Avj = flwjllvg) +
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Testing this equation by v (the negative part of v;) and taking into account that

s , LT us (85, +
/ a( sj,zzc—I—yj)f(Hujij)vj_dg:O7 (Ghrv;) _ (Gruj (s; Yi)) — 0;(1).
Yyl [ [
we obtain fRf |Vev; |do + fRﬁ Avj [Pdo = [lv; > = 0j(1) as j — oo. In particular, by the

cone Sobolev embedding, we have [[v; || x = 0;(1) as j — oo for all 2 < p < 2*. Note that
Lp

N N
v; =u;(tsj, x +y;) = Win Ly , then we have v; — %; in Ly’ . And then @, =0 on Q, which
means w > 0 on Q. In turn, by (5.3), we get the claim. Therefore, by condition (f3), Fatou

lemma and (Al) with a = infa > 0, we have
R+

lim inf a(t, x) [lf(uj)(uj) — F(uj)|do

—00  JRN 2
J RY

.. 1
= lim inf a(tsj, z +yj;) {—f(uj (tsj,x +y;))uj(tsj, x +y;) — F(u;(ts;, x + yj))} do

—oo  JpN 2
J RY

— . 1
> allmlnf/ |:§f(uj(t5j,$ +y;))uj(tss, o +y;) — F(uj(tsy, x +yj))}d0'
Q

j—o0

Vimde

~ . .01
> a/ lim inf |:§f(uj(t5j,$ +y;))uj(ts;, @ +y;) — Flu;(ts;, x + yj))]dff = +o0.
Q

On the other hand, |I"(u;)(u;)| < [[I'(u;)]| - ||u;|| = 0 as j — oo. Thus,
[ att.0) (57 w5) ) = F(w)do = Iu) = 51 (w5)ay) = d + 1),
Y

which gives a contradiction. If {w;} is bounded, say |w;| < R for some R, then we can get

a g/ |aj|2dag/ i, 2dor
2 QR(5j7yj) Qzﬁ(lxo)

Since u; — @ in LZ% (92,5(1,0)), it follows that

o / 1#2do
2 0, 5(1,0)

Similar to the previous case, there exists 2 C Q,5(1,0) of positive measure such that (5.3)
holds. Then the argument follows as above for the case where {w;} is unbounded and we
can also get a contradiction. Therefore, neither Case 1 or Case 2 can occur and we have the
assertion.

Now, we show the existence of a Cerami sequence for functional I at level c¢. We need
following Ghoussoub-Preiss theorem. One can refer to [13, Theorem 6] (see also [14]).

Proposition 5.1 Let X be a Banach space and ®: X — R be a continuous, Gateaux-
differentiable functional, such that ®: X — X is continuous from the norm of X to the weak
* topology of its dual space X*. Take two points zy,z1 i X and consider the set r of all
continuous paths from zg to z1: I = {r€C°([0,1]; X) | 7(0) = 20,7(1) = 21 }.
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Define
a = inf max ®(y(7)).
~el 7€[0,1]

Assume there exists a closed subset' Y of X such that Y N &, separates zg and z1. Then there
exists a sequence {z;} C X such that, as j — oo,

(1) 6(2;,Y) = 0;

(2) D(z;) = o

(3) (1 + [Iz DI (=) — 0.
Here, @, = {z € X | ®(2) > a} and the geodesic distance 6(z1,z2) between z1 and zo in X is

1 !
: ()l 1
Sen,z) =int { [ A dr |9 € CH(0,15),9(0) = 21,7(1) = 2.
o 1+l
Lemma 5.5 Let ¢ be min-maz mountain pass level for functional I, then there exists a
N
(Ce). sequence {u;} in 7—{;’ 2 (RY).

Proof We apply the above Proposition 5.1 with X = H;’% (Rf) and ® = I. Consider zg = 0

N
and z; € 7{;’ 2 (Rf ) such that I(z1) < 0. The existence of z1 is guaranteed by the mountain pass

geometry of I. Then ¢ = inf m[%)i] I((7)) and the closed subset PN {I(u) > ¢} = P separates
~el T€(0,

zo and z1. In fact, 20 = 0 € P and z; € P, since J(z1) < NI(z1) < 0. Moreover, there exists
N

p > 0 such that J(u) > 0 for 0 < ||ul| < p. We have ’H;’ TRYN\P ={0}u{J>0}tu{J <0}

The “ball” Q,(z0) is in a connected component of {0} U{J > 0} and z; belongs to a connected

component of {J(u) < 0}. Therefore, we get a sequence {u;} C H;’% (RY) such that
0(uj, P) =0, I(u;) = ¢, (L4 [lug DI (uj)ll = 0.
Lemma 5.6 Let {u;} C H;% (RY) be a bounded sequence such that
I(uj) = d and |[I"(u;)]|(1 + |lugl)) — 0.

