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1 Introduction

The present paper is interested in the boundary Hölder regularity for some class of degen-

erate elliptic equations in a general piecewise C2-smooth domain. Consider

∂i(aij∂ju) + bi∂iu = f in Ω = B1(0)
n+m⋂

σ=n+1

{gσ > 0} ⊂ Rn+m (1.1)

for some gσ ∈ C2(B1(0)), σ = n + 1, · · · , n +m. Here we always use i, j, k, · · · to denote the

indices 1, 2, 3, · · · , n+m and σ, τ, · · · to denote the indices n+ 1, · · · , n+m. Assume that

gσ(0) = 0, det(∂τg
σ)(0) 6= 0. (1.2)

For simplicity, we also denote gi , xi, i = 1, · · · , n and with Gij = ∂xi
gj where i, j =

1, 2, · · · , n+m, (Gij) is the inverse of the matrix (Gij). We also assume

C∗

(
In 0
0 Mm

)
≥ (aij∂ig

k∂jg
l)k,l=1,··· ,n+m ≥ 1

C∗

(
In 0
0 Mm

)
(1.3)

for some positive constant C∗ > 1. Here In is the n× n unit matrix and

Mm =




gn+1 0 · · · 0
0 gn+2 · · · 0
...

...
. . .

...
0 0 · · · . gn+m


 . (1.4)
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Moreover, bi∂ig
σ = bσ1 + bσ2 and

n+m∑

i,j=1

|aij |+
n+m∑

i=1

|bi|+
n+m∑

σ=n+1

(
|bσ1|+

∣∣∣
n+m∑

i=1

Giσ∂xi
bσ1

∣∣∣
)
≤ C∗,

bσ1 ≥ 0 on gσ = 0, |bσ2| ≤ C∗
√
gσ, σ = n+ 1, · · · , n+m.

(1.5)

We have the following result.

Theorem 1.1 Let (1.2)–(1.5) be fulfilled. Suppose that u ∈ C2(Ω)∩L∞(Ω) solves (1.1) with

f ∈ Lq(Ω) for some q > n+2m
2 . Then u ∈ Cα(N (0)∩Ω) for a neighbourhood N (0) of the origin

and some constant α ∈ (0, 1) depending only on C∗, q and |gσ|C2(Ω), σ = n+ 1, · · · , n+m.

We are going to reduce the proof for Theorem 1.1 to a model problem by the following

transformation.

The Coordinate Transformation Set

T : x → y = (y1, · · · , yn+m) = (x1, · · · , xn, g
n+1, · · · , gn+m)

and ãij = akl∂kg
i∂lg

j. A simple calculation yields that

∂yi
(ãij∂yj

u) + b̃i∂yi
u = f in N (0) ∩ T (Ω) (1.6)

for some neighbourhood N (0) of the origin T (0), where

b̃i = bk
∂gi

∂xk

− akj
∂2gl

∂xk∂xh

∂xh

∂yl

∂gi

∂xj

.

For σ = n+ 1, · · · ,m, denote

b̃σ1 = bσ1, b̃σ2 = bσ2 − akj
∂2gl

∂xk∂xh

∂xh

∂yl

∂gσ

∂xj

.

By (1.5) it is easy to see

|̃bσ1|+ |∂yσ
b̃σ1| ≤ C∗

and

b̃σ1 ≥ 0 on gσ = yσ = 0.

By means of (1.3) and (1.4), it follows that

|̃bσ2| ≤ C∗
√
yσ +

∣∣∣akj
∂2gl

∂xk∂xh

∂xh

∂yl

∂gσ

∂xj

∣∣∣

= C∗
√
yσ + |akjpk∂jgσ|

(
where pk =

∂2gl

∂xk∂xh

∂xh

∂yl

)

≤ C∗
√
yσ +

√
akj∂kgσ∂jgσ

√
akjpkpj ≤ C̃C∗

√
yσ

for some constant C̃ depending only on |gσ|C2 and 1
det(∂τ gσ) . In the sequel we also denote C̃C∗

by C∗. It is easy to see that (1.3)–(1.4) tell us

C∗
( n∑

i=1

ξ2i +

n+m∑

i=n+1

yiξ
2
i

)
≥ ãijξiξj ≥

1

C∗

( n∑

i=1

ξ2i +

n+m∑

i=n+1

yiξ
2
i

)
, ∀ξ ∈ R

n+m.
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Under the above coordinate transformation, we only need to consider the following model

equation

∂i(aij∂ju) + bi∂iu = f in Qn,m(1), (1.7)

where Qn,m(r) is defined as

Qn,m(r) = {x ∈ Rn+m | −r < xi < r, i = 1, · · · , n, 0 < xi < r2, i = n+ 1, · · · , n+m}.

In the definition of Qn,m(r), n = 0 is allowed and m ≥ 1. Moreover, aij , bi satisfy the following

structure conditions

(1)

C−1
∗

( n∑

i=1

ξ2i +

n+m∑

i=n+1

xiξ
2
i

)
≤ aijξiξj ≤ C∗

( n∑

i=1

ξ2i +

n+m∑

i=n+1

xiξ
2
i

)
, ∀ξ ∈ Rn+m. (1.8)

(2) For i = n+ 1, · · · , n+m, let bi = bi1 + bi2. Then we need

bi1 ≥ 0 on xi = 0, |bi2| ≤ C∗
√
xi, (1.9)

also

n+m∑

i=1

|bi|+
n+m∑

i=n+1

|∂ibi1| ≤ C∗. (1.10)

The condition (1.8) implies

1

C∗
xi ≤ aii ≤ C∗xi, n+ 1 ≤ i ≤ n+m,

|aij | ≤ C∗
√
xj , 1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+m,

|aij | ≤ C∗
√
xixj , n+ 1 ≤ i ≤ n+m, n+ 1 ≤ j ≤ n+m.

The study of the Hölder regularity for uniformly elliptic equation dates back to the late

1930s due to its relation to the Hilbert’s 19th problem. The Hölder regularity was first proven

by Morrey [9] in two dimensions in the late 1930s, and by De Giorgi [2] and Nash [10] in higher

dimensions in the late 1950s. Now the Hölder regularity for uniformly elliptic equation is well

known.

