Boundary Hölder Estimates for a Class of Degenerate Elliptic Equations in Piecewise Smooth Domains^{*}

Jiaxing HONG¹ Genggeng HUANG¹

Abstract In this paper, the authors will apply De Giorgi-Nash-Moser iteration to establish boundary Hölder estimates for a class of degenerate elliptic equations in piecewise C^2 -smooth domains.

Keywords Degenerate elliptic, De Giorgi-Nash-Moser iteration, Boundary Hölder regularity
 2000 MR Subject Classification 35J70, 35B65, 35J15

1 Introduction

The present paper is interested in the boundary Hölder regularity for some class of degenerate elliptic equations in a general piecewise C^2 -smooth domain. Consider

$$\partial_i(a_{ij}\partial_j u) + b_i\partial_i u = f \quad \text{in } \Omega = B_1(0) \bigcap_{\sigma=n+1}^{n+m} \{g^{\sigma} > 0\} \subset \mathbb{R}^{n+m}$$
(1.1)

for some $g^{\sigma} \in C^2(\overline{B}_1(0)), \sigma = n + 1, \dots, n + m$. Here we always use i, j, k, \dots to denote the indices $1, 2, 3, \dots, n + m$ and σ, τ, \dots to denote the indices $n + 1, \dots, n + m$. Assume that

$$g^{\sigma}(0) = 0, \quad \det(\partial_{\tau} g^{\sigma})(0) \neq 0. \tag{1.2}$$

For simplicity, we also denote $g^i \triangleq x_i$, $i = 1, \dots, n$ and with $G_{ij} = \partial_{x_i} g^j$ where $i, j = 1, 2, \dots, n + m$, (G^{ij}) is the inverse of the matrix (G_{ij}) . We also assume

$$C_* \begin{pmatrix} I_n & 0\\ 0 & M_m \end{pmatrix} \ge (a_{ij}\partial_i g^k \partial_j g^l)_{k,l=1,\cdots,n+m} \ge \frac{1}{C_*} \begin{pmatrix} I_n & 0\\ 0 & M_m \end{pmatrix}$$
(1.3)

for some positive constant $C_* > 1$. Here I_n is the $n \times n$ unit matrix and

$$M_m = \begin{pmatrix} g^{n+1} & 0 & \cdots & 0 \\ 0 & g^{n+2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g^{n+m} \end{pmatrix}.$$
 (1.4)

Manuscript received December 21, 2021.

¹School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

E-mail: jxhong@fudan.edu.cn genggenghuang@fudan.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 11631011, 11871160, 12141105).

Moreover, $b_i \partial_i g^{\sigma} = b_{\sigma 1} + b_{\sigma 2}$ and

$$\sum_{i,j=1}^{n+m} |a_{ij}| + \sum_{i=1}^{n+m} |b_i| + \sum_{\sigma=n+1}^{n+m} \left(|b_{\sigma 1}| + \left| \sum_{i=1}^{n+m} G^{i\sigma} \partial_{x_i} b_{\sigma 1} \right| \right) \le C_*,$$

$$b_{\sigma 1} \ge 0 \quad \text{on } g^{\sigma} = 0, \quad |b_{\sigma 2}| \le C_* \sqrt{g^{\sigma}}, \quad \sigma = n+1, \cdots, n+m.$$
(1.5)

We have the following result.

Theorem 1.1 Let (1.2)–(1.5) be fulfilled. Suppose that $u \in C^2(\Omega) \cap L^{\infty}(\Omega)$ solves (1.1) with $f \in L^q(\Omega)$ for some $q > \frac{n+2m}{2}$. Then $u \in C^{\alpha}(\mathcal{N}(0) \cap \overline{\Omega})$ for a neighbourhood $\mathcal{N}(0)$ of the origin and some constant $\alpha \in (0,1)$ depending only on C_* , q and $|g^{\sigma}|_{C^2(\overline{\Omega})}$, $\sigma = n+1, \cdots, n+m$.

We are going to reduce the proof for Theorem 1.1 to a model problem by the following transformation.

The Coordinate Transformation Set

$$\mathcal{T}: x \to y = (y_1, \cdots, y_{n+m}) = (x_1, \cdots, x_n, g^{n+1}, \cdots, g^{n+m})$$

and $\widetilde{a}_{ij}=a_{kl}\partial_kg^i\partial_lg^j.$ A simple calculation yields that

$$\partial_{y_i}(\widetilde{a}_{ij}\partial_{y_j}u) + \widetilde{b}_i\partial_{y_i}u = f \quad \text{in } \mathcal{N}(0) \cap \mathcal{T}(\Omega)$$
(1.6)

for some neighbourhood $\mathcal{N}(0)$ of the origin $\mathcal{T}(0)$, where

$$\widetilde{b}_i = b_k \frac{\partial g^i}{\partial x_k} - a_{kj} \frac{\partial^2 g^l}{\partial x_k \partial x_h} \frac{\partial x_h}{\partial y_l} \frac{\partial g^i}{\partial x_j},$$

For $\sigma = n + 1, \cdots, m$, denote

$$\widetilde{b}_{\sigma 1} = b_{\sigma 1}, \quad \widetilde{b}_{\sigma 2} = b_{\sigma 2} - a_{kj} \frac{\partial^2 g^l}{\partial x_k \partial x_h} \frac{\partial x_h}{\partial y_l} \frac{\partial g^{\sigma}}{\partial x_j}$$

By (1.5) it is easy to see

$$|\widetilde{b}_{\sigma 1}| + |\partial_{y_{\sigma}}\widetilde{b}_{\sigma 1}| \le C_*$$

and

$$b_{\sigma 1} \ge 0$$
 on $g^{\sigma} = y_{\sigma} = 0$.

By means of (1.3) and (1.4), it follows that

$$\begin{split} |\widetilde{b}_{\sigma 2}| &\leq C_* \sqrt{y_{\sigma}} + \left| a_{kj} \frac{\partial^2 g^l}{\partial x_k \partial x_h} \frac{\partial x_h}{\partial y_l} \frac{\partial g^{\sigma}}{\partial x_j} \right| \\ &= C_* \sqrt{y_{\sigma}} + \left| a_{kj} p_k \partial_j g^{\sigma} \right| \quad \left(\text{where } p_k = \frac{\partial^2 g^l}{\partial x_k \partial x_h} \frac{\partial x_h}{\partial y_l} \right) \\ &\leq C_* \sqrt{y_{\sigma}} + \sqrt{a_{kj} \partial_k g^{\sigma} \partial_j g^{\sigma}} \sqrt{a_{kj} p_k p_j} \leq \widetilde{C} C_* \sqrt{y_{\sigma}} \end{split}$$

for some constant \widetilde{C} depending only on $|g^{\sigma}|_{C^2}$ and $\frac{1}{\det(\partial_{\tau}g^{\sigma})}$. In the sequel we also denote $\widetilde{C}C_*$ by C_* . It is easy to see that (1.3)–(1.4) tell us

$$C_* \Big(\sum_{i=1}^n \xi_i^2 + \sum_{i=n+1}^{n+m} y_i \xi_i^2 \Big) \ge \tilde{a}_{ij} \xi_i \xi_j \ge \frac{1}{C_*} \Big(\sum_{i=1}^n \xi_i^2 + \sum_{i=n+1}^{n+m} y_i \xi_i^2 \Big), \quad \forall \xi \in \mathbb{R}^{n+m}.$$

Under the above coordinate transformation, we only need to consider the following model equation

$$\partial_i (a_{ij}\partial_j u) + b_i \partial_i u = f \quad \text{in } Q_{n,m}(1), \tag{1.7}$$

where $Q_{n,m}(r)$ is defined as

$$Q_{n,m}(r) = \{ x \in \mathbb{R}^{n+m} \mid -r < x_i < r, \ i = 1, \cdots, n, \ 0 < x_i < r^2, \ i = n+1, \cdots, n+m \}.$$

In the definition of $Q_{n,m}(r)$, n = 0 is allowed and $m \ge 1$. Moreover, a_{ij} , b_i satisfy the following structure conditions

(1)

$$C_*^{-1}\left(\sum_{i=1}^n \xi_i^2 + \sum_{i=n+1}^{n+m} x_i \xi_i^2\right) \le a_{ij} \xi_i \xi_j \le C_*\left(\sum_{i=1}^n \xi_i^2 + \sum_{i=n+1}^{n+m} x_i \xi_i^2\right), \quad \forall \xi \in \mathbb{R}^{n+m}.$$
 (1.8)

(2) For $i = n + 1, \dots, n + m$, let $b_i = b_{i1} + b_{i2}$. Then we need

$$b_{i1} \ge 0 \quad \text{on } x_i = 0, \quad |b_{i2}| \le C_* \sqrt{x_i},$$
(1.9)

also

$$\sum_{i=1}^{n+m} |b_i| + \sum_{i=n+1}^{n+m} |\partial_i b_{i1}| \le C_*.$$
(1.10)

The condition (1.8) implies

$$\begin{aligned} &\frac{1}{C_*}x_i \leq a_{ii} \leq C_*x_i, \quad n+1 \leq i \leq n+m, \\ &|a_{ij}| \leq C_*\sqrt{x_j}, \quad 1 \leq i \leq n, \quad n+1 \leq j \leq n+m, \\ &|a_{ij}| \leq C_*\sqrt{x_ix_j}, \quad n+1 \leq i \leq n+m, \quad n+1 \leq j \leq n+m. \end{aligned}$$

The study of the Hölder regularity for uniformly elliptic equation dates back to the late 1930s due to its relation to the Hilbert's 19th problem. The Hölder regularity was first proven by Morrey [9] in two dimensions in the late 1930s, and by De Giorgi [2] and Nash [10] in higher dimensions in the late 1950s. Now the Hölder regularity for uniformly elliptic equation is well known.