Then, replacing {u;} by a subsequence if necessary, there exist a solution @ of (1.1), a number
k € NU{0}, k functions u',u?,--- uF and k sequences of points {w;} CRY, 1<i<k,
satisfying:
N

(1) uj =@ in 7—[; 7 (RY);
or

(2) u® are nontrivial solutions of limiting problem (1.3);

j j ! C
(3) [wi] — oo and |w} — w;| — oo fori #1;
ko .
(@) uylt,2) — (L, — yf) - T(t,2);

1=1
(5) I(uj) — I(w) + zf:lloo(ul)

Remark 5.1 Nowadays, the proof of this lemma is standard and is a version of the
concentration-compactness lemma of Lions [16, 23]. The main ingredients are Lions lemma
and Brezis-Lieb lemma (see [3]). One can also refer to [8]. In fact, the solutions u® € H;’% RY)
can be chosen as positive and “radially symmetric” about some point.
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Corollary 5.1 If I(u;) = coo and ||I'(u;)|[(1 + [Juj]|) — O, then either {u;} is relatively
compact or Lemma 5.6 holds with k =1 and w = 0.

Lemma 5.7 Suppose that
the limiting problem (1.3) admits a unique positive “radial” solution, (5.4)
then I satisfies condition (Ce)q at level d € (Coo, 2Co0)-

N
Proof Let {u;} C ’H;" T (RY) satisfy I(u;) = d and ||’ (u;)||(1 + |lu;]|) = 0 as j — co. By
Lemma 5.4, {u;} is a bounded sequence. Applying Lemma 5.6, up to a subsequence, we get

k
uj(t,x)—Zui(‘:—i,x—y;)—>ﬂ(t,x) inH;?(Rf), I(uj)—>I(ﬂ)+ZIOO(ui).

i=1 j i=1
Since d < 2¢so, we have k < 2. If K =1, we get
o If w # 0, then I(TW) > p = coo and I(u;) > 2¢oo. This is impossible.
o If u =0, then I(u;) — Ioo(u'). Under (5.4), we know I (u') = coo, against d > coo.
Therefore, we have £ = 0 and u; — .

Remark 5.2 Note that, if f is defined as (1.6), then problem (1.3) has exact on positive
solution. Therefore, condition (5.4) is satisfied. We will give the proof in Appendix.

Lemma 5.8 If I(u;) — d >0 and {u;} € P, then {u;} is bounded.

Proof I(u;) — d > 0 implies that {I(u;)} is bounded in R. If {u;} € P, by condition (A3),
we know .
d+1>I(uj) > —/ |Veu,|*do,
N RY

+
ie., fRf |Vgu;|?do is bounded. By the cone Sobolev inequality, fRﬁ lu;|? do is also bounded.

Applying (1.5) with ellal|L=~ < A, we get

J

Inserting this to the expression of I, we have

a(2)F(uy)do < % /RN lu;Pdo + C(e) /RN ;|7 dor
+

N
+ +

1 1 .
d4+1> I(u;) > —/ Vs Pdo + 2\ — g||a||Lm)/ ;2 — C(E)/ |2 do,
2 Rf 2 Rﬁ] N

R+
N
thus fRf |uj|2do is bounded. Therefore, {u;} is bounded in H, 2 RY).

Next, we introduce the barycenter function, which is crucial for proving the existence of
N
>

solution for problem (1.1). For u € ’H;" (RI)\{0}, set

n(u)(t, ) =

ds
== u(s,y)|—dy,
|24] Ql(t,m)l () s

then n(u) is a continuous function and a.e. finite. Let

Ut ) == [n(u)(t,x) - %maxn(u) '

It follows that @ € Co(RY). Now, we can define the barycenter of u.
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Definition 5.1 Foru € ’H;’%(Rf)\{O}, define the barycenter of u by

1 dt
L / (Int, o)t z) Sde € R,
RY t

Blu) = 7=
||UHL11V
Since u has compact support, G(u) is well defined. Furthermore, we have following proper-
ties.