For m = 1, (1.7) is modelled by the following equation

∆xu+ yuyy + auy = f in R
n+1
+ . (1.11)

Usually, people call (1.11) Keldysh type degenerate elliptic equation. There is an interesting

phenomenon for Keldysh type degenerate elliptic equation. The coefficient a determines the

formulation of the well-posed problem. Exactly speaking, in C(Rn+1
+ ), the well-posed problem

of (1.11) is distinguished into the following two cases.

(1) a < 1. We need prescribe boundary condition on y = 0.

(2) a ≥ 1. We can’t prescribe boundary condition on y = 0.
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Such a phenomenon was discovered by Keldyš in [8]. Later, Fichera [3–4] and Olěinik [11–12]

established general theory on second order linear elliptic equations with nonnegative character-

istic form. See also the book [13] and the references therein.

In the present paper, we are interested in the Hölder regularity for the special degenerate

elliptic equation as in (1.7)–(1.10). For m = 1, the non-divergence form of (1.7) is investigated

in [1] which studies the free boundary problem associated to Gauss curvature flow with flat

sides. Under a slightly weaker condition

bn+1(x
′, 0)

∂n+1a(n+1)(n+1)(x′, 0)
≥ −1 + ν (1.12)

for some positive constant ν, the boundary Hölder a priori estimates are established in [1] for

solution u ∈ C2(Qn,1(1)). Also, for n = 1,m = 1, the boundary Hölder a priori estimates

are established in [6] which studies isometric embedding of Alexandrov-Nirenberg surfaces. For

n ≥ 2,m = 1, the boundary Hölder estimates are established in [7] for a class of degenerate

semi-linear elliptic equations in general bounded domains. There are also many other related

studies for m = 1 which can’t be exhausted in the present paper.

For m ≥ 2, to authors’ knowledge, the only known Hölder estimates for this type of degen-

erate elliptic equation in polytope type domain are done by [15]. In [15], the non-divergence

form of (1.7) is studied for n = 0, m ≥ 2. Under a similar condition as (1.12)

bi(x)

∂iaii(x)
≥ −1 + ν on xi = 0 (1.13)

for some positive constant ν, the boundary Hölder a priori estimates are established for u ∈
C2(Q0,m(1)) by some probability method.

Our main result is as following.

Theorem 1.2 Let (1.8)–(1.10) be assumed and f ∈ Lq(Qn,m(1)) for some q > n+2m
2 .

Suppose u ∈ C2(Qn,m(1)) ∩ L∞(Qn,m(1)) satisfies (1.7). Then there exists some α ∈ (0, 1)

such that

|u(x)− u(x̃)|

≤ C
(

sup
Qn,m(1)

|u|+ ‖f‖Lq(Qn,m(1))

)
|x− x̃|α, ∀x, x̃ ∈ Qn,m

(1
2

)
, (1.14)

where α and C are positive constants depending only on q and C∗ in (1.8) and (1.10).

Remark 1.1 Although, we don’t impose boundary condition for (1.7). Theorem 1.2 tells

us that we can Hölder continuously extend the solution u from interior up to the boundary.

The domains we studied are much complicated than that in [1] and for Theorem 1.1 and

Theorem 1.2, no a priori regularity of solutions on the boundary is needed except the solutions

in L∞(Ω) or in L∞(Qn,m(1)). It should be emphasized that in [1, 15] under the assumption

(1.12) or (1.13), the solutions to corresponding problems might be not C2-smooth up to the

boundary. See the following two examples.
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Example 1.1 (see [14]) Consider the following degenerate elliptic equation

uxx + yuyy + buy = 0 in R2
+. (1.15)

Let u(x, y) = F
(

x
2
√
y

)
= F (z). Then a direct computation yields that F (z) solves the following

ODE

(1 + z2)F ′′ + (3− 2b)zF ′ = 0 in R. (1.16)

A direct integration of (1.16) yields that

F (z) =

∫ z

0

e
−(3−2b)

∫
s
0

t

1+t2
dt
ds =

∫ z

0

(1 + s2)−
3−2b

2 ds

solves (1.16) with F (0) = 0, F ′(0) = 1. Hence for b < 1, F (z) is a non-constant bounded

smooth function. This implies u(x, y) is bounded in R2
+ and is dis-continuous at (0, 0).

Example 1.2 Consider the following degenerate elliptic equation

xuxx + yuyy + aux + buy = 0 in R
+ × R

+. (1.17)

Let u(x, y) = F
(
ln
(
x
y

))
= F (z). Then a direct computation yields that F (z) solves the

following ODE

F ′′ +
( a− 1

1 + ez
+

(1− b)ez

1 + ez

)
F ′ = 0 in R. (1.18)

A direct integration of (1.18) yields that

F (z) =

∫ z

0

e(1−a)s

(1 + es)2−a−b
ds (1.19)

solves (1.18). In the present case, we also know F (z) is smooth and uniformly bounded in

(−∞,+∞) for a, b < 1. This implies u(x, y) is bounded in R+ × R+ and is dis-continuous at

(0, 0).

Remark 1.2 Examples 1.1–1.2 satisfy all the assumptions of Theorem 2.1 in [1] and Corol-

lary 1.2 in [15] except that u ∈ C2(Qn,m(1)) apriorily. It is very interesting if one can construct

counterexamples for a ≥ 1, b < 1 in Example 1.2.

2 The Proof for Theorem 1.2

In this section, we give a boundary Hölder estimates for a class of degenerate elliptic equation

by De Giorgi iteration. Some ideas come from [6] and [7]. In [6], the proof is based on some

regularity of the solutions up to the boundary. In [7], additional regularity of the coefficients

aij , bi is assumed. In the present case, we want to generalize these results in [6–7] to polytope

type domains.

In order to prove Theorem 1.2, we introduce a weighted Sobolve space W̃ 1,2(Qn,m(1)) which

is the completion of C1(Qn,m(1)) under the norm

( ∫

Qn,m(1)

n∑

i=1

u2
i +

n+m∑

i=n+1

xiu
2
i + u2dx

) 1
2

.
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We first give the following weighted Sobolev embedding inequality and Poincaré inequality

which are generalizations of the corresponding inequalities in [6–7].