For m = 1, (1.7) is modelled by the following equation

$$\Delta_x u + y u_{yy} + a u_y = f \quad \text{in } \mathbb{R}^{n+1}_+. \tag{1.11}$$

Usually, people call (1.11) Keldysh type degenerate elliptic equation. There is an interesting phenomenon for Keldysh type degenerate elliptic equation. The coefficient *a* determines the formulation of the well-posed problem. Exactly speaking, in $C(\overline{\mathbb{R}^{n+1}_+})$, the well-posed problem of (1.11) is distinguished into the following two cases.

- (1) a < 1. We need prescribe boundary condition on y = 0.
- (2) $a \ge 1$. We can't prescribe boundary condition on y = 0.

Such a phenomenon was discovered by Keldyš in [8]. Later, Fichera [3–4] and Oleinik [11–12] established general theory on second order linear elliptic equations with nonnegative characteristic form. See also the book [13] and the references therein.

In the present paper, we are interested in the Hölder regularity for the special degenerate elliptic equation as in (1.7)–(1.10). For m = 1, the non-divergence form of (1.7) is investigated in [1] which studies the free boundary problem associated to Gauss curvature flow with flat sides. Under a slightly weaker condition

$$\frac{b_{n+1}(x',0)}{\partial_{n+1}a_{(n+1)(n+1)}(x',0)} \ge -1 + \nu \tag{1.12}$$

for some positive constant ν , the boundary Hölder a priori estimates are established in [1] for solution $u \in C^2(\overline{Q_{n,1}(1)})$. Also, for n = 1, m = 1, the boundary Hölder a priori estimates are established in [6] which studies isometric embedding of Alexandrov-Nirenberg surfaces. For $n \geq 2, m = 1$, the boundary Hölder estimates are established in [7] for a class of degenerate semi-linear elliptic equations in general bounded domains. There are also many other related studies for m = 1 which can't be exhausted in the present paper.

For $m \ge 2$, to authors' knowledge, the only known Hölder estimates for this type of degenerate elliptic equation in polytope type domain are done by [15]. In [15], the non-divergence form of (1.7) is studied for $n = 0, m \ge 2$. Under a similar condition as (1.12)

$$\frac{b_i(x)}{\partial_i a_{ii}(x)} \ge -1 + \nu \quad \text{on } x_i = 0 \tag{1.13}$$

for some positive constant ν , the boundary Hölder a priori estimates are established for $u \in C^2(\overline{Q_{0,m}(1)})$ by some probability method.

Our main result is as following.

Theorem 1.2 Let (1.8)–(1.10) be assumed and $f \in L^q(Q_{n,m}(1))$ for some $q > \frac{n+2m}{2}$. Suppose $u \in C^2(Q_{n,m}(1)) \cap L^{\infty}(Q_{n,m}(1))$ satisfies (1.7). Then there exists some $\alpha \in (0,1)$ such that

$$|u(x) - u(\widetilde{x})| \le C \Big(\sup_{Q_{n,m}(1)} |u| + \|f\|_{L^q(Q_{n,m}(1))} \Big) |x - \widetilde{x}|^{\alpha}, \quad \forall x, \widetilde{x} \in Q_{n,m}\left(\frac{1}{2}\right),$$
(1.14)

where α and C are positive constants depending only on q and C_* in (1.8) and (1.10).

Remark 1.1 Although, we don't impose boundary condition for (1.7). Theorem 1.2 tells us that we can Hölder continuously extend the solution u from interior up to the boundary.

The domains we studied are much complicated than that in [1] and for Theorem 1.1 and Theorem 1.2, no a priori regularity of solutions on the boundary is needed except the solutions in $L^{\infty}(\Omega)$ or in $L^{\infty}(Q_{n,m}(1))$. It should be emphasized that in [1, 15] under the assumption (1.12) or (1.13), the solutions to corresponding problems might be not C^2 -smooth up to the boundary. See the following two examples.

Example 1.1 (see [14]) Consider the following degenerate elliptic equation

$$u_{xx} + yu_{yy} + bu_y = 0 \quad \text{in } \mathbb{R}^2_+.$$
(1.15)

Let $u(x,y) = F\left(\frac{x}{2\sqrt{y}}\right) = F(z)$. Then a direct computation yields that F(z) solves the following ODE

$$(1+z^2)F'' + (3-2b)zF' = 0 \quad \text{in } \mathbb{R}.$$
(1.16)

A direct integration of (1.16) yields that

$$F(z) = \int_0^z e^{-(3-2b)\int_0^s \frac{t}{1+t^2} dt} ds = \int_0^z (1+s^2)^{-\frac{3-2b}{2}} ds$$

solves (1.16) with F(0) = 0, F'(0) = 1. Hence for b < 1, F(z) is a non-constant bounded smooth function. This implies u(x, y) is bounded in \mathbb{R}^2_+ and is dis-continuous at (0, 0).

Example 1.2 Consider the following degenerate elliptic equation

$$xu_{xx} + yu_{yy} + au_x + bu_y = 0 \quad \text{in } \mathbb{R}^+ \times \mathbb{R}^+.$$
(1.17)

Let $u(x,y) = F\left(\ln\left(\frac{x}{y}\right)\right) = F(z)$. Then a direct computation yields that F(z) solves the following ODE

$$F'' + \left(\frac{a-1}{1+e^z} + \frac{(1-b)e^z}{1+e^z}\right)F' = 0 \quad \text{in } \mathbb{R}.$$
(1.18)

A direct integration of (1.18) yields that

$$F(z) = \int_0^z \frac{e^{(1-a)s}}{(1+e^s)^{2-a-b}} ds$$
(1.19)

solves (1.18). In the present case, we also know F(z) is smooth and uniformly bounded in $(-\infty, +\infty)$ for a, b < 1. This implies u(x, y) is bounded in $\mathbb{R}^+ \times \mathbb{R}^+$ and is dis-continuous at (0, 0).

Remark 1.2 Examples 1.1–1.2 satisfy all the assumptions of Theorem 2.1 in [1] and Corollary 1.2 in [15] except that $u \in C^2(\overline{Q_{n,m}(1)})$ apriorily. It is very interesting if one can construct counterexamples for $a \ge 1, b < 1$ in Example 1.2.

2 The Proof for Theorem 1.2

In this section, we give a boundary Hölder estimates for a class of degenerate elliptic equation by De Giorgi iteration. Some ideas come from [6] and [7]. In [6], the proof is based on some regularity of the solutions up to the boundary. In [7], additional regularity of the coefficients a_{ij}, b_i is assumed. In the present case, we want to generalize these results in [6–7] to polytope type domains.

In order to prove Theorem 1.2, we introduce a weighted Sobolve space $\widetilde{W}^{1,2}(Q_{n,m}(1))$ which is the completion of $C^1(\overline{Q_{n,m}(1)})$ under the norm

$$\left(\int_{Q_{n,m}(1)}\sum_{i=1}^{n}u_i^2 + \sum_{i=n+1}^{n+m}x_iu_i^2 + u^2\mathrm{d}x\right)^{\frac{1}{2}}.$$

We first give the following weighted Sobolev embedding inequality and Poincaré inequality which are generalizations of the corresponding inequalities in [6-7].

Lemma 2.1 (1) For all $u \in C^1(\overline{Q_{n,m}(1)})$ with u = 0 on $\partial Q_{n,m}(1) \cap (\mathbb{R}^n \times (\mathbb{R}^+)^m)$, there is a universal constant C independent of $Q_{n,m}(1)$ such that

$$\left(\int_{Q_{n,m}(1)} |u|^{\frac{2(n+2m)}{n+2m-2}} \mathrm{d}x\right)^{\frac{n+2m-2}{n+2m}} \le C \int_{Q_{n,m}(1)} \left(\sum_{i=1}^{n} u_i^2 + \sum_{i=n+1}^{n+m} x_i u_i^2\right) \mathrm{d}x.$$
(2.1)

(2) For any $\varepsilon > 0$, there exists a constant C_{ε} such that

$$\int_{Q_{n,m}(1)} u^2 \mathrm{d}x \le C_{\varepsilon} \int_{Q_{n,m}(1)} \left(\sum_{i=1}^n u_i^2 + \sum_{i=n+1}^{n+m} x_i u_i^2 \right) \mathrm{d}x$$
(2.2)

for all $u \in C^1(\overline{Q_{n,m}(1)})$ subject to $|\{x \in Q_{n,m}(1) \mid u(x) = 0\}| \ge \varepsilon$.