Lemma 5.9 (1) 8 is a continuous functional in H;%(Rf)\{O},
(2) if u is “radially symmetric”, then B(u) = 0;
(3) given w = (s,y) € RY, then B(Tsyu) = B(u) + (Ins,y).

Proof We prove (3). Set v(t,z) = Toyu = u(%,x — y), then

n(v)(t, ) =

T dr 1 dr
B m Q1 (t,x) u(g7§_y)‘7d§ |’U’(T7§)|Td€

B m Qi (L,z—y)

Let « = maxn(v), then

~ 1 d 1 7+
L o NGO =

La—y)

Therefore, we get

1 1 dr 1 1+dt
B(v) = — / Int,z)| — u(r,&)|—dé — —a| —dzx
)= T e @D oy, MO OIT A 50 5
1 / 1 dr 1 7+dt
= — Int+Ins,x+y)| — u(r,&)|—dé — —a| —dzx
Ty Jey! e fyony MO8 = 0] 5

1 1 dr 1 7+dt
= B(u) + (111573/)A—/ = |u(r,&)|—dé — —a| —dz
lull Ly Jry [|Ql| 01 (t2) T 2 } t

d
= B(u) + (lns,y)m /RN ﬁ(t,x)?tdx = B(u) + (Ins,y).

Now, we define
b:=inf {I(u): u € P and B(u) =0}.
It is clear that b > co,. Moreover, the following results hold.
N
Lemma 5.10 Suppose {u;},{v;} C ’H; 2 (RY) satisfying ||u; — vj|| = 0 and I'(v;) = 0 as
j — o0. Then, I'(u;) — 0 as j — oo.
N
Proof By assumption (f4), f € C*(R,R*)NLip (R, RT). Then for every u, v, ¢ € 'H; T(RY),
I"(u) (v, @) z/ Vgo - V]Btpdcr—F/ Avpdo —/ a(z) f'(u)vedo. (5.5)
R RY RYY

By the mean value theorem, there exists £ € (0,1) such that

I'(v) () = I'(u) () = I"(u+ (v = u)) (o, v — u).
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Thus, taking into account that | f'(u; 4+ &;(v; —u;))| < C a.e. and by assumption (fl1), for any
j > 1 we find & € (0,1) such that

I'(vj)(p) = I'(ug) () = I"(uj + & (vj —uy))(p, v — uy)

= / Vi (v; — uj) - Veepdo +/ AMvj — uj)pdo —/ a(z) f'(uj + &(v; — uy))(v; — uj)pdo
RY RY RY

< Cllpl- oy = w5l + Ca [ Ioy =] -ilde < Cl]- oy = ).

y
N
Take the supremum over ¢ € Hé 2 (RY) with [|¢|| <1, then we obtain as j — oo,
17 (v;) = I'(ug)|l < Cllv; — ugll = 0;(1).
Therefore, I'(u;) — 0 as j — oc.

Lemma 5.11 It holds b > c.

Proof Suppose by contradiction that b = cs. Then there exists a sequence {u;} with
uj € P and B(u;) = 0 such that I(u;) — b. From Lemma 5.8, {u;} is bounded. Since ¢ = co
and ¢ = p, so p = b, which implies {u;} is a minimizing sequence for I on P. By Ekeland
variational principle, there exists another sequence {u;} C P such that, as j — oo,

I(u;) = p, I'lp(u;) =0, |[[u;—u;l| = 0.

Let us now deduce that I'(%;) — 0 as j — co. Otherwise, there exists & > 0 and a subsequence
{;, } such that
| I'(w;,)|| >« forall k>1 large.

Arguing as in the proof of Lemma 5.10, there exists a positive constant C' such that
N
II'(55,) () = I'(0)(9)] < Clpll iy, —v]| for all k > 1 and any v, € Hy'* (RY),

Taking the supremum over ||¢| < 1, we obtain ||I'(u;,) — I'(v)|| < C||u;, —v|| for all k > 1 and
N = -
any v € H;" * (RY). Therefore, if ||u;, —v|| < & = 26, we have ||I'(u;,) — I'(v)|| < 6 for any
v E H;%(Rf) and all k > 1. This means, o — 6 < 11" (wj, )| — 6 < ||[I'(v)|| for all k > 1 large.
For § € (0,c) and @ := o — § > 0, we obtain
l,% N ~ / ~
VoeMt,?(RY): veQs(uy,) = [[I'(v)| > o
Set & := min {2, 2} and @ := {@;, }. Then, by a virtue of the Deformation Lemma, we get a
deformation ¢: [0,1] x 7—[;’% RY) — H;’% (RY) at level p such that
N
(1, 17N Q) C 1P, I(yp(1,u)) < I(u) forall ue Hy 2 (RY). (5.6)