Lemma 2.1 (1) For all u ∈ C1(Qn,m(1)) with u = 0 on ∂Qn,m(1) ∩ (Rn × (R+)m), there

is a universal constant C independent of Qn,m(1) such that

(∫

Qn,m(1)

|u|
2(n+2m)
n+2m−2dx

)n+2m−2
n+2m ≤ C

∫

Qn,m(1)

( n∑

i=1

u2
i +

n+m∑

i=n+1

xiu
2
i

)
dx. (2.1)

(2) For any ε > 0, there exists a constant Cε such that

∫

Qn,m(1)

u2dx ≤ Cε

∫

Qn,m(1)

( n∑

i=1

u2
i +

n+m∑

i=n+1

xiu
2
i

)
dx (2.2)

for all u ∈ C1(Qn,m(1)) subject to |{x ∈ Qn,m(1) | u(x) = 0}| ≥ ε.

Proof Let G = Qn,m(1). Define a transform T : G → T (G) by

T (x) = y, yi = xi, 1 ≤ i ≤ n, yi = 2
√
xi, n+ 1 ≤ i ≤ n+m.

Lift T (G) in Rn+2m by defining

T̃ (G) = {(y, z) ∈ Rn+m × Rm : y ∈ T (G), 0 < zi < yn+i, i = 1, · · ·m}.

Then
∫

G

|u|pdx =
(1
2

)m
∫

T (G)

|u ◦ T−1|p
( n+m∏

i=n+1

yi

)
dy =

(1
2

)m

‖u ◦ T−1‖p
Lp(T̃ (G))

(2.3)

and
∫

G

( n∑

i=1

u2
xi

+
n+m∑

i=n+1

xiu
2
xi

)
dx =

(1
2

)m
n+m∑

i=1

∫

T (G)

u2
yi

( n+m∏

i=n+1

yi

)
dy

=
(1
2

)m

‖∇̃(u ◦ T−1)‖2
L2(T̃ (G))

, (2.4)

where ∇̃ = (∇y,∇z) is the gradient in Rn+2m.

Now let us consider the first part of the present lemma. Let u ∈ C1(G) with u = 0 on

∂G ∩n+m
i=n+1 {xi > 0}. Set

ũ(x) =

{
u(x) for x ∈ G,

0 for x ∈ Rn × (R+)m \G.

Then, define v(y) = ũ(x) and

w(y, z) = v(y1, · · · , yn,max{yn+1, z1}, · · · ,max{yn+m, zm}) in Rn × (R+)2m.

Then, we can extend w to Rn+2m by even extensions first with respect to the plane yi = 0,

i = n + 1, · · · , n +m and then to the plane zi = 0, i = 1, · · · ,m. By the Sobolev embedding

theorem, we have w ∈ H1(Rn+2m) ⊂ L
2(n+2m)
n+2m−2 (Rn+2m) and

(∫

Rn+2m

w
2(n+2m)
n+2m−2dydz

)n+2m−2
n+2m ≤ C

∫

Rn+2m

|∇̃w|2dydz.
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Therefore by (2.3) and (2.4), we obtain

(∫

G

u
2(n+2m)
n+2m−2dx

)n+2m−2
n+2m ≤

(
C1

∫

Rn+2m

w
2(n+2m)
n+2m−2dydz

)n+2m−2
n+2m ≤ C

∫

Rn+2m

|∇̃w|2dydz

≤ C′
∫

T̃ (G)

|∇̃w|2dydz = 2mC′
∫

G

( n∑

i=1

u2
xi

+
n+m∑

i=n+1

xiu
2
xi

)
dx,

where C1, C and C′ are universal positive constants, independent of u.

Next, we consider the second part of the present lemma. Suppose that u ∈ C1(G) with

|{x ∈ G : u(x) = 0}| ≥ ε > 0. Then, it is easy to see that

|{y : v(y) = 0}| ≥ Cε

and

|{(y, z) ∈ T̃ (G) : w(y, z) = 0}| ≥ Cε

for another universal constant C. By the well-known Poincaré inequality, we get

∫

T̃ (G)

w2dydz ≤ Cε

∫

T̃ (G)

|∇̃w|2dydz,

where Cε is a positive constant depending only on ε. Then

∫

G

u2dx =
(1
2

)m
∫

T̃ (G)

w2dydz ≤
(1
2

)m

Cε

∫

T̃ (G)

|∇̃w|2dydz

≤ C′
ε

∫

G

( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)
dx.

This completes the proof of the present lemma.

Now we begin to discuss the boundary Hölder regularity of u ∈ L∞(Qn,m(1))∩C2(Qn,m(1))

which satisfies (1.7). As a first step, we show that such a solution u ∈ W̃ 1,2(Qn,m(r)), ∀r ∈
(0, 1), has no trace on the boundary xi = 0, i = n + 1, · · · , n + m in general. So we need to

bypass this obstacle in the present circumstance.

Lemma 2.2 Let the assumptions of Theorem 1.2 be satisfied. Then, u ∈ W̃ 1,2(Qn,m(r)),

∀r ∈ (0, 1) and satisfies

∫
ϕ2

( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)
dx

≤ C‖u‖2∞
(∫ (

ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
dx+ 1

)
+ C

∫
ϕ2f2dx,

where C is a positive constant depending only on C∗ in (1.8) and (1.10) and 0 ≤ ϕ ∈
C∞

0 (Rn × (R+)m) subject to

ϕ ≡ 1 in Qn,m(r), ϕ ≡ 0 in Qc
n,m

(1 + r

2

)
. (2.5)
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Proof Consider a smooth cut-off function 0 ≤ χε ≤ 1 such

χε(t) =

{
0, 0 ≤ t ≤ ε,

1, t ≥ 2ε

and

|Dkχε| ≤
Ck

εk
, k = 1, 2, · · · .

Let

ηε(x) =

n+m∏

i=n+1

χε(xi).