Proof Let $G = Q_{n,m}(1)$. Define a transform $T : G \to T(G)$ by

$$T(x) = y, \quad y_i = x_i, \quad 1 \le i \le n, \quad y_i = 2\sqrt{x_i}, \quad n+1 \le i \le n+m.$$

Lift T(G) in \mathbb{R}^{n+2m} by defining

$$\widetilde{T(G)} = \{(y,z) \in \mathbb{R}^{n+m} \times \mathbb{R}^m : y \in T(G), \ 0 < z_i < y_{n+i}, \ i = 1, \cdots m\}.$$

Then

$$\int_{G} |u|^{p} \mathrm{d}x = \left(\frac{1}{2}\right)^{m} \int_{T(G)} |u \circ T^{-1}|^{p} \left(\prod_{i=n+1}^{n+m} y_{i}\right) \mathrm{d}y = \left(\frac{1}{2}\right)^{m} ||u \circ T^{-1}||_{L^{p}(\widetilde{T(G)})}^{p}$$
(2.3)

and

$$\int_{G} \left(\sum_{i=1}^{n} u_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} u_{x_{i}}^{2} \right) \mathrm{d}x = \left(\frac{1}{2} \right)^{m} \sum_{i=1}^{n+m} \int_{T(G)} u_{y_{i}}^{2} \left(\prod_{i=n+1}^{n+m} y_{i} \right) \mathrm{d}y \\ = \left(\frac{1}{2} \right)^{m} \| \widetilde{\nabla} (u \circ T^{-1}) \|_{L^{2}(\widetilde{T(G)})}^{2}, \tag{2.4}$$

where $\widetilde{\nabla} = (\nabla_y, \nabla_z)$ is the gradient in \mathbb{R}^{n+2m} .

Now let us consider the first part of the present lemma. Let $u \in C^1(\overline{G})$ with u = 0 on $\partial G \cap_{i=n+1}^{n+m} \{x_i > 0\}$. Set

$$\widetilde{u}(x) = \begin{cases} u(x) & \text{for } x \in G, \\ 0 & \text{for } x \in \mathbb{R}^n \times (\mathbb{R}^+)^m \setminus G. \end{cases}$$

Then, define $v(y) = \tilde{u}(x)$ and

$$w(y,z) = v(y_1, \cdots, y_n, \max\{y_{n+1}, z_1\}, \cdots, \max\{y_{n+m}, z_m\})$$
 in $\mathbb{R}^n \times (\mathbb{R}^+)^{2m}$

Then, we can extend w to \mathbb{R}^{n+2m} by even extensions first with respect to the plane $y_i = 0$, $i = n + 1, \dots, n + m$ and then to the plane $z_i = 0, i = 1, \dots, m$. By the Sobolev embedding theorem, we have $w \in H^1(\mathbb{R}^{n+2m}) \subset L^{\frac{2(n+2m)}{n+2m-2}}(\mathbb{R}^{n+2m})$ and

$$\left(\int_{\mathbb{R}^{n+2m}} w^{\frac{2(n+2m)}{n+2m-2}} \mathrm{d}y \mathrm{d}z\right)^{\frac{n+2m-2}{n+2m}} \le C \int_{\mathbb{R}^{n+2m}} |\widetilde{\nabla}w|^2 \mathrm{d}y \mathrm{d}z.$$

Therefore by (2.3) and (2.4), we obtain

$$\begin{split} \left(\int_{G} u^{\frac{2(n+2m)}{n+2m-2}} \mathrm{d}x\right)^{\frac{n+2m-2}{n+2m}} &\leq \left(C_{1} \int_{\mathbb{R}^{n+2m}} w^{\frac{2(n+2m)}{n+2m-2}} \mathrm{d}y \mathrm{d}z\right)^{\frac{n+2m-2}{n+2m}} \leq C \int_{\mathbb{R}^{n+2m}} |\widetilde{\nabla}w|^{2} \mathrm{d}y \mathrm{d}z \\ &\leq C' \int_{\widehat{T(G)}} |\widetilde{\nabla}w|^{2} \mathrm{d}y \mathrm{d}z = 2^{m}C' \int_{G} \left(\sum_{i=1}^{n} u_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} u_{x_{i}}^{2}\right) \mathrm{d}x, \end{split}$$

where C_1, C and C' are universal positive constants, independent of u.

Next, we consider the second part of the present lemma. Suppose that $u \in C^1(\overline{G})$ with $|\{x \in G : u(x) = 0\}| \ge \varepsilon > 0$. Then, it is easy to see that

$$|\{y: v(y) = 0\}| \ge C\varepsilon$$

and

$$|\{(y,z)\in \widetilde{T}(\widetilde{G}): w(y,z)=0\}| \ge C\varepsilon$$

for another universal constant C. By the well-known Poincaré inequality, we get

$$\int_{\widetilde{T(G)}} w^2 \mathrm{d}y \mathrm{d}z \le C_{\varepsilon} \int_{\widetilde{T(G)}} |\widetilde{\nabla}w|^2 \mathrm{d}y \mathrm{d}z,$$

where C_{ε} is a positive constant depending only on ε . Then

$$\int_{G} u^{2} \mathrm{d}x = \left(\frac{1}{2}\right)^{m} \int_{\widetilde{T(G)}} w^{2} \mathrm{d}y \mathrm{d}z \leq \left(\frac{1}{2}\right)^{m} C_{\varepsilon} \int_{\widetilde{T(G)}} |\widetilde{\nabla}w|^{2} \mathrm{d}y \mathrm{d}z$$
$$\leq C_{\varepsilon}' \int_{G} \left(\sum_{i=1}^{n} u_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} u_{x_{i}}^{2}\right) \mathrm{d}x.$$

This completes the proof of the present lemma.

Now we begin to discuss the boundary Hölder regularity of $u \in L^{\infty}(Q_{n,m}(1)) \cap C^2(Q_{n,m}(1))$ which satisfies (1.7). As a first step, we show that such a solution $u \in \widetilde{W}^{1,2}(Q_{n,m}(r)), \forall r \in (0,1)$, has no trace on the boundary $x_i = 0, i = n + 1, \dots, n + m$ in general. So we need to bypass this obstacle in the present circumstance.

Lemma 2.2 Let the assumptions of Theorem 1.2 be satisfied. Then, $u \in \widetilde{W}^{1,2}(Q_{n,m}(r))$, $\forall r \in (0,1)$ and satisfies

$$\int \varphi^2 \Big(\sum_{i=1}^n u_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i u_{x_i}^2 \Big) \mathrm{d}x$$

$$\leq C \|u\|_{\infty}^2 \Big(\int \Big(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi |\varphi_i| \Big) \mathrm{d}x + 1 \Big) + C \int \varphi^2 f^2 \mathrm{d}x,$$

where C is a positive constant depending only on C_* in (1.8) and (1.10) and $0 \leq \varphi \in C_0^{\infty}(\overline{\mathbb{R}^n \times (\mathbb{R}^+)^m})$ subject to

$$\varphi \equiv 1 \quad in \ Q_{n,m}(r), \quad \varphi \equiv 0 \quad in \ Q_{n,m}^c \Big(\frac{1+r}{2}\Big).$$
 (2.5)

Proof Consider a smooth cut-off function $0 \le \chi_{\varepsilon} \le 1$ such

$$\chi_{\varepsilon}(t) = \begin{cases} 0, & 0 \le t \le \varepsilon, \\ 1, & t \ge 2\varepsilon \end{cases}$$

and

$$|D^k \chi_{\varepsilon}| \le \frac{C_k}{\varepsilon^k}, \quad k = 1, 2, \cdots$$

Let

$$\eta_{\varepsilon}(x) = \prod_{i=n+1}^{n+m} \chi_{\varepsilon}(x_i).$$

We multiply (1.7) by $-\varphi^2\eta_{\varepsilon}^2 u$ and integrate by parts. Then

$$\int_{Q_{n,m}(1)} \varphi^2 \eta_{\varepsilon}^2 a_{ij} u_i u_j = -2 \int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi u a_{ij} \varphi_i u_j - 2 \int_{Q_{n,m}(1)} \varphi^2 \eta_{\varepsilon} u a_{ij} u_j \partial_i \eta_{\varepsilon} + \int_{Q_{n,m}(1)} \varphi^2 \eta_{\varepsilon}^2 u b_i u_i - \int_{Q_{n,m}(1)} \varphi^2 \eta_{\varepsilon}^2 u f.$$
(2.6)

Next, the Cauchy inequality implies, for $\delta > 0$ to be determined,

$$2\eta_{\varepsilon}^{2}\varphi ua_{ij}\varphi_{i}u_{j} \leq \delta\eta_{\varepsilon}^{2}\varphi^{2}a_{ij}u_{i}u_{j} + \frac{1}{\delta}a_{ij}\varphi_{i}\varphi_{j}\eta_{\varepsilon}^{2}u^{2},$$

$$2\eta_{\varepsilon}\varphi^{2}ua_{ij}\partial_{i}\eta_{\varepsilon}u_{j} \leq \delta\eta_{\varepsilon}^{2}\varphi^{2}a_{ij}u_{i}u_{j} + \frac{1}{\delta}\varphi^{2}u^{2}a_{ij}\partial_{i}\eta_{\varepsilon}\partial_{j}\eta_{\varepsilon}$$