Note that, for each k > 1, by (A4) we get

~ 1 - _ A
. > —_ 0. ) — 04
o Goo (1, )do > /]M [(a(t,x) + I [hlt toa(t, ) + ;xzﬁzla(t,x)})F(uM) 2ujk}dcr
N -2 .
= 5N o Vg, |“do > 0.
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Then there exists a unique 7 > 0 such that u;, (t%, %) € P. Since uj, € P, for k large enough,

~ (LT -
max I(Ujk (t*,;)) =1I(uj,) <p+e.

Therefore, from (5.6) we obtain

ey 1(0(13. (04 2))) <

On the other hand, for k and L fixed large, v(7) = (1, @y, (tﬁ, ) for 7> 0 and 7(0) =0
is a path in T since

o0 =104 5))) <1 4. 5)
~2

1 0%
_ §LN_2/ Vs, 2do — LN/ [a(tL, La)F(u;,) — /\%}do
RY RY

1 ~ -
= —LN_Q/ |Vpij, |*do — LN(/ Goo(1, )do + oL(l)) <0 for L — oc.
2 RN Rﬁ

+

Hence, we get

~ 1 x - 1 X
< : )  — = ] .
¢ rlél[aobﬁ] I(w(l’uj’“ (t ’LT))) I?g%( I(w(l’u”(t ’T))) sPmEsp

which contradicts with the fact p = ¢. Thus, we know I’(u;) — 0 as j — oo. Since ||a;—u;|| = 0,
by Lemma 5.10, we obtain I'(u;) — 0 as j — co. As a result, {u;} satisfies the assumptions of
Corollary 5.1 and since p = ¢4 is not attained, then Lemma 5.6 holds with £ = 1 and w = 0.

This implies
(1 :
uj(t,z) =u (;,x—yj) +0;(1) asj— oo,
J
where w; = (s;,y;) € RY, |w;| — oo and u! is a solution of limiting problem (1.3). Making a
translation, we get
uj(tsj, @ +y;) = u'(t, ) + 0;(1).

Calculating the barycenter functional on both sides, then we have
Bluj(tsj, @ +y;)) = Bluy) —wj = —w; and  Bul(t,x) +0;(1)) = Blu'),

since 3(-) is a continuous functional. On one side, S(u') is a fixed real value and, on the other
side |w;| — o0, so we arrive a contradiction. Thus, we get b > coo.

N
Consider the positive, “radially symmetric”, ground state solution ® € 7—[; R (Rf ) of limiting

problem (3.1). We define the operator II: Rf — P by

1

s, y](t, x) := @((E)E, x—y)’

s L

where 1, > 1 projects T, ® onto P. Then, II is a continuous function of w = (s, y) since i, is
unique and g, (Tsy @) is continuous. Moreover, we have following properties.

Lemma 5.12 B(I[s,y|(t,z)) = (Ins,y) for all w = (s,y) € RY.
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Proof Let v(t,z) = @((E)ﬁ, %), then

S

1

1
n(v)(t,z) = o

dr
[o(r, &) =2 dg = 5= (7,
T |Ql| Q(L,z—y) Hw

Ql(t,z)
t
= n((bﬂw)(;?x - y)'

Here, @,,(t,z) = ®(t, %). By the fact that 8(t,) = @, (4, z —y) and [9llpy = |, [l
then

1
) = Tl /
1

1ol L

— t dt 1 — de

(Int,z)®,,, (—, x— y) —dr = ——— / (Int +Ins,z +y)®,, (t,r)—dz
$ t 1ol Ly Sy t

dt 1

_ dt
—dz + A—/ (lnsvy)q)ﬂw(t’x)_dx
t Plly Jey t

N
+

/ (lnt,x)@:(t,x)
RY
1 N de
=B(®y,) + (Ins,y)=— [ V(st,z+y)—dz =0+ (Ins,y) = (Ins,y),
ol Ly Sy t

since ® is “radially symmetric” and so ®,,, is “radially symmetric”.
Lemma 5.13 I(I1[s, y]) \ oo, if |w| = +00.