We multiply (1.7) by −ϕ2η2εu and integrate by parts. Then

∫

Qn,m(1)

ϕ2η2εaijuiuj = −2

∫

Qn,m(1)

η2εϕuaijϕiuj − 2

∫

Qn,m(1)

ϕ2ηεuaijuj∂iηε

+

∫

Qn,m(1)

ϕ2η2εubiui −
∫

Qn,m(1)

ϕ2η2εuf. (2.6)

Next, the Cauchy inequality implies, for δ > 0 to be determined,

2η2εϕuaijϕiuj ≤ δη2εϕ
2aijuiuj +

1

δ
aijϕiϕjη

2
εu

2,

2ηεϕ
2uaij∂iηεuj ≤ δη2εϕ

2aijuiuj +
1

δ
ϕ2u2aij∂iηε∂jηε.

Also one has

∫

Qn,m(1)

ϕ2u2aij∂iηε∂jηεdx ≤ C‖u‖2∞‖ϕ‖2∞
n+m∑

i=n+1

∫

Qn,m(1)

xi(∂iηε)
2dx

≤ C‖u‖2∞‖ϕ‖2∞
n+m∑

i=n+1

∫

Qn,m(1)∩{ε≤xi≤2ε}

1

ε
dx ≤ C′‖u‖2∞.

Therefore, by (1.8), one has

1

C∗
(1− C̃δ)

∫
η2εϕ

2
( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)

≤ C∗
δ

∫ ( n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
xi

)
η2εu

2 +

∫
ϕ2η2εubiui −

∫
ϕ2η2εuf + C‖u‖2∞.

Next, for the bi-term, i = 1, · · · , n, we have, by |bi| ≤ C∗ in (1.10),

∣∣∣
∫

η2εϕ
2ubiui

∣∣∣ ≤ δ

C∗

∫
η2εϕ

2u2
i +

C3
∗
δ

∫
η2εϕ

2u2.

For the bi-term, i = n+ 1, · · · , n+m, one has

∫

Qn,m(1)

η2εϕ
2biuui =

1

2

∫

Qn,m(1)

η2εϕ
2bi1∂i(u

2) +

∫

Qn,m(1)

η2εϕ
2bi2uui
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= −1

2

∫

Qn,m(1)

∂i(η
2
εϕ

2bi1)u
2 +

∫

Qn,m(1)

η2εϕ
2bi2uui.

Therefore, by (1.10), for i = n+ 1, · · · , n+m,
∫

Qn,m(1)

η2εϕ
2biuui

≤
(
C∗ +

C3
∗
δ

)∫
(ϕ2 + ϕ|ϕi|)η2εu2 + C‖u‖2∞ +

δ

C∗

∫

Qn,m(1)

η2εϕ
2xiu

2
i .

By a simple substitution and taking δ small enough, then let ε → 0, we obtain the desired

result in the present lemma.

Lemma 2.3 Let u ∈ W̃ 1,2(Qn,m(1)). Denote

A(δ) =

m∑

i=1

∫

Qn,m(1)∩{xn+i=δ}

( n∑

k=1

u2
xk

+

m∑

j=1

xn+ju
2
xn+j

)
.

Then

lim
δ→0+

δA(δ) = 0.

Proof If it is not true, it follows that

A(δ) ≥ c0
δ

for some positive constant c0 > 0. This implies

+∞ =

∫ 1

0

c0
δ
dδ ≤

∫ 1

0

A(δ)dδ ≤ C‖u‖2
W̃ 1,2(Qn,m(1))

which yields a contradiction.

Lemma 2.4 Let the assumptions of Theorem 1.2 be satisfied. Then, for any ϕ as mentioned

in Lemma 2.2, there holds

∫
ϕ2

( n∑

i=1

u2
xi

+
n+m∑

i=n+1

xiu
2
xi

)
dx

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 +

∫
ϕ2f2, (2.7)

where C is a positive constant depending only on C∗ in (1.8) and (1.10).

Proof By Lemma 2.2, one knows u ∈ W̃ 1,2(Qn,m(r)), r ∈ (0, 1). We multiply (1.7) by

−ϕ2u and integrate by parts. Let G ⊂ Rn × (R+)m be a bounded domain such that ϕ = 0 in

Rn × (R+)m \G. Set

Gδ = G ∩n+m
i=n+1 {xi > δ}.

Then
∫

Gδ

ϕ2aijuiuj =

∫

∂Gδ

ϕ2uaijujνi − 2

∫

Gδ

ϕuaijϕiuj +

∫

Gδ

ϕ2ubiui −
∫

Gδ

ϕ2uf.
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For the boundary integral, we first note ϕ = 0 on ∂Gδ

n+m⋂
i=n+1

{xi > δ}. Next, on ∂Gδ ∩{xn+m =

δ}, ν1 = · · · = νn+m−1 = 0. One has

∣∣∣
∫

∂Gδ∩{xn+m=δ}
ϕ2ua(n+m)jujνn+m

∣∣∣ ≤ Cϕ‖u‖∞
√
δ

∫

∂Gδ∩{xn+m=δ}

√
ajj |uj |dS

≤ Cϕ‖u‖∞
(∫

∂Gδ∩{xn+m=δ}
δajj |uj|2dS

) 1
2

.

Notice that

ajj ≤ C, j = 1, · · · , n, ajj ≤ Cxj , j = n+ 1, · · · , n+m.

By Lemmas 2.2–2.3, after taking a subsequence, we have

∣∣∣
∫

∂Gδ

ϕ2uaijujνi

∣∣∣ = o(1), as δ → 0.

By Cauchy inequality, for ε > 0 to be determined, one has

1

C∗
(1− ε)

∫

Gδ

ϕ2
( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)

≤ C∗
ε

∫

Gδ

( n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
xi

)
u2 +

∫

Gδ

ϕ2ubiui −
∫

Gδ

ϕ2uf + o(1)

and

∑

i≤n

∣∣∣
∫

Gδ

ϕ2ubiui

∣∣∣ ≤ ε

C∗

∑

i≤n

∫

Gδ

ϕ2|ui|2 +
2C3

∗
ε

∫

Gδ

ϕ2u2.

On the other hand, for i = n+ 1, · · · , n+m, one has
∫

Gδ

ϕ2biuui =
1

2

∫

Gδ

ϕ2bi1∂i(u
2) +

∫

Gδ

ϕ2bi2u∂iu

= −1

2

∫

Gδ

∂i(ϕ
2bi1)u

2 +

∫

∂Gδ

ϕ2bi1u
2νi +

∫

Gδ

ϕ2bi2u∂iu.