Also one has

$$\int_{Q_{n,m}(1)} \varphi^2 u^2 a_{ij} \partial_i \eta_{\varepsilon} \partial_j \eta_{\varepsilon} \mathrm{d}x \le C \|u\|_{\infty}^2 \|\varphi\|_{\infty}^2 \sum_{i=n+1}^{n+m} \int_{Q_{n,m}(1)} x_i (\partial_i \eta_{\varepsilon})^2 \mathrm{d}x$$
$$\le C \|u\|_{\infty}^2 \|\varphi\|_{\infty}^2 \sum_{i=n+1}^{n+m} \int_{Q_{n,m}(1) \cap \{\varepsilon \le x_i \le 2\varepsilon\}} \frac{1}{\varepsilon} \mathrm{d}x \le C' \|u\|_{\infty}^2.$$

Therefore, by (1.8), one has

$$\frac{1}{C_*}(1-\widetilde{C}\delta)\int \eta_{\varepsilon}^2 \varphi^2 \Big(\sum_{i=1}^n u_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i u_{x_i}^2\Big)$$

$$\leq \frac{C_*}{\delta}\int \Big(\sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_{x_i}^2\Big)\eta_{\varepsilon}^2 u^2 + \int \varphi^2 \eta_{\varepsilon}^2 u b_i u_i - \int \varphi^2 \eta_{\varepsilon}^2 u f + C \|u\|_{\infty}^2.$$

Next, for the b_i -term, $i = 1, \dots, n$, we have, by $|b_i| \leq C_*$ in (1.10),

$$\left|\int \eta_{\varepsilon}^{2}\varphi^{2}ub_{i}u_{i}\right| \leq \frac{\delta}{C_{*}}\int \eta_{\varepsilon}^{2}\varphi^{2}u_{i}^{2} + \frac{C_{*}^{3}}{\delta}\int \eta_{\varepsilon}^{2}\varphi^{2}u^{2}.$$

For the b_i -term, $i = n + 1, \dots, n + m$, one has

$$\int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 b_i u u_i = \frac{1}{2} \int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 b_{i1} \partial_i (u^2) + \int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 b_{i2} u u_i$$

=

$$= -\frac{1}{2} \int_{Q_{n,m}(1)} \partial_i (\eta_{\varepsilon}^2 \varphi^2 b_{i1}) u^2 + \int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 b_{i2} u u_i.$$

Therefore, by (1.10), for $i = n + 1, \dots, n + m$,

$$\int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 b_i u u_i$$

$$\leq \left(C_* + \frac{C_*^3}{\delta}\right) \int (\varphi^2 + \varphi |\varphi_i|) \eta_{\varepsilon}^2 u^2 + C ||u||_{\infty}^2 + \frac{\delta}{C_*} \int_{Q_{n,m}(1)} \eta_{\varepsilon}^2 \varphi^2 x_i u_i^2$$

By a simple substitution and taking δ small enough, then let $\varepsilon \to 0$, we obtain the desired result in the present lemma.

Lemma 2.3 Let $u \in \widetilde{W}^{1,2}(Q_{n,m}(1))$. Denote

$$A(\delta) = \sum_{i=1}^{m} \int_{Q_{n,m}(1) \cap \{x_{n+i}=\delta\}} \left(\sum_{k=1}^{n} u_{x_k}^2 + \sum_{j=1}^{m} x_{n+j} u_{x_{n+j}}^2\right).$$

Then

$$\lim_{\delta \to 0^+} \delta A(\delta) = 0.$$

Proof If it is not true, it follows that

$$A(\delta) \ge \frac{c_0}{\delta}$$

for some positive constant $c_0 > 0$. This implies

$$+\infty = \int_0^1 \frac{c_0}{\delta} \mathrm{d}\delta \le \int_0^1 A(\delta) \mathrm{d}\delta \le C ||u||_{\widetilde{W}^{1,2}(Q_{n,m}(1))}^2$$

which yields a contradiction.

Lemma 2.4 Let the assumptions of Theorem 1.2 be satisfied. Then, for any φ as mentioned in Lemma 2.2, there holds

$$\int \varphi^{2} \Big(\sum_{i=1}^{n} u_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} u_{x_{i}}^{2} \Big) \mathrm{d}x$$

$$\leq C \int \Big(\varphi^{2} + \sum_{i=1}^{n} \varphi_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} \varphi_{i}^{2} + \sum_{i=n+1}^{n+m} \varphi |\varphi_{i}| \Big) u^{2} + \int \varphi^{2} f^{2}, \qquad (2.7)$$

where C is a positive constant depending only on C_* in (1.8) and (1.10).

Proof By Lemma 2.2, one knows $u \in \widetilde{W}^{1,2}(Q_{n,m}(r)), r \in (0,1)$. We multiply (1.7) by $-\varphi^2 u$ and integrate by parts. Let $G \subset \mathbb{R}^n \times (\mathbb{R}^+)^m$ be a bounded domain such that $\varphi = 0$ in $\mathbb{R}^n \times (\mathbb{R}^+)^m \setminus G$. Set

$$G_{\delta} = G \cap_{i=n+1}^{n+m} \{ x_i > \delta \}.$$

Then

$$\int_{G_{\delta}} \varphi^2 a_{ij} u_i u_j = \int_{\partial G_{\delta}} \varphi^2 u a_{ij} u_j \nu_i - 2 \int_{G_{\delta}} \varphi u a_{ij} \varphi_i u_j + \int_{G_{\delta}} \varphi^2 u b_i u_i - \int_{G_{\delta}} \varphi^2 u f.$$

For the boundary integral, we first note $\varphi = 0$ on $\partial G_{\delta} \bigcap_{i=n+1}^{n+m} \{x_i > \delta\}$. Next, on $\partial G_{\delta} \cap \{x_{n+m} = \delta\}$, $\nu_1 = \cdots = \nu_{n+m-1} = 0$. One has

$$\left| \int_{\partial G_{\delta} \cap \{x_{n+m}=\delta\}} \varphi^{2} u a_{(n+m)j} u_{j} \nu_{n+m} \right| \leq C_{\varphi} \|u\|_{\infty} \sqrt{\delta} \int_{\partial G_{\delta} \cap \{x_{n+m}=\delta\}} \sqrt{a_{jj}} |u_{j}| \mathrm{d}S$$
$$\leq C_{\varphi} \|u\|_{\infty} \left(\int_{\partial G_{\delta} \cap \{x_{n+m}=\delta\}} \delta a_{jj} |u_{j}|^{2} \mathrm{d}S \right)^{\frac{1}{2}}.$$

Notice that

 $a_{jj} \leq C$, $j = 1, \cdots, n$, $a_{jj} \leq Cx_j$, $j = n+1, \cdots, n+m$.

By Lemmas 2.2–2.3, after taking a subsequence, we have

$$\left|\int_{\partial G_{\delta}}\varphi^{2}ua_{ij}u_{j}\nu_{i}\right| = o(1), \text{ as } \delta \to 0.$$

By Cauchy inequality, for $\varepsilon > 0$ to be determined, one has

$$\frac{1}{C_*}(1-\varepsilon)\int_{G_{\delta}}\varphi^2\Big(\sum_{i=1}^n u_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i u_{x_i}^2\Big)$$

$$\leq \frac{C_*}{\varepsilon}\int_{G_{\delta}}\Big(\sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_{x_i}^2\Big)u^2 + \int_{G_{\delta}}\varphi^2 ub_i u_i - \int_{G_{\delta}}\varphi^2 uf + o(1)$$

and

$$\sum_{i \le n} \left| \int_{G_{\delta}} \varphi^2 u b_i u_i \right| \le \frac{\varepsilon}{C_*} \sum_{i \le n} \int_{G_{\delta}} \varphi^2 |u_i|^2 + \frac{2C_*^3}{\varepsilon} \int_{G_{\delta}} \varphi^2 u^2.$$

On the other hand, for $i = n + 1, \dots, n + m$, one has

$$\begin{split} \int_{G_{\delta}} \varphi^2 b_i u u_i &= \frac{1}{2} \int_{G_{\delta}} \varphi^2 b_{i1} \partial_i (u^2) + \int_{G_{\delta}} \varphi^2 b_{i2} u \partial_i u \\ &= -\frac{1}{2} \int_{G_{\delta}} \partial_i (\varphi^2 b_{i1}) u^2 + \int_{\partial G_{\delta}} \varphi^2 b_{i1} u^2 \nu_i + \int_{G_{\delta}} \varphi^2 b_{i2} u \partial_i u. \end{split}$$

For fixed $i = n + 1, \dots, n + m$, on $x_i = \delta$, $\nu_i = -1$, by (1.10), one has

$$b_{i1}(x_1, \cdots, x_{i-1}, \delta, x_{i+1}, \cdots, x_{n+m}) - b_{i1}(x_1, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{n+m}) \ge -C\delta.$$
(2.8)

Hence

$$\int_{\partial G_{\delta}} \varphi^2 b_{i1} u^2 \nu_i \le C \int_{\partial G_{\delta} \cap \{x_i = \delta\}} \delta u^2 = O(\delta).$$
(2.9)

Therefore, by (1.10),

$$\int_{G_{\delta}} \varphi^2 b_i u u_i \leq O(\delta) - \frac{1}{2} \int_{G_{\delta}} (\varphi^2 \partial_i b_{i1} + 2\varphi \varphi_i b_{i1}) u^2 + C_* \int_{G_{\delta}} \varphi \sqrt{x_i} u |u_i|$$
$$\leq O(\delta) + \left(C_* + \frac{C_*^3}{\varepsilon}\right) \int_{G_{\delta}} (\varphi^2 + \varphi |\varphi_n|) u^2 + \frac{\varepsilon}{C_*} \int_{G_{\delta}} \varphi^2 x_i u_i^2.$$

By a simple substitution and taking $\varepsilon = \frac{1}{4}$, then let $\delta \to 0$, we obtain

$$\int \varphi^2 \Big(\sum_{i=1}^n u_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i u_{x_i}^2 \Big)$$

$$\leq C \int \Big(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi |\varphi_i| \Big) u^2 + C_2 \int \varphi^2 |uf|$$

Another application of the Cauchy inequality implies the desired result.

