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Abstract A complete manifold is said to be nonparabolic if it does admit a positive
Green’s function. To find a sharp geometric criterion for the parabolicity/nonparbolicity
is an attractive question inside the function theory on Riemannian manifolds. This pa-
per devotes to proving a criterion for nonparabolicity of a complete manifold weakened
by the Ricci curvature. For this purpose, we shall apply the new Laplacian comparison
theorem established by the first author to show the existence of a non-constant bounded
subharmonic function.
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1 Introduction

From the initial work of Yau [30] in 1975, where he proved a Liouville theorem for positive

harmonic functions on a complete manifold with nonnegative Ricci curvature, the study of

function theory on a complete Riemannian manifold has been one of the central problems in

geometric analysis. During the past decades, many significant results have been obtained (refer

to [4, 13–14, 16, 31–32]). For example, Greene and Wu gave a systematic study of function

theory on a complete manifold with a pole (see, for example, [9]). Anderson [2] and Sullivan [24]

independently proved that on a complete simply-connected manifolds with curvature pinched

by two negative constants, there are a wealth of nontrivial bounded harmonic functions. Li and

Tam in [15–17] related the theory of harmonic functions on a complete non-compact manifold

with nonnegative sectional curvature outside a compact to its infinity geometric structure. This

indicates that function properties also reflect some geometric structures of a complete manifold.

It is not a surprise that Green’s functions play an effective role in this aspect.

The existence of a Green’s function on a general complete manifold was first proved by

Malgrange [20] in 1955 and was re-established by Li and Tam [17] in 1987 in constructive and

applicable way. However, on a complete manifold, the existence and nonexistence of a posi-

tive Green’s function impact different properties of harmonic, subharmonic or superharmonic

functions (refer to, for example, [14, 16]). This analytic character divides the class of complete

manifolds into two categories. A complete manifold is said to be parabolic if it does not admit a

Manuscript received December 31, 2021.
1School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail: qding@fudan.edu.cn 2021080070@fudan.edu.cn

∗This work was supported by the National Natural Science Foundation of China (Nos. 12071080,
12141104).



740 Q. Ding and X. Y. Dong

positive Green’s function. Otherwise it is said to be nonparabolic (see [13, 15, 17]) or hyperbolic

(see [8, 10]). It is very interesting that in case of minimal surfaces in R
3, while the catenoid is

parabolic, and the double periodic Scherk’s surface or the triply periodic Schwarz surface are

nonparabolic (see, for example, [8]). Since there are several concepts of hyperbolicity in geom-

etry in different sense, in this paper, we shall use the terminology of nonparabolic to denote a

complete manifold with a positive Green’s function, like it is used in [14, 17].

To find a criterion for parabolicity/nonparabolicity becomes an attractive topic in this as-

pect. It is well-known that a complete manifold M is nonparabolic if one of the following

equivalent three conditions, which is called “Kelvin-Nevanlinna-Royden criteria”, is fulfilled

(this is established in [19] by Lysons and Sullivan, also refer to [8]): (a) M has a nonconstant

superharmonic function; (b) M admits positive capacity, that is to say, there exists a non-empty

precompact set D ⊂ M such that Cap(D,M) > 0, where Cap(D,M) := inf
u

∫
M

‖∇u‖2dvM with

the infimum being taken over all real-valued functions u ∈ C∞
0 (M) and u ≥ 1 in D; (c) the

Brownian motion on M is transient, that is, there is a non-empty precompact set D ⊂ M

such that the Brownian motion starting from a point in D leaves D with a positive probability.

However, excepting the analytic criteria mentioned above, a geometric characterization for the

parabolicity or nonparbolicity is a central question inside the function theory on Riemannian

manifolds, as it is mentioned in surveys [10, 13] or in [8]. The geometric characterization can

be given as a sufficient or necessary condition involving the volume growth, or bounds on its

sectional or Ricci curvature and some other geometric quantities (see, for example, [9–10, 16,

32]).