For fixed i = n+ 1, · · · , n+m, on xi = δ, νi = −1, by (1.10), one has

bi1(x1, · · · , xi−1, δ, xi+1, · · · , xn+m)− bi1(x1, · · · , xi−1, 0, xi+1, · · · , xn+m) ≥ −Cδ. (2.8)

Hence
∫

∂Gδ

ϕ2bi1u
2νi ≤ C

∫

∂Gδ∩{xi=δ}
δu2 = O(δ). (2.9)

Therefore, by (1.10),
∫

Gδ

ϕ2biuui ≤ O(δ) − 1

2

∫

Gδ

(ϕ2∂ibi1 + 2ϕϕibi1)u
2 + C∗

∫

Gδ

ϕ
√
xiu|ui|

≤ O(δ) +
(
C∗ +

C3
∗
ε

)∫

Gδ

(ϕ2 + ϕ|ϕn|)u2 +
ε

C∗

∫

Gδ

ϕ2xiu
2
i .
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By a simple substitution and taking ε = 1
4 , then let δ → 0, we obtain

∫
ϕ2

( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+
n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 + C2

∫
ϕ2|uf |.

Another application of the Cauchy inequality implies the desired result.

Lemma 2.5 Let (1.8), (1.10) be assumed and f ∈ Lq(Qn,m(R)), for some R ∈ (0, 1] and

q > n+2m
2 . Suppose u ∈ C2(Qn,m(R)) ∩ L∞(Qn,m(R)) satisfies

∂i(aijuj) + biui ≥ f in Qn,m(R). (2.10)

Then, for any θ ∈ (0, 1),

sup
Qn,m(θR)

u+ ≤ C
{( 1

|Qn,m(R)|

∫

Qn,m(R)

u2
) 1

2

+R2
( 1

|Qn,m(R)|

∫

Qn,m(R)

|f |q
) 1

q
}
, (2.11)

where C is a positive constant depending only on q, θ and C∗.

Proof For simplicity, we assume R = 1. Let ϕ be a smooth cut-off function as mentioned

in Lemma 2.2, and set u = (u− k)+ for some k ≥ 0. Multiply the differential inequality (2.10)

by −ϕ2u and integrate in Qn,m(1). Proceeding as in the proof of Lemma 2.4, we have

∫
ϕ2

( n∑

i=1

u2
xi

+

n+m∑

i=n+1

xiu
2
xi

)

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 +

∫
ϕ2uf

and then

∫ ( n∑

i=1

(ϕu)2xi
+

n+m∑

i=n+1

xi(ϕu)
2
xi

)

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 +

∫
ϕ2uf.

Lemma 2.1(1) implies

(∫
ϕ

2(n+2m)
n+2m−2u

2(n+2m)
n+2m−2

)n+2m−2
n+2m

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 +

∫
ϕ2uf.

By the Hölder inequality, we have

∫
ϕ2uf ≤

(∫
(ϕu)

2(n+2m)
n+2m−2

)n+2m−2
2(n+2m)

(∫
(ϕf)q

) 1
q |{ϕu 6= 0}|1−

n+2m−2
2(n+2m)

− 1
q
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≤ 1

2

( ∫
(ϕu)

2(n+2m)
n+2m−2

)n+2m−2
n+2m

+
1

2
‖f‖2Lq |{ϕu 6= 0}|n+2m+2

n+2m − 2
q ,

and hence

(∫
(ϕu)

2(n+2m)
n+2m−2

)n+2m−2
n+2m

≤ C

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2 + ‖f‖2Lq |{ϕu 6= 0}|n+2m+2

n+2m − 2
q .

By the Hölder inequality again, we have

∫
(ϕu)2 ≤

(∫
(ϕu)

2(n+2m)
n+2m−2

)n+2m−2
n+2m |{ϕu 6= 0}| 2

n+2m ,

and hence
∫

ϕ2u2 ≤ ‖f‖2Lq |{ϕu 6= 0}|n+2m+4
n+2m − 2

q

+ C|{ϕu 6= 0}| 2
n+2m

∫ (
ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2.

In the following, we take

ε = min
{ 2

n+ 2m
,

4

n+ 2m
− 2

q

}
> 0.

Then
∫

ϕ2u2 ≤ ‖f‖2Lq |{ϕu 6= 0}|1+ε

+ C|{ϕu 6= 0}|ε
∫ (

ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi|
)
u2.

Set, for any r ∈ (0, 1] and k ≥ 0,

A(k, r) = {x ∈ Qn,m(r) : u(x) ≥ k}.

For any 0 < r < R < 1, we take a cut-off function ϕ such that ϕ = 1 in Qn,m(r) and ϕ = 0 in

Qn,m(1) \Qn,m(R). Then

ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i +

n+m∑

i=n+1

ϕ|ϕi| ≤
C

(R− r)2
,

and hence
∫

A(k,r)

(u − k)2 ≤ C
{ 1

(R − r)2

∫

A(k,R)

(u− k)2|A(k,R)|ε + ‖f‖2Lq |A(k,R)|1+ε
}
.

For any h > k ≥ 0, we have
∫

A(h,R)

(u − h)2 ≤
∫

A(k,R)

(u − k)2
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and

|A(h,R)| = |GR ∩ {u− k > h− k}| ≤ 1

(h− k)2

∫

A(k,R)

(u − k)2.

Hence,
∫

A(h,r)

(u − h)2 ≤ C
{ 1

(R − r)2

∫

A(h,R)

(u− h)2 + ‖f‖2Lq |A(h,R)|
}
|A(h,R)|ε

≤ C
{ 1

(R − r)2
+

1

(h− k)2
‖f‖2Lq

} 1

(h− k)2ε

( ∫

A(k,R)

(u − k)2
)1+ε

.

In summary, we obtain, for any 0 < r < R < 1 and 0 ≤ k < h,

‖(u− h)+‖L2(Gr) ≤ C
{ 1

R− r
+

1

h− k
‖f‖Lq(Qn,m(1))

} 1

(h− k)ε
‖(u− k)+‖1+ε

L2(GR).