Lemma 2.5 Let (1.8), (1.10) be assumed and $f \in L^q(Q_{n,m}(R))$, for some $R \in (0,1]$ and $q > \frac{n+2m}{2}$. Suppose $u \in C^2(Q_{n,m}(R)) \cap L^{\infty}(Q_{n,m}(R))$ satisfies

$$\partial_i(a_{ij}u_j) + b_i u_i \ge f \quad in \ Q_{n,m}(R).$$
(2.10)

Then, for any $\theta \in (0, 1)$,

$$\sup_{Q_{n,m}(\theta R)} u^{+} \leq C \Big\{ \Big(\frac{1}{|Q_{n,m}(R)|} \int_{Q_{n,m}(R)} u^{2} \Big)^{\frac{1}{2}} + R^{2} \Big(\frac{1}{|Q_{n,m}(R)|} \int_{Q_{n,m}(R)} |f|^{q} \Big)^{\frac{1}{q}} \Big\}, \quad (2.11)$$

where C is a positive constant depending only on q, θ and C_* .

Proof For simplicity, we assume R = 1. Let φ be a smooth cut-off function as mentioned in Lemma 2.2, and set $\overline{u} = (u - k)^+$ for some $k \ge 0$. Multiply the differential inequality (2.10) by $-\varphi^2 \overline{u}$ and integrate in $Q_{n,m}(1)$. Proceeding as in the proof of Lemma 2.4, we have

$$\int \varphi^2 \Big(\sum_{i=1}^n \overline{u}_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \overline{u}_{x_i}^2 \Big)$$

$$\leq C \int \Big(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi |\varphi_i| \Big) \overline{u}^2 + \int \varphi^2 \overline{u} f$$

and then

$$\int \left(\sum_{i=1}^{n} (\varphi \overline{u})_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} (\varphi \overline{u})_{x_{i}}^{2}\right)$$
$$\leq C \int \left(\varphi^{2} + \sum_{i=1}^{n} \varphi_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} \varphi_{i}^{2} + \sum_{i=n+1}^{n+m} \varphi |\varphi_{i}|\right) \overline{u}^{2} + \int \varphi^{2} \overline{u} f$$

Lemma 2.1(1) implies

$$\left(\int \varphi^{\frac{2(n+2m)}{n+2m-2}} \overline{u}^{\frac{2(n+2m)}{n+2m-2}}\right)^{\frac{n+2m-2}{n+2m}}$$

$$\leq C \int \left(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi |\varphi_i| \right) \overline{u}^2 + \int \varphi^2 \overline{u} f.$$

By the Hölder inequality, we have

$$\int \varphi^2 \overline{u} f \le \left(\int (\varphi \overline{u})^{\frac{2(n+2m)}{n+2m-2}} \right)^{\frac{n+2m-2}{2(n+2m)}} \left(\int (\varphi f)^q \right)^{\frac{1}{q}} |\{\varphi \overline{u} \neq 0\}|^{1-\frac{n+2m-2}{2(n+2m)}-\frac{1}{q}}$$

$$\leq \frac{1}{2} \left(\int (\varphi \overline{u})^{\frac{2(n+2m)}{n+2m-2}} \right)^{\frac{n+2m-2}{n+2m}} + \frac{1}{2} \|f\|_{L^q}^2 |\{\varphi \overline{u} \neq 0\}|^{\frac{n+2m+2}{n+2m}-\frac{2}{q}},$$

and hence

$$\left(\int (\varphi \overline{u})^{\frac{2(n+2m)}{n+2m-2}}\right)^{\frac{n+2m-2}{n+2m}} \leq C \int \left(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi |\varphi_i| \right) \overline{u}^2 + \|f\|_{L^q}^2 |\{\varphi \overline{u} \neq 0\}|^{\frac{n+2m+2}{n+2m} - \frac{2}{q}}$$

By the Hölder inequality again, we have

$$\int (\varphi \overline{u})^2 \le \left(\int (\varphi \overline{u})^{\frac{2(n+2m)}{n+2m-2}}\right)^{\frac{n+2m-2}{n+2m}} |\{\varphi \overline{u} \neq 0\}|^{\frac{2}{n+2m}},$$

and hence

$$\int \varphi^2 \overline{u}^2 \leq \|f\|_{L^q}^2 |\{\varphi \overline{u} \neq 0\}|^{\frac{n+2m+4}{n+2m}-\frac{2}{q}} + C|\{\varphi \overline{u} \neq 0\}|^{\frac{2}{n+2m}} \int \left(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi|\varphi_i|\right) \overline{u}^2.$$

In the following, we take

$$\varepsilon = \min\left\{\frac{2}{n+2m}, \frac{4}{n+2m} - \frac{2}{q}\right\} > 0.$$

Then

$$\int \varphi^2 \overline{u}^2 \leq \|f\|_{L^q}^2 |\{\varphi \overline{u} \neq 0\}|^{1+\varepsilon} + C|\{\varphi \overline{u} \neq 0\}|^{\varepsilon} \int \left(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 + \sum_{i=n+1}^{n+m} \varphi|\varphi_i|\right) \overline{u}^2.$$

Set, for any $r \in (0, 1]$ and $k \ge 0$,

$$A(k,r) = \{ x \in Q_{n,m}(r) : u(x) \ge k \}.$$

For any 0 < r < R < 1, we take a cut-off function φ such that $\varphi = 1$ in $Q_{n,m}(r)$ and $\varphi = 0$ in $Q_{n,m}(1) \setminus Q_{n,m}(R)$. Then

$$\varphi^{2} + \sum_{i=1}^{n} \varphi_{x_{i}}^{2} + \sum_{i=n+1}^{n+m} x_{i} \varphi_{i}^{2} + \sum_{i=n+1}^{n+m} \varphi |\varphi_{i}| \le \frac{C}{(R-r)^{2}},$$

and hence

$$\int_{A(k,r)} (u-k)^2 \le C \Big\{ \frac{1}{(R-r)^2} \int_{A(k,R)} (u-k)^2 |A(k,R)|^{\varepsilon} + \|f\|_{L^q}^2 |A(k,R)|^{1+\varepsilon} \Big\}.$$

For any $h > k \ge 0$, we have

$$\int_{A(h,R)} (u-h)^2 \le \int_{A(k,R)} (u-k)^2$$

and

$$|A(h,R)| = |G_R \cap \{u-k > h-k\}| \le \frac{1}{(h-k)^2} \int_{A(k,R)} (u-k)^2.$$

Hence,

$$\begin{split} \int_{A(h,r)} (u-h)^2 &\leq C \Big\{ \frac{1}{(R-r)^2} \int_{A(h,R)} (u-h)^2 + \|f\|_{L^q}^2 |A(h,R)| \Big\} |A(h,R)|^{\varepsilon} \\ &\leq C \Big\{ \frac{1}{(R-r)^2} + \frac{1}{(h-k)^2} \|f\|_{L^q}^2 \Big\} \frac{1}{(h-k)^{2\varepsilon}} \Big(\int_{A(k,R)} (u-k)^2 \Big)^{1+\varepsilon}. \end{split}$$

In summary, we obtain, for any 0 < r < R < 1 and $0 \le k < h$,

$$\|(u-h)^+\|_{L^2(G_r)} \le C\Big\{\frac{1}{R-r} + \frac{1}{h-k}\|f\|_{L^q(Q_{n,m}(1))}\Big\}\frac{1}{(h-k)^{\varepsilon}}\|(u-k)^+\|_{L^2(G_R)}^{1+\varepsilon}.$$

For any $\theta \in (0, 1)$, a standard iteration yields

$$\sup_{Q_{n,m}(\theta)} u^+ \le C\{ \|u^+\|_{L^2(Q_{n,m}(1))} + \|f\|_{L^q(Q_{n,m}(1))} \}$$

This is the desired result.

Next, we shall give a lower bound for positive supersolutions.