In 1935, Ahlfors proved in [1] that a rotationally symmetric complete surfaceM2 is parabolic

if and only if the integral
∫∞

0 1/vol(Sρ) is divergent, where Sρ stands for the geodesic circle

of radius ρ in M2. Based on this, in 1977 Milnor obtained in [23] a decision criterion for the

parabolicity/nonparabolicity of a complete surface by the Gauss curvature. Precisely, let M2

be a 2-dimensional complete simply-connected surface and ρ(x) denotes the distance function

on M from a fixed point o to x ∈ M2, Milnor proved that if the (Gauss) curvature K(x) ≥

− 1
ρ2(x) log ρ(x) for large ρ(x), then M2 is parabolic. If K(x) ≤ − 1+ε

ρ2(x) log ρ(x) outside a geodesic

ball Bo(R) for some R > 0, where ε > 0 is a constant, then M2 is nonparabolic. Ahlfors’ result

has been generalized by several authors ([4, 10, 16, 18, 25–26]) to complete manifolds with

dimension bigger than 2, in which a so called volume comparison condition is proposed (see

[18, 25]). Meanwhile, Milnor’s result is also generalized to the higher dimensional case. It was

proved in [9] by Greene and Wu in the geometric way that if (M, o) is a Riemannian manifold

with a pole o ∈ M satisfying the radial sectional curvature (x) ≤ − 1+ε
ρ2(x) log ρ(x) outside a geodesic

ball Bo(R) for some R > 0. Then M admits a non-constant bounded subharmonic function

and hence is nonparabolic by the Kelvin-Nevanlinna-Royden criteria. A similar criterion for

parabolicity by the radial sectional curvature is also obtained in [9]. Ichihara proved in [12]

in the probabilistic way that a connected and complete n-dimensional Riemannian manifold is

parabolic if its Ricci curvature are bounded from below by the corresponding curvature of a

model (for the definition of a model see §2 below) which satisfies the Ahlfors’s integral divergence
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condition, and it is nonparabolic if its sectional curvature are bounded from above by the

corresponding curvature of a model which satisfies the Ahlfors’s integral convergence condition.

We would point out that Palmer and his collaborators did a series of works in characterizing the

nonparabolicity (or, in other words, the hyperbolicity) of submanifolds, especially the minimal

submanifolds, in a Cartan-Hadamard manifold (see, for example, [8, 21–22]).

Based on the above exhibitions, it gives rise to a natural question: Can the assumption on

the (radial) sectional curvature be weakened to an assumption on the Ricci curvature instead?

This is not just a technical improvement, a motivation for relaxing the curvature assumption is

from the study of the structure of complete Kähler manifolds with the nonpositive holomorphic

bisectional curvature. A well understanding of the Ricci curvature for the nonparabolicity is

obviously very useful in this study.

The aim of this paper is to generalize the criterion for nonparabolicity of a complete man-

ifold from the (radial) sectional curvature to the Ricci curvature under the circumstance of

nonpositive sectional curvature. The key idea is based on the new Laplacian comparison theo-

rem established by the first author in 1994. We shall apply a new version of the new Laplacian

comparison theorem to show the existence of a non-constant bounded subharmonic function and

obtain a criterion for nonparabolicity of a complete manifold in the level of the Ricci curvature.

The main result is as follows.

Theorem 1.1 Let M be an n-dimensional complete simply-connected manifold with non-

positive curvature and o be a fixed point in M . The distance function between x ∈ M \ {o} and

o on M is denoted by ρ = ρ(x). If the Ricci curvature of M satisfies

Ric(x) ≤ −
1 + ε

ρ2 log ρ
for some ε > 0 outside a geodesic ball Bo(R) with R > 0. (1.1)

Then M is nonparabolic.

The paper is organized as follows. In §2, we give some preliminaries and display the new

version of the new Laplacian comparison. In §3 we shall prove the existence of a non-constant

bounded subharmonic function by the assumption of the Ricci curvature. Some comments and

questions are also presented in this section.

2 Preliminaries

It is well-known that various comparison theorems, such as Rauch, Hessian and Laplacian

comparison theorems, are widely applicable and play important roles in Riemannian geometry.

In 1994, the first author established in [5] the following new Laplacian comparison theorem by

using the Jacobian equation, which provides a new tool in exploiting geometric properties of

Riemannian manifolds with nonpositive curvature.

Theorem 2.1 (Ding [5]) Let M and M̃ be two n-dimensional Riemannian manifolds with

nonpositive curvature and

γ : [0, b] → M and γ̃ : [0, b] → M̃
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be normal geodesics respectively in M and M̃ . We denote by ρ (resp. ρ̃), ∆ (resp. ∆̃) and

Ric (resp. R̃ic) the distance function from x = γ(0) in M (resp. from x̃ = γ̃(0) in M̃), the

Laplacian operator and the Ricci curvature of M (resp. M̃), respectively. Assume that, for any

t ∈ [0, b], Ric(γ̇, γ̇)(t) ≤ 1
n−1 R̃ic(

˙̃γ, ˙̃γ)(t). Then

∆ρ(γ(t)) ≥
1

n− 1
∆̃ρ̃(γ̃(t)), ∀t ∈ (0, b]. (2.1)