For any θ ∈ (0, 1), a standard iteration yields

sup
Qn,m(θ)

u+ ≤ C{‖u+‖L2(Qn,m(1)) + ‖f‖Lq(Qn,m(1))}.

This is the desired result.

Next, we shall give a lower bound for positive supersolutions.

Lemma 2.6 Let (1.8), (1.10) be assumed and f ∈ Lq(Qn,m(1)) for some q > n+2m
2 . Sup-

pose u ∈ C2(Qn,m(1)) ∩ L∞(Qn,m(1)) is positive and satisfies

∂i(aijuj) + biui ≤ f in Qn,m(1).

Then, for any ε ∈ (0, 1), there exist constants δ > 0 and C > 1, depending only on q, ε and C∗
in (1.8) and (1.10), such that, if

∣∣∣
{
x ∈ Qn,m(1) : u(x) ≥ 1

2

}∣∣∣ ≥ ε|Qn,m(1)|,

and

‖f‖Lq(Qn,m(1)) ≤ δ,

then

inf
Qn,m( 1

2 )
u ≥ 1

C
. (2.12)

Proof Let ϕ be a nonnegative smooth cut-off function with support in Qn,m(1)
n+m⋃
i=n+1

{xi =

0}. Let Gγ = Qn,m(1)
n+m⋂
i=n+1

{xi > γ}. Then

∫

Gγ

aijuiϕj −
∫

Gγ

biuiϕ−
∫

∂Gγ

aijϕuiνj ≥ −
∫

Gγ

fϕ. (2.13)

By Lemma 2.3, one knows

∫

∂Gγ

aijϕujνi = −
n+m∑

i=n+1

∫

∂Gγ∩{xi=γ}
aijϕuj → 0, as γ → 0.
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If f is not identically zero, we take δ = ‖f‖Lq(B1). Otherwise, we take an arbitrary δ > 0.

Replacing ϕ by ϕ/(u+ δ) in (2.13), we have

−
∫

Gγ

aij
uiuj

(u+ δ)2
ϕ+

∫

Gγ

aij
ui

u+ δ
ϕj −

∫

Gγ

bi
ui

u+ δ
ϕ ≥ −

∫

Gγ

f

u+ δ
ϕ+ oγ(1).

Here we use oγ(1) denote o(1) as γ → 0. Then setting

v = log
1

u+ δ
,

we get

−
∫

Gγ

aijvivjϕ−
∫

Gγ

aijviϕj +

∫

Gγ

biviϕ ≥ −
∫

Gγ

f

u+ δ
ϕ+ oγ(1).

In particular, v satisfies

∫

Gγ

aijviϕj −
∫

Gγ

biviϕ ≤
∫

Gγ

f

u+ δ
ϕ+ oγ(1).

The choice of δ implies ‖f/δ‖Lq(Qn,m(1)) ≤ 1. Then, letting γ → 0, for any θ ∈
(
1
2 , 1

)
, Lemma

2.5 implies

sup
Qn,m( 1

2 )

(v+)2 ≤ C
{∫

Qn,m(θ)

(v+)2 + 1
}
, (2.14)

where C is a positive constant depending only on q, θ and C∗ in (1.8) and (1.10).

Now, replace ϕ in (2.13) by ( 1

u+ δ
− 1

)+

ϕ2.

Then, we have

∫

Gγ

aij∂iv
+∂jv

+ϕ2 ≤ −2

∫

Gγ

ϕ(1 − u− δ)+aij∂iv
+ϕj

+

∫

Gγ

ϕ2(1− u− δ)+bi∂iv
+

+

∫

Gγ

ϕ2 f

u+ δ
(1− u− δ)+ + oγ(1).

We now consider the bi-term for i = n+ 1, · · · , n+m and write

∫

Gγ

ϕ2(1− u− δ)+bi∂iv
+ =

∫

Gγ

ϕ2(1− u− δ)+bi1∂iv
+ +

∫

Gγ

ϕ2(1− u− δ)+bi2∂iv
+

≤
∫

Gγ

ϕ2(1− u− δ)+bi1∂iv
+ + ε

∫

Gγ

ϕ2xi(∂iv
+)2 +

C

ε

∫

Gγ

ϕ2.

Also
∫

Gγ

ϕ2(1 − u− δ)+bi1∂iv
+ =

∫

Gγ

ϕ2bi1∂i

[(
log

1

u+ δ

)+

− (1− u− δ)+
]

= −
∫

Gγ

∂i(ϕ
2bi1)

[(
log

1

u+ δ

)+

− (1 − u− δ)+
]
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+

∫

∂Gγ

ϕ2bi1

[(
log

1

u+ δ

)+

− (1− u− δ)+
]
νi.

Note that ϕ = 0 or νi = 0 on ∂Gγ \ {xi = 0} and for u+ δ < 1,

(
log

1

u+ δ

)+

> (1− u− δ)+. (2.15)

By (1.9) and (1.10), similar to (2.8) and (2.9), one has

∫

∂Gγ

ϕ2bi1

[(
log

1

u+ δ

)+

− (1 − u− δ)+
]
νi ≤ O(γ).

This implies

∫

Gγ

ϕ2(1− u− δ)+bi∂iv
+

≤
∫

Gγ

|∂i(ϕ2bi1)|v+ + ε

∫

Gγ

ϕ2xi(∂iv
+)2 +

C

ε

∫

Gγ

ϕ2 +O(γ),

and hence

∫

Gγ

aij∂iv
+∂jv

+ϕ2 ≤ −2

∫

Gγ

ϕ(1 − u− δ)+aij∂iv
+ϕj +

n∑

i=1

∫

Gγ

ϕ2(1− u− δ)+bi∂iv
+

+

∫

Gγ

|∂i(ϕ2bi1)|v+ + ε

∫

Gγ

ϕ2xi(∂iv
+)2

+
C

ε

∫

Gγ

ϕ2 +O(γ) +

∫

Gγ

ϕ2 f

u+ δ
(1− u− δ)+.