Lemma 2.6 Let (1.8), (1.10) be assumed and $f \in L^q(Q_{n,m}(1))$ for some $q > \frac{n+2m}{2}$. Suppose $u \in C^2(Q_{n,m}(1)) \cap L^\infty(Q_{n,m}(1))$ is positive and satisfies

$$\partial_i(a_{ij}u_j) + b_iu_i \le f \quad in \ Q_{n,m}(1).$$

Then, for any $\varepsilon \in (0,1)$, there exist constants $\delta > 0$ and C > 1, depending only on q, ε and C_* in (1.8) and (1.10), such that, if

$$\left|\left\{x \in Q_{n,m}(1) : u(x) \ge \frac{1}{2}\right\}\right| \ge \varepsilon |Q_{n,m}(1)|,$$

and

$$\|f\|_{L^q(Q_{n,m}(1))} \le \delta,$$

then

$$\inf_{Q_{n,m}(\frac{1}{2})} u \ge \frac{1}{C}.$$
(2.12)

Proof Let φ be a nonnegative smooth cut-off function with support in $Q_{n,m}(1) \bigcup_{i=n+1}^{n+m} \{x_i = 0\}$. Let $G_{\gamma} = Q_{n,m}(1) \bigcap_{i=n+1}^{n+m} \{x_i > \gamma\}$. Then

$$\int_{G_{\gamma}} a_{ij} u_i \varphi_j - \int_{G_{\gamma}} b_i u_i \varphi - \int_{\partial G_{\gamma}} a_{ij} \varphi u_i \nu_j \ge - \int_{G_{\gamma}} f \varphi.$$
(2.13)

By Lemma 2.3, one knows

$$\int_{\partial G_{\gamma}} a_{ij} \varphi u_j \nu_i = -\sum_{i=n+1}^{n+m} \int_{\partial G_{\gamma} \cap \{x_i = \gamma\}} a_{ij} \varphi u_j \to 0, \quad \text{as } \gamma \to 0.$$

If f is not identically zero, we take $\delta = \|f\|_{L^q(B_1)}$. Otherwise, we take an arbitrary $\delta > 0$. Replacing φ by $\varphi/(u+\delta)$ in (2.13), we have

$$-\int_{G_{\gamma}} a_{ij} \frac{u_i u_j}{(u+\delta)^2} \varphi + \int_{G_{\gamma}} a_{ij} \frac{u_i}{u+\delta} \varphi_j - \int_{G_{\gamma}} b_i \frac{u_i}{u+\delta} \varphi \ge -\int_{G_{\gamma}} \frac{f}{u+\delta} \varphi + o_{\gamma}(1).$$

Here we use $o_{\gamma}(1)$ denote o(1) as $\gamma \to 0$. Then setting

$$v = \log \frac{1}{u+\delta},$$

we get

$$-\int_{G_{\gamma}} a_{ij} v_i v_j \varphi - \int_{G_{\gamma}} a_{ij} v_i \varphi_j + \int_{G_{\gamma}} b_i v_i \varphi \ge -\int_{G_{\gamma}} \frac{f}{u+\delta} \varphi + o_{\gamma}(1).$$

In particular, v satisfies

$$\int_{G_{\gamma}} a_{ij} v_i \varphi_j - \int_{G_{\gamma}} b_i v_i \varphi \le \int_{G_{\gamma}} \frac{f}{u + \delta} \varphi + o_{\gamma}(1).$$

The choice of δ implies $||f/\delta||_{L^q(Q_{n,m}(1))} \leq 1$. Then, letting $\gamma \to 0$, for any $\theta \in (\frac{1}{2}, 1)$, Lemma 2.5 implies

$$\sup_{Q_{n,m}(\frac{1}{2})} (v^{+})^{2} \le C \Big\{ \int_{Q_{n,m}(\theta)} (v^{+})^{2} + 1 \Big\},$$
(2.14)

.

where C is a positive constant depending only on q, θ and C_* in (1.8) and (1.10).

Now, replace φ in (2.13) by

$$\left(\frac{1}{u+\delta}-1\right)^+\varphi^2.$$

Then, we have

$$\int_{G_{\gamma}} a_{ij}\partial_i v^+ \partial_j v^+ \varphi^2 \leq -2 \int_{G_{\gamma}} \varphi(1-u-\delta)^+ a_{ij}\partial_i v^+ \varphi_j$$
$$+ \int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_i \partial_i v^+$$
$$+ \int_{G_{\gamma}} \varphi^2 \frac{f}{u+\delta} (1-u-\delta)^+ + o_{\gamma}(1)$$

We now consider the b_i -term for $i = n + 1, \dots, n + m$ and write

$$\int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_i \partial_i v^+ = \int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_{i1} \partial_i v^+ + \int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_{i2} \partial_i v^+$$
$$\leq \int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_{i1} \partial_i v^+ + \varepsilon \int_{G_{\gamma}} \varphi^2 x_i (\partial_i v^+)^2 + \frac{C}{\varepsilon} \int_{G_{\gamma}} \varphi^2 x_i (\partial_i v^+)^2 + \frac{C}{\varepsilon}$$

Also

$$\int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_{i1} \partial_i v^+ = \int_{G_{\gamma}} \varphi^2 b_{i1} \partial_i \left[\left(\log \frac{1}{u+\delta} \right)^+ - (1-u-\delta)^+ \right]$$
$$= -\int_{G_{\gamma}} \partial_i (\varphi^2 b_{i1}) \left[\left(\log \frac{1}{u+\delta} \right)^+ - (1-u-\delta)^+ \right]$$

$$+ \int_{\partial G_{\gamma}} \varphi^2 b_{i1} \left[\left(\log \frac{1}{u+\delta} \right)^+ - (1-u-\delta)^+ \right] \nu_i.$$

Note that $\varphi = 0$ or $\nu_i = 0$ on $\partial G_{\gamma} \setminus \{x_i = 0\}$ and for $u + \delta < 1$,

$$\left(\log\frac{1}{u+\delta}\right)^+ > (1-u-\delta)^+.$$
(2.15)

By (1.9) and (1.10), similar to (2.8) and (2.9), one has

$$\int_{\partial G_{\gamma}} \varphi^2 b_{i1} \Big[\Big(\log \frac{1}{u+\delta} \Big)^+ - (1-u-\delta)^+ \Big] \nu_i \le O(\gamma).$$

This implies

$$\int_{G_{\gamma}} \varphi^2 (1 - u - \delta)^+ b_i \partial_i v^+$$

$$\leq \int_{G_{\gamma}} |\partial_i (\varphi^2 b_{i1})| v^+ + \varepsilon \int_{G_{\gamma}} \varphi^2 x_i (\partial_i v^+)^2 + \frac{C}{\varepsilon} \int_{G_{\gamma}} \varphi^2 + O(\gamma),$$

and hence

$$\begin{split} \int_{G_{\gamma}} a_{ij} \partial_i v^+ \partial_j v^+ \varphi^2 &\leq -2 \int_{G_{\gamma}} \varphi (1-u-\delta)^+ a_{ij} \partial_i v^+ \varphi_j + \sum_{i=1}^n \int_{G_{\gamma}} \varphi^2 (1-u-\delta)^+ b_i \partial_i v^+ \\ &+ \int_{G_{\gamma}} |\partial_i (\varphi^2 b_{i1})| v^+ + \varepsilon \int_{G_{\gamma}} \varphi^2 x_i (\partial_i v^+)^2 \\ &+ \frac{C}{\varepsilon} \int_{G_{\gamma}} \varphi^2 + O(\gamma) + \int_{G_{\gamma}} \varphi^2 \frac{f}{u+\delta} (1-u-\delta)^+. \end{split}$$

By proceeding as in the proof of Lemma 2.4 and $\gamma \rightarrow 0$, we have

$$\int \varphi^2 \Big(\sum_{i=1}^n (v_{x_i}^+)^2 + \sum_{i=n+1}^{n+m} x_i (v_{x_i}^+)^2 \Big) \mathrm{d}x$$

$$\leq C \Big\{ \int \Big(\varphi^2 + \sum_{i=1}^n \varphi_{x_i}^2 + \sum_{i=n+1}^{n+m} x_i \varphi_i^2 \Big) + \sum_{i=n+1}^{n+m} \int (\varphi + |\varphi_i|) \varphi v^+ + \int \varphi^2 \frac{f}{\delta} \Big\}.$$

The choice of δ implies $||f/\delta||_{L^q(Q_{n,m}(1))} \leq 1$. Hence, for any $\theta_1 < \theta_2 < 1$, we take $\varphi = 1$ in $Q_{n,m}(\theta_1)$ and $\varphi = 0$ in $Q_{n,m}(1) \setminus Q_{n,m}(\theta_2)$. Then, for any $\tau \in (0,1)$ to be determined, we have

$$\int_{Q_{n,m}(\theta_1)} \left(\sum_{i=1}^n (v_{x_i}^+)^2 + \sum_{i=n+1}^{n+m} x_i (v_{x_i}^+)^2 \right) \le \frac{C_{\tau}}{(\theta_2 - \theta_1)^2} + \tau \int_{Q_{n,m}(\theta_2)} (v^+)^2.$$
(2.16)