Proof In fact, II[s,y] € P and on P the functional I can be written as, with v(t,2) =
1
) hw LY
(I)((s) 7w )7
1 ) 1 ~
I(I[s,y]) = — |Vev|*de + — [lnt topal(t, z) + E x;0z,a(t, a:)] F(t,xz,v)do.
N Jry N Jry i=1
Moreover, since ® € P, we have Ioo(®) = % [z~ |[VE®[*do. Thus, we obtain
+

,LLN_Q ,UN
I(I0]s, y]) = =~ N|qu>|2da+WW/
RY R

[st“w In st** doa(sth™, y + puwe)
~
+ Z(yz + pwx;)Osa(sth' y + ,uwx)} F(t,z,®)do
i=1
uy
= N7 (D) + 22 [st“w In st dpa(st'™, y + pwx)
N R«Iz
+ Z:(yZ + ;) Oza(sth  y + ,uwx)} F(t,z,®)do > coo.
i=1

Applying Lebesgue dominated convergence theorem, (1.4) and p,, — 1 if |w| = 400, we have

n

lim [sthe In sth Goa(sth, y—i—uwx)—l—Z(yi—i—uwxi)aia(st“"“ Y+ )| F(t,z, ®)do = 0.

— N
wl=+oo JRiy i=1

Therefore, we get I(I1[s, y]) \ ¢oo, if |w] = +00.

Denote 11 = SUp  [iy, then we have following lemma.
w=(s,y)€RY
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Lemma 5.14 Let C be the constant such that |F(s)| < Cs?. Assume that (1.3) admits a
unique positive solution which is “radially symmetric” about some point and

Coo

o — o < ————. 5.7
Vo =l < Gl o0
L.2

2
Then, I(I1[s,y]) < 2cs for any (s,y) € RY.

Proof Note that I, is invariant under the translation 7},, and the maximum of 7 —
1o\ - . .
I (@(tT , ;)) is attained at 7 = 1. Since pu,, > 1, we get

I(I[s,y]) = Too(Hs, y]) + I(I[s, y]) — Ioo (I[s, y])

< 1.(®) +/ (4 — alt, 2))F(t, 2, TM[s, y])do

RY
<t ca?((1)™ . EY)a
o] _Niu&sN2 - ) o
|2y C Sy s Haw
L2

=c +%/ ®2do < 2¢
= Nel? y Jr -
L2

N
+

We will need a version of linking theorem with Cerami condition by Bartolo, Benci and
Fortunato in [1].

Definition 5.2 Let S be a closed subset of Banach space X and @ be a subset manifold of
X with relative boundary 0Q. We say that S and 0Q link if:

(1) SNoQ = 0;

(2) for any h € C°(X, X) such that h|aQ =id, h(Q) NS # 0.

Moreover, if S and Q are as above and B is a subset of C°(X, X), then S and 0Q link with
respect to B if (1) and (2) hold for any h € B.

Proposition 5.2 (Linking) Suppose that I € CY(X,R) is a functional satisfying (Ce)
condition. Consider a closed subset S C X and a submanifold Q C X with relative boundary
0Q such that

(1) S links 0Q;

(2) e= irelgl(u) > sup I(u) = eo;

uedQ
(3) sup I(u) < +oo0.
ueq
If B={h € C°X, X); hlog = id}, then € = inf sup I(h(u)) > e is a critical value of I.

h€B yeqQ

Now, we are ready to prove the main existence result (Theorem 1.2).

Proof of Theorem 1.2 Since b > ¢o, from Lemma 5.11 and I(I1[s, y]) \, ¢ if |w| — +00
from Lemma 5.13, there exists p > 0 such that

Coo < max I(II[s,y]) <. (5.8)

lw|=p

In order to apply the linking theorem, we take

Q=T(2,1,0) and S:=={uecH>RY): ueP plu)=0}
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Then we can deduce that Q and S link with respect to B = {h € C(Q,P): hlsg = id}. In
fact, since S(I[s,y](t,z)) = (Ins,y), from Lemma 5.12, we have 9Q N S = (), because if u € S
then B(u) = 0 and if u € 0Q, i.e., u = s, y] for some w = (s,y) € RY with |w| = p then
B(u) = (Ins,y) # 0. On the other hand, given h € B, let x: Q,(1,0) — RY be defined by
X(s,y) = B ohollls,y]. Then by composition, x is continuous. Moreover, for any |w| = p,

we get h o Il[s,y] = I[s,y] as h|8Q = id and from Lemma 5.12, x(s,y) = (Ins,y). Since

Ix(s,y)|Zx = (Ins)® + |y[* = |(s,y)|?, by the fixed point theorem, there exists w € Q,(1,0)
such that x(s,y) = 0, which implies h(II[s,y]) € S. Thus, h(Q) N S # 0 and JQ) and S link.
From the definition of b, @ and the inequality (5.8), we can write

b=infI > max I.
S oQ

Now, define

d= }%IelfB gleagf(h(u)).