By proceeding as in the proof of Lemma 2.4 and γ → 0, we have

∫
ϕ2

( n∑

i=1

(v+xi
)2 +

n+m∑

i=n+1

xi(v
+
xi
)2
)
dx

≤ C
{∫ (

ϕ2 +

n∑

i=1

ϕ2
xi

+

n+m∑

i=n+1

xiϕ
2
i

)
+

n+m∑

i=n+1

∫
(ϕ+ |ϕi|)ϕv+ +

∫
ϕ2 f

δ

}
.

The choice of δ implies ‖f/δ‖Lq(Qn,m(1)) ≤ 1. Hence, for any θ1 < θ2 < 1, we take ϕ = 1 in

Qn,m(θ1) and ϕ = 0 in Qn,m(1) \Qn,m(θ2). Then, for any τ ∈ (0, 1) to be determined, we have

∫

Qn,m(θ1)

( n∑

i=1

(v+xi
)2 +

n+m∑

i=n+1

xi(v
+
xi
)2
)
≤ Cτ

(θ2 − θ1)2
+ τ

∫

Qn,m(θ2)

(v+)2. (2.16)

Note

|{x ∈ Qn,m(θ1) : v
+ = 0}|

≥ |{x ∈ Qn,m(1) : u+ δ ≥ 1}| − |Qn,m(1)|+ |Qn,m(θ1)|

≥ |Qn,m(θ1)| − (1− ε)|Qn,m(1)| =
(
1− 1− ε

θn+2m
1

)
|Qn,m(θ1)| ≥

1

2
ε|Qn,m(θ1)|,
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by taking θ1 such that

θ0 ≡ max
{1

2
,
( 1− ε

1− ε
2

) 1
n+2m

}
< θ1 < 1.

Then Lemma 2.1(2) implies

∫

Qn,m(θ1)

(v+)2 ≤ C

∫

Qn,m(θ1)

( n∑

i=1

(v+xi
)2 +

n+m∑

i=n+1

xi(v
+
xi
)2
)

for all θ1 ≥ θ0. (2.17)

It must be emphasized that C in (2.17) depends on ε through θ0, and is independent of θ1. By

combining (2.16) and (2.17), we have
∫

Qn,m(θ1)

(v+)2 ≤ Cτ

(θ2 − θ1)2
+ Cτ

∫

Qn,m(θ2)

(v+)2.

Now choose τ such that Cτ = 1
2 . We obtain, for any θ0 < θ1 < θ2 < 1,

∫

Qn,m(θ1)

(v+)2 ≤ Cτ

(θ2 − θ1)2
+

1

2

∫

Qn,m(θ2)

(v+)2.

A standard iteration yields, for any θ0 < θ < 1,
∫

Qn,m(θ)

(v+)2 ≤ C

(1 − θ)2
. (2.18)

By combining (2.14) and (2.18) and fixing θ ∈ (θ0, 1), we obtain

sup
Qn,m( 1

2 )

(v+)2 ≤ C,

and hence

inf
Qn,m( 1

2 )
u+ δ ≥ e−C .

We note that the constant C above is independent of δ. If f ≡ 0, we simply let δ → 0.

Otherwise, taking δ = e−C

2 , we have the desired estimate.

Now, we are ready to prove the Hölder regularity up to the boundary.

Proof of Theorem 1.2 Set, for any r ≤ 1,

M(r) = sup
Qn,m(r)

u, m(r) = inf
Qn,m(r)

u,

and

ω(r) = M(r) −m(r).

We now claim, for any r ≤ 1,

ω
(r
2

)
≤ σω(r) + Cr1−

n+2m
2q ‖f‖Lq(Qn,m(r)), (2.19)

where σ ∈ (0, 1) and C > 1 are constants depending only on q and C∗ in (1.8) and (1.10). If

(2.19) is true, then by a simple iteration, we have, for any r ≤ 1
2 ,

ω(r) ≤ Crα{ω(1) + ‖f‖Lq(Qn,m(1))},
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where α ∈ (0, 1) and C > 1 are constants depending only on q and C∗ in (1.8) and (1.10).

We now prove (2.19) for r = 1. The general case follows from a simple scaling. Let ε = 1
2

and δ be determined as in Lemma 2.6. If

δω(1) ≤ ‖f‖Lq(Qn,m(1)),

then

ω
(1
2

)
≤ ω(1) ≤ 1

δ
‖f‖Lq(Qn,m(1)). (2.20)

Next, we assume

‖f‖Lq(Qn,m(1)) ≤ δω(1).

We note that u
ω(1) satisfies

∂i

(
aij∂j

( u

ω(1)

))
+ bi∂i

( u

ω(1)

)
=

f

ω(1)
in Qn,m(1).

Hence ∥∥∥ f

ω(1)

∥∥∥
Lq(Qn,m(1))

≤ δ

by the previous assumption. We consider the following two cases:

∣∣∣
{
x ∈ Qn,m(1) :

u−m(1)

M(1)−m(1)
≥ 1

2

}∣∣∣ ≥ 1

2
|Qn,m(1)| (2.21)

and

∣∣∣
{
x ∈ Qn,m(1) :

M(1)− u

M(1)−m(1)
≥ 1

2

}∣∣∣ ≥ 1

2
|Qn,m(1)|. (2.22)

If (2.21) holds, we apply Lemma 2.6 to u−m(1)
M(1)−m(1) and get

m
(1
2

)
−m(1) ≥ 1

C
(M(1)−m(1)).

If (2.22) holds, we apply Lemma 2.6 to M(1)−u

M(1)−m(1) and get

M(1)−M
(1
2

)
≥ 1

C
(M(1)−m(1)).

Since m
(
1
2

)
≥ m(1) and M

(
1
2

)
≤ M(1), we have in both cases

M
(1
2

)
−m

(1
2

)
≤

(
1− 1

C

)
(M(1)−m(1)),

and hence

ω
(1
2

)
≤ σω(1) (2.23)

for some constant σ ∈ (0, 1). We have (2.19) by combining (2.20) and (2.23).

First we considerm = 1. Consider two points x, x̃ ∈ Qn,m

(
1
2

)
and |x−x̃|+xn+1+x̃n+1 << 1.
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(1) r2 = |x− x̃| 14 ≥ max(xn+1, x̃n+1). Then

x, x̃ ∈ G
r,( x′+x̃′

2 ,0)
=

{
x ∈ Qn,m(1) |

∣∣∣x′ − x′ + x̃′

2

∣∣∣ < r, 0 < xn+1 < r2
}
.