Note

$$\begin{aligned} &|\{x \in Q_{n,m}(\theta_1) : v^+ = 0\}|\\ &\geq |\{x \in Q_{n,m}(1) : u + \delta \ge 1\}| - |Q_{n,m}(1)| + |Q_{n,m}(\theta_1)|\\ &\geq |Q_{n,m}(\theta_1)| - (1-\varepsilon)|Q_{n,m}(1)| = \left(1 - \frac{1-\varepsilon}{\theta_1^{n+2m}}\right)|Q_{n,m}(\theta_1)| \ge \frac{1}{2}\varepsilon|Q_{n,m}(\theta_1)|,\end{aligned}$$

by taking θ_1 such that

$$\theta_0 \equiv \max\left\{\frac{1}{2}, \left(\frac{1-\varepsilon}{1-\frac{\varepsilon}{2}}\right)^{\frac{1}{n+2m}}\right\} < \theta_1 < 1.$$

Then Lemma 2.1(2) implies

$$\int_{Q_{n,m}(\theta_1)} (v^+)^2 \le C \int_{Q_{n,m}(\theta_1)} \left(\sum_{i=1}^n (v_{x_i}^+)^2 + \sum_{i=n+1}^{n+m} x_i (v_{x_i}^+)^2 \right) \quad \text{for all } \theta_1 \ge \theta_0.$$
(2.17)

It must be emphasized that C in (2.17) depends on ε through θ_0 , and is independent of θ_1 . By combining (2.16) and (2.17), we have

$$\int_{Q_{n,m}(\theta_1)} (v^+)^2 \le \frac{C_{\tau}}{(\theta_2 - \theta_1)^2} + C\tau \int_{Q_{n,m}(\theta_2)} (v^+)^2.$$

Now choose τ such that $C\tau = \frac{1}{2}$. We obtain, for any $\theta_0 < \theta_1 < \theta_2 < 1$,

$$\int_{Q_{n,m}(\theta_1)} (v^+)^2 \le \frac{C_{\tau}}{(\theta_2 - \theta_1)^2} + \frac{1}{2} \int_{Q_{n,m}(\theta_2)} (v^+)^2.$$

A standard iteration yields, for any $\theta_0 < \theta < 1$,

$$\int_{Q_{n,m}(\theta)} (v^+)^2 \le \frac{C}{(1-\theta)^2}.$$
(2.18)

By combining (2.14) and (2.18) and fixing $\theta \in (\theta_0, 1)$, we obtain

$$\sup_{Q_{n,m}(\frac{1}{2})} (v^+)^2 \le C,$$

and hence

$$\inf_{Q_{n,m}(\frac{1}{2})} u + \delta \ge e^{-C}.$$

We note that the constant C above is independent of δ . If $f \equiv 0$, we simply let $\delta \to 0$. Otherwise, taking $\delta = \frac{e^{-C}}{2}$, we have the desired estimate.

Now, we are ready to prove the Hölder regularity up to the boundary.

Proof of Theorem 1.2 Set, for any $r \leq 1$,

$$M(r) = \sup_{Q_{n,m}(r)} u, \quad m(r) = \inf_{Q_{n,m}(r)} u,$$

and

$$\omega(r) = M(r) - m(r)$$

We now claim, for any $r \leq 1$,

$$\omega\left(\frac{r}{2}\right) \le \sigma\omega(r) + Cr^{1-\frac{n+2m}{2q}} \|f\|_{L^q(Q_{n,m}(r))},\tag{2.19}$$

where $\sigma \in (0, 1)$ and C > 1 are constants depending only on q and C_* in (1.8) and (1.10). If (2.19) is true, then by a simple iteration, we have, for any $r \leq \frac{1}{2}$,

$$\omega(r) \le Cr^{\alpha} \{ \omega(1) + \|f\|_{L^q(Q_{n,m}(1))} \},\$$

where $\alpha \in (0,1)$ and C > 1 are constants depending only on q and C_* in (1.8) and (1.10).

We now prove (2.19) for r = 1. The general case follows from a simple scaling. Let $\varepsilon = \frac{1}{2}$ and δ be determined as in Lemma 2.6. If

$$\delta\omega(1) \le \|f\|_{L^q(Q_{n,m}(1))},$$

then

$$\omega\left(\frac{1}{2}\right) \le \omega(1) \le \frac{1}{\delta} \|f\|_{L^q(Q_{n,m}(1))}.$$
(2.20)

Next, we assume

$$\|f\|_{L^q(Q_{n,m}(1))} \le \delta\omega(1).$$

We note that $\frac{u}{\omega(1)}$ satisfies

$$\partial_i \left(a_{ij} \partial_j \left(\frac{u}{\omega(1)} \right) \right) + b_i \partial_i \left(\frac{u}{\omega(1)} \right) = \frac{f}{\omega(1)} \quad \text{in } Q_{n,m}(1)$$

Hence

$$\left\|\frac{f}{\omega(1)}\right\|_{L^q(Q_{n,m}(1))} \le \delta$$

by the previous assumption. We consider the following two cases:

$$\left|\left\{x \in Q_{n,m}(1) : \frac{u - m(1)}{M(1) - m(1)} \ge \frac{1}{2}\right\}\right| \ge \frac{1}{2}|Q_{n,m}(1)|$$
(2.21)

and

$$\left|\left\{x \in Q_{n,m}(1): \frac{M(1)-u}{M(1)-m(1)} \ge \frac{1}{2}\right\}\right| \ge \frac{1}{2}|Q_{n,m}(1)|.$$
(2.22)

If (2.21) holds, we apply Lemma 2.6 to $\frac{u-m(1)}{M(1)-m(1)}$ and get

$$m\left(\frac{1}{2}\right) - m(1) \ge \frac{1}{C}(M(1) - m(1))$$

If (2.22) holds, we apply Lemma 2.6 to $\frac{M(1)-u}{M(1)-m(1)}$ and get

$$M(1) - M\left(\frac{1}{2}\right) \ge \frac{1}{C}(M(1) - m(1)).$$

Since $m(\frac{1}{2}) \ge m(1)$ and $M(\frac{1}{2}) \le M(1)$, we have in both cases

$$M\left(\frac{1}{2}\right) - m\left(\frac{1}{2}\right) \le \left(1 - \frac{1}{C}\right)(M(1) - m(1)),$$

and hence

$$\omega\left(\frac{1}{2}\right) \le \sigma\omega(1) \tag{2.23}$$

for some constant $\sigma \in (0, 1)$. We have (2.19) by combining (2.20) and (2.23).

First we consider m = 1. Consider two points $\overline{x}, \widetilde{x} \in Q_{n,m}(\frac{1}{2})$ and $|\overline{x} - \widetilde{x}| + \overline{x}_{n+1} + \widetilde{x}_{n+1} << 1$.

(1) $r^2 = |\overline{x} - \widetilde{x}|^{\frac{1}{4}} \ge \max(\overline{x}_{n+1}, \widetilde{x}_{n+1})$. Then

$$\overline{x}, \widetilde{x} \in G_{r, (\frac{\overline{x}' + \overline{x}'}{2}, 0)} = \left\{ x \in Q_{n, m}(1) \mid \left| x' - \frac{\overline{x}' + \widetilde{x}'}{2} \right| < r, 0 < x_{n+1} < r^2 \right\}.$$

By (2.19), one knows

$$|u(\overline{x}) - u(\widetilde{x})| \le Cr^{\alpha}(\omega(1) + ||f||_{L^{q}(Q_{n,m}(1))}) \le C(\omega(1) + ||f||_{L^{q}(Q_{n,m}(1))})|\widetilde{x} - \overline{x}|^{\frac{\alpha}{8}}.$$

(2) $|\overline{x} - \widetilde{x}|^{\frac{1}{4}} \leq \max(\overline{x}_{n+1}, \widetilde{x}_{n+1}) = \overline{x}_{n+1} \leq \varepsilon_0$ for some ε_0 small enough to be determined later. Then one knows

$$\begin{aligned} \widetilde{x}_{n+1} &\geq \overline{x}_{n+1} - |\widetilde{x}_{n+1} - \overline{x}_{n+1}| \\ &\geq \overline{x}_{n+1} - |\overline{x} - \widetilde{x}| \\ &\geq (1 - \varepsilon_0^3) x_{n+1} \geq \left(\frac{1}{2}\right) \overline{x}_{n+1} \end{aligned}$$

for ε_0 small. Let $\lambda = \overline{x}_{n+1}$ and $v(y) = u(\lambda^{\frac{1}{2}}y' + \frac{\overline{x}' + \widetilde{x}'}{2}, \lambda y_{n+1})$. Then v(y) solves

$$\partial_i(\widetilde{a}_{ij}(y)\partial_j v) + \widetilde{b}_i(y)\partial_i v = \widetilde{f}(y), \qquad (2.24)$$

where

$$\begin{split} \widetilde{a}_{ij}(y) &= a_{ij}(x), \quad \widetilde{a}_{i(n+1)}(y) = \frac{1}{\lambda^{\frac{1}{2}}} a_{i(n+1)}(x), \quad \widetilde{a}_{(n+1)(n+1)}(y) = \frac{1}{\lambda} a_{(n+1)(n+1)}(x), \\ \widetilde{b}_{i}(y) &= \lambda^{\frac{1}{2}} b_{i}(x), \quad \widetilde{b}_{n+1}(y) = b_{n+1}(x), \quad \widetilde{f}(y) = \lambda f(x), \quad 1 \le i, j \le n. \end{split}$$