Then d > b. Indeed, since Q) and S link, if h € B then there exists ¢ € S such that ¢ € h(Q),
i.e., p = h(v) for some v € Q. Therefore,
max I (h(u)) > I(h(v)) = I(p) > inf I(u) =b,

ueq ues
which means d > b. In particular, d > co. Moreover, if h = id, then from Lemma 5.14, we
obtain

inf I(h < I(u) < 2¢s0.
w2 e T <y ) < 2e

This means co < d < 2¢o under condition (5.7). Thus, from Lemma 5.7, functional I satisfies
(Ce) condition at level d. By Proposition 5.2 (linking theorem), d is a critical value of I.
Therefore, there exists a positive solution for problem (1.1). Theorem 1.2 is proved.

6 Appendix
Consider the limiting problem
—Apu + A\u = ax f(u) inRY, (6.1)

where as > A > 0. The purpose of this section is to prove that problem (6.1) can have at most
one positive solution in H;"% RY).

First, we recall a well know result from Peletier and Serrin in [18]. For the classical elliptic
problem

Au+g(u)=0 inR", wu(z) >0 asz— oo, (6.2)

in which n > 1, x = (21, - -, x,), and g satisfies the following hypotheses:

(H1) g is defined and locally Lipschitz continuous on (0, c0).

(H2) il—% L;‘) = —m, where m is a positive constant.

(H3) f06 g(u)du > 0 for some positive constant d.

(H4) % is non-increasing on the subset of (I, 00) where g(u) > 0.
Here | = inf {u € (0,00) : [, g(s)ds > 0}. Then problem (6.2) has at most one solution. One
can refer to [18, Theorem 2] for details.

Now, we give an example which satisfies above conditions.
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Lemma 6.1 Let f be defined as in (1.6) and A < as < 2, then g(u) = —\u + acc f(u)
satisfies conditions (H1)—(H4).

Proof Since

3 2 4
u g/(O) = —)\, lim gl(’u,) = Qoo — A > 07

/ — _—
g (U) o A + oo (1 + ’UJ2)2’ U—00

we have ¢’(u) is bounded on (0, c0). This means that condition (H1) is satisfied.
It is clear that condition (H2) is satisfied with m = A.
If g(u) > 0, then u > . On the other hand, ¢"(u) = as 2(%?“2“)3),

¢'(u) is decreasing on (v/3, ) Hence ¢'(u) is positive and decreasing on (v/3, 00). This means
that g(u) is increasing at least on (y/3,00). Since lim g(u) = 400, condition (H3) is satisfied
U—r 00

which means that

with 6 > %:‘_)\.
Let h(u) = ¢'(u)(u — 1) — g(u). Then

: [ A :
h(l) = —g(l) <0 since [ > N and ull)lgo h(u) =1(A — ax) < 0.

If A < as < 32X, then 3and [ > /=2~ > /3, then W' (u) = g"(u)(u—1) <0 on
(I,00). Hence h(u) < 0 on (l, oo). This means that

[9(“)}' _ g W(u—1)—g) h(u)

p— = <0 on (I,0),

(u—1) (u—1)

and condition (H4) is satisfied.

Next, if f and a satisfy the conditions (f1)—(f4), (A1)—(A5) and (3.4), then g(u) = —Au +
aoo f (1) will satisfy conditions (H1)—(H4) with m = A. Therefore, problem

Au(t,z) —  u(t,z) + asof(u) =0 in RN, wu(t,z) =0 as (t,z) — oo (6.3)

has at most one positive solution, where N =n + 1.

Since for any u(t,z) € Hé% (RY) satisfying problem (6.1), there exists v(t, z) := u(e’,z) €
H'(RY) satisfying problem (6.3). And for any v(t,z) € H*(RY) satisfying problem (6.3), there
exists u(t,z) := v(lnt,z) € ’Hé% (RY) satisfying problem (6.1). Then, we know problem (6.1)
has at most on positive solution.
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