By (2.19), one knows

|u(x)− u(x̃)| ≤ Crα(ω(1) + ‖f‖Lq(Qn,m(1))) ≤ C(ω(1) + ‖f‖Lq(Qn,m(1)))|x̃− x|α8 .

(2) |x − x̃| 14 ≤ max(xn+1, x̃n+1) = xn+1 ≤ ε0 for some ε0 small enough to be determined

later. Then one knows

x̃n+1 ≥ xn+1 − |x̃n+1 − xn+1|
≥ xn+1 − |x− x̃|

≥ (1− ε30)xn+1 ≥
(1
2

)
xn+1

for ε0 small. Let λ = xn+1 and v(y) = u
(
λ

1
2 y′ + x′+x̃′

2 , λyn+1

)
. Then v(y) solves

∂i(ãij(y)∂jv) + b̃i(y)∂iv = f̃(y), (2.24)

where

ãij(y) = aij(x), ãi(n+1)(y) =
1

λ
1
2

ai(n+1)(x), ã(n+1)(n+1)(y) =
1

λ
a(n+1)(n+1)(x),

b̃i(y) = λ
1
2 bi(x), b̃n+1(y) = bn+1(x), f̃(y) = λf(x), 1 ≤ i, j ≤ n.

Then by (1.8)–(1.10), one knows (2.24) is a uniformly elliptic equation with bounded measurable

coefficients in Σ =
{
y | |y′| ≤ 4, 1

2 ≤ yn+1 ≤ 8
}
. Then by [5, Theorem 8.24], there exists

β(C∗, n) ∈ (0, 1) such that

‖v‖Cβ(Σ′) ≤ C(‖v‖L2(Σ) + ‖f̃‖Lq(Σ)) (2.25)

for some constant C = C(C∗, n, q) and Σ′ = {y | |y′| ≤ 2, 1 ≤ yn ≤ 4}. The assumption

|x− x̃| 14 ≤ xn+1 = λ implies

|x− x̃| 32 ≥ |x′ − x̃′|2
λ

, |x− x̃| 32 ≥ |xn+1 − x̃n+1|2
λ2

.

Hence,

|u(x)− u(x̃)|
|x− x̃| 34β

≤ C0
|u(x)− u(x̃)|

(λ−1|x′ − x̃′|2 + λ−2|x̃n+1 − xn+1|2)
β
2

= C0
|v(y)− v(ỹ)|

|y − ỹ|β ≤ C(‖v‖L2(Σ) + ‖f̃‖Lq(Σ))

≤ C1(‖u‖L∞(Qn,m(1)) + λ1−n+2
2q ‖f‖Lq(Qn,m(1))). (2.26)

The above arguments complete the proof of Theorem 1.2 for m = 1.

Now we prove the present theorem by induction. Similarly, consider two points x, x̃ ∈
Qn,m

(
1
2

)
. Also we use x = (x′, x′′), where x′ = (x1, · · · , xn) and x′′ = (xn+1, · · · , xn+m).
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(1) r2 = |x− x̃| 14 ≥ max(|x′′|, |x̃′′|). Then

x, x̃ ∈ G
r,( x′+x̃′

2 ,0)
=

{
x ∈ Qn,m(1) |

∣∣∣x′ − x′ + x̃′

2

∣∣∣ < r, 0 < xn+i < r2, i = 1, · · · ,m
}
.

By (2.19), one knows

|u(x)− u(x̃)| ≤ Crα(ω(1) + ‖f‖Lq(Qn,m(1))) ≤ C(ω(1) + ‖f‖Lq(Qn,m(1)))|x̃− x|α8 .

(2) |x − x̃| 14 ≤ max(|x′′|, |x̃′′|) ≤ ε0 for some positive ε0 small enough. A similar argument

as in m = 1 implies

1

2
|x̃′′| ≤ |x′′| ≤ 2|x̃′′|.

Let λ = |x′′| and v(y) = u(λ
1
2 y′ + x′+x̃′

2 , λy′′). Then v(y) solves

∂i(ãij(y)∂jv) + b̃i(y)∂iv = f̃(y), (2.27)

where

ãij(y) = aij(x), ãiJ(y) =
1

λ
1
2

aiJ (x), 1 ≤ i, j ≤ n, n+ 1 ≤ J ≤ n+m,

ãIJ(y) =
1

λ
aIJ (x), n+ 1 ≤ I, J ≤ n+m, b̃i(y) = λ

1
2 bi(x), 1 ≤ i ≤ n,

b̃I(y) = bI(x), n+ 1 ≤ I ≤ n+m, f̃(y) = λf(x).

Without loss of generality, we may also assume xn+1 ≥ 1√
m
|x′′|. Then by (1.8)–(1.10), one

knows that (2.27) is an elliptic equation with bounded measurable coefficients such that n and

m are replaced by n+ 1 and m− 1 respectively in (1.8)–(1.10) in

Σ̂ =
{
y | |y′| < 4,

1

8m
< yn+1 < 8, 0 < yn+i < 8, i = 2, · · · ,m

}
.

Then by our induction assumption, there exists β(C∗, n,m) ∈ (0, 1) such that

‖v‖
Cβ(Σ̂′) ≤ C(‖v‖L2(Σ) + ‖f̃‖Lq(Σ)) (2.28)

for some constant C = C(C∗, n,m, q) and

Σ̂ =
{
y | |y′| < 2,

1

4m
< yn+1 < 4, 0 < yn+i < 4, i = 2, · · · ,m

}
.

By the assumption in this case, one knows

|u(x)− u(x̃)|
|x− x̃| 34β

≤ C0
|u(x)− u(x̃)|

(λ−1|x′ − x̃′|2 + λ−2|x̃′′ − x′′|2)β
2

= C0
|v(y)− v(ỹ)|

|y − ỹ|β ≤ C(‖v‖
L2(Σ̂) + ‖f̃‖

Lq(Σ̂))

≤ C1(‖u‖L∞(Qn,m(1)) + λ1− n+2m
2q ‖f‖Lq(Qn,m(1))). (2.29)

This ends the proof of the present theorem.
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