Then by (1.8)–(1.10), one knows (2.24) is a uniformly elliptic equation with bounded measurable coefficients in $\Sigma = \{y \mid |y'| \leq 4, \frac{1}{2} \leq y_{n+1} \leq 8\}$. Then by [5, Theorem 8.24], there exists $\beta(C^*, n) \in (0, 1)$ such that

$$\|v\|_{C^{\beta}(\Sigma')} \le C(\|v\|_{L^{2}(\Sigma)} + \|f\|_{L^{q}(\Sigma)})$$
(2.25)

for some constant $C = C(C^*, n, q)$ and $\Sigma' = \{y \mid |y'| \le 2, 1 \le y_n \le 4\}$. The assumption $|\overline{x} - \widetilde{x}|^{\frac{1}{4}} \le \overline{x}_{n+1} = \lambda$ implies

$$|\overline{x} - \widetilde{x}|^{\frac{3}{2}} \ge \frac{|\overline{x}' - \widetilde{x}'|^2}{\lambda}, \quad |\overline{x} - \widetilde{x}|^{\frac{3}{2}} \ge \frac{|\overline{x}_{n+1} - \widetilde{x}_{n+1}|^2}{\lambda^2}.$$

Hence,

$$\frac{|u(\overline{x}) - u(\widetilde{x})|}{|\overline{x} - \widetilde{x}|^{\frac{3}{4}\beta}} \leq C_0 \frac{|u(\overline{x}) - u(\widetilde{x})|}{(\lambda^{-1}|\overline{x}' - \widetilde{x}'|^2 + \lambda^{-2}|\widetilde{x}_{n+1} - \overline{x}_{n+1}|^2)^{\frac{\beta}{2}}} \\
= C_0 \frac{|v(\overline{y}) - v(\widetilde{y})|}{|\overline{y} - \widetilde{y}|^\beta} \leq C(||v||_{L^2(\Sigma)} + ||\widetilde{f}||_{L^q(\Sigma)}) \\
\leq C_1(||u||_{L^{\infty}(Q_{n,m}(1))} + \lambda^{1 - \frac{n+2}{2q}} ||f||_{L^q(Q_{n,m}(1))}).$$
(2.26)

The above arguments complete the proof of Theorem 1.2 for m = 1.

Now we prove the present theorem by induction. Similarly, consider two points $\overline{x}, \widetilde{x} \in Q_{n,m}(\frac{1}{2})$. Also we use x = (x', x''), where $x' = (x_1, \cdots, x_n)$ and $x'' = (x_{n+1}, \cdots, x_{n+m})$.

(1) $r^2 = |\overline{x} - \widetilde{x}|^{\frac{1}{4}} \ge \max(|\overline{x}''|, |\widetilde{x}''|)$. Then

$$\overline{x}, \widetilde{x} \in G_{r, (\frac{\overline{x}' + \widetilde{x}'}{2}, 0)} = \left\{ x \in Q_{n, m}(1) \mid \left| x' - \frac{\overline{x}' + \widetilde{x}'}{2} \right| < r, 0 < x_{n+i} < r^2, \ i = 1, \cdots, m \right\}.$$

By (2.19), one knows

$$|u(\overline{x}) - u(\widetilde{x})| \le Cr^{\alpha}(\omega(1) + ||f||_{L^{q}(Q_{n,m}(1))}) \le C(\omega(1) + ||f||_{L^{q}(Q_{n,m}(1))})|\widetilde{x} - \overline{x}|^{\frac{\alpha}{8}}.$$

(2) $|\overline{x} - \widetilde{x}|^{\frac{1}{4}} \leq \max(|\overline{x}''|, |\widetilde{x}''|) \leq \varepsilon_0$ for some positive ε_0 small enough. A similar argument as in m = 1 implies

$$\frac{1}{2}|\widetilde{x}''| \le |\overline{x}''| \le 2|\widetilde{x}''|.$$

Let $\lambda = |\overline{x}''|$ and $v(y) = u(\lambda^{\frac{1}{2}}y' + \frac{\overline{x}' + \widetilde{x}'}{2}, \lambda y'')$. Then v(y) solves

$$\partial_i(\widetilde{a}_{ij}(y)\partial_j v) + \widetilde{b}_i(y)\partial_i v = \widetilde{f}(y), \qquad (2.27)$$

where

$$\begin{aligned} \widetilde{a}_{ij}(y) &= a_{ij}(x), \quad \widetilde{a}_{iJ}(y) = \frac{1}{\lambda^{\frac{1}{2}}} a_{iJ}(x), \quad 1 \le i, j \le n, \ n+1 \le J \le n+m, \\ \widetilde{a}_{IJ}(y) &= \frac{1}{\lambda} a_{IJ}(x), \quad n+1 \le I, J \le n+m, \quad \widetilde{b}_i(y) = \lambda^{\frac{1}{2}} b_i(x), \quad 1 \le i \le n, \\ \widetilde{b}_I(y) &= b_I(x), \quad n+1 \le I \le n+m, \quad \widetilde{f}(y) = \lambda f(x). \end{aligned}$$

Without loss of generality, we may also assume $\overline{x}_{n+1} \geq \frac{1}{\sqrt{m}} |\overline{x}''|$. Then by (1.8)–(1.10), one knows that (2.27) is an elliptic equation with bounded measurable coefficients such that n and m are replaced by n + 1 and m - 1 respectively in (1.8)–(1.10) in

$$\widehat{\Sigma} = \Big\{ y \mid |y'| < 4, \ \frac{1}{8m} < y_{n+1} < 8, \ 0 < y_{n+i} < 8, \ i = 2, \cdots, m \Big\}.$$

Then by our induction assumption, there exists $\beta(C^*, n, m) \in (0, 1)$ such that

$$\|v\|_{C^{\beta}(\widehat{\Sigma}')} \le C(\|v\|_{L^{2}(\Sigma)} + \|\widetilde{f}\|_{L^{q}(\Sigma)})$$
(2.28)

for some constant $C = C(C^*, n, m, q)$ and

$$\widehat{\Sigma} = \Big\{ y \mid |y'| < 2, \ \frac{1}{4m} < y_{n+1} < 4, \ 0 < y_{n+i} < 4, \ i = 2, \cdots, m \Big\}.$$

By the assumption in this case, one knows

$$\frac{|u(\overline{x}) - u(\widetilde{x})|}{|\overline{x} - \widetilde{x}|^{\frac{3}{4}\beta}} \leq C_0 \frac{|u(\overline{x}) - u(\widetilde{x})|}{(\lambda^{-1}|\overline{x}' - \widetilde{x}'|^2 + \lambda^{-2}|\widetilde{x}'' - \overline{x}''|^2)^{\frac{\beta}{2}}}$$

$$= C_0 \frac{|v(\overline{y}) - v(\widetilde{y})|}{|\overline{y} - \widetilde{y}|^{\beta}} \leq C(||v||_{L^2(\widehat{\Sigma})} + ||\widetilde{f}||_{L^q(\widehat{\Sigma})})$$

$$\leq C_1(||u||_{L^{\infty}(Q_{n,m}(1))} + \lambda^{1 - \frac{n+2m}{2q}} ||f||_{L^q(Q_{n,m}(1))}).$$
(2.29)

This ends the proof of the present theorem.

References

- Daskalopoulos, P. and Lee, K.-A., Hölder regularity of solutions of degenerate elliptic and parabolic equations, *Journal of Functional Analysis*, 201(2), 2003, 341–379.
- [2] De Giorgi, E., Sulla differenziabilità e lanalicità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino cl. Sci. Fis. Fat. Nat., 3, 1957, 25–43.
- [3] Fichera, G., Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei Mem. Ci. Fis. Mat. Natur. Sez. I, 5(8), 1956, 1–30.
- [4] Fichera, G., On a unified theory of boundary value problems for elliptic-parabolic equations of second order, *Matematika*, 7(6), 1963, 99–122.
- [5] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2015.
- [6] Han, Q., Hong, J. and Huang, G., Compactness of Alexandrov-Nirenberg Surfaces, Communications on Pure and Applied Mathematics, 70(9), 2017, 1706–1753.
- [7] Huang, G., A priori bounds for a class of semi-linear degenerate elliptic equations, Science China Mathematics, 57(9), 2012, 1911–1926.
- [8] Keldyš, M. V., On certain cases of degeneration of equations of elliptic type on the boundary of a domain, Dokl. Akad. Nauk SSSR, 77, 1951, 181–183.
- Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Transactions of the American Mathematical Society, 43(1), 1938, 126–166.
- [10] Nash, J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80, 1958, 931–954.
- [11] Oleinik, O. A., A problem of Fichera, Dokl. Akad. Nauk SSSR, 157, 1964, 1297–1300.
- [12] Oleinik, O. A., Linear equations of second order with nonnegative characteristic form, Mat. Sb., 69(111), 1966, 111–140.
- [13] Oleinik, O. A. and Radkevič, E. V., Second Order Equations with Nonnegative Characteristic Form, Amer. Math. Soc., RI/Plenum Press, New York, 1973.
- [14] Weber, B., Regularity and a Liouville theorem for a class of boundary-degenerate second order equations, Journal of Differential Equations, 281, 2021, 459–502.
- [15] Zhang, F. and Du, K., Krylov-Safonov estimates for a degenerate diffusion process, Stochastic Processes and their Applications, 130(8), 2020, 5100–5123.