Corollary 2.1 Let M be an n-dimensional Riemannian manifold with nonpositive curvature

and M̃ be the space form of nonpositive constant curvature −k (k ≥ 0). If Ric(M) ≤ −k, then

∆ρ ≥
1

n− 1
∆̃ρ̃. (2.2)

A noteworthy point of this new Laplacian comparison theorem is that the inequality in the

usual Laplacian comparison theorem are reversed. If we restrict ourselves to convex domains,

the non-positivity of the sectional curvature in Theorem 2.1 can be removed. A geometrical

proof of this new Laplacian comparison theorem was given by Xin in [29] in 1995. The version in

terms of the Bakry-Émery Ricci curvature is displayed in [28]. The new Laplacian comparison

theorem has applications to the eigenvalue estimates (see [5]), the rigidity of harmonic maps

from bounded symmetric domains (see [29]) and the existence of bounded harmonic functions

(see [6]). Some other interesting applications in geometry and probability theory are given in

[3, 7, 11, 27] and so on. Theorem 2.1 was actually discovered and proved in 1992 when the first

author was a PhD student guided by his respectable advisor, Prof. Gu Chaohao.

Before displaying a new version of Theorem 2.1 which is useful in the sequel, let’s state a

lemma proved in [9, Lemma 5.15], which is also important in this paper.

Lemma 2.1 Give ε > 0, let K be any C∞ function on [0,∞) such that K ≤ 0 and

K(ρ) ≤ − 1+ε
ρ2 log ρ

for large ρ. Then there exists a unique complete Riemannian (or Hermitian)

metric h on the disk D = {z ∈ C | |z| < 1} which is rotationally symmetric and whose Gauss

curvature along any geodesic ray from the origin in D is K.

From Lemma 2.1, we see that there exists a unique rotationally symmetric complete Rie-

mannian (or Hermitian) metric h onD such that the Gauss curvatureK of h satisfiesK ≤ 0 and

K(ρ) ≤ − 1+ε
ρ2 log ρ

for large ρ = dh(O, z). This complete surface is denoted by (D,K) throughout

the paper. We would point out that the 2-dimensional surface (D,K) can be generalized to

higher dimensions. The higher dimensional versions are called models in literature (see, for

example, [9]). Let (M, o) be Riemannian manifold with a pole o (i.e., exp : ToM → M is a

diffeomorphism). (M, o) is called a model if the metric of M is given by

ds2 = dr2 + f2(r)ds2
Sn−1(1),

where r denotes the usual radial function on ToM \ {0} and the map (r, θ) → rθ is the

parametrization R
+ ×{unit sphere} → ToM \ {0} called the geodesic polar coordinates around

o, and f depends only on r with f(0) = 0 and f ′(0) = 1. It is well known that the radial
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sectional curvature of (M, o) is formulated by K(r(x)) = − f ′′(r(x))
f(r(x)) . Especially, when n = 2 the

radial curvature becomes the Gauss curvature and, in this case, (M, o) is denoted by (D,K) in

this paper, as indicated above.

The following is a new version of the new Laplacian comparison Theorem 2.1 we needed.

Theorem 2.2 Let M be an n-dimensional Riemannian manifold with nonpositive curva-

ture, M̃ be a Riemannian surface and

γ : [0, b] → M and γ̃ : [0, b] → M̃

be normal geodesics respectively in M and M̃ . All the notations have the same meanings in

Theorem 2.1. Assume that, (1) there are no conjugate points on γ or γ̃; (2) for any t ∈ [0, b],

Ric(γ̇, γ̇)(t) ≤ R̃ic( ˙̃γ, ˙̃γ)(t). Then

∆ρ(γ(t)) ≥ ∆̃ρ̃(γ̃(t)), ∀t ∈ (0, b]. (2.3)

Corollary 2.2 Let M be an n-dimensional Riemannian manifold with nonpositive curvature

and o be a fixed point in M . The distance function between x ∈ M \ {o} and o on M is denoted

by ρ = ρ(x). If the Ricci curvature of M satisfies

Ric(x) ≤ −
1 + ε

ρ2 log ρ
outside a geodesic ball Bo(R) for some R > 0.

Then

∆ρ(x) ≥ ∆̃ρ̃(z)

for every x ∈ M and z ∈ M̃ such that ρ(x) = ρ̃(z), where M̃ = (D,K) with K being chosen as

K(ρ(x)) ≤ 0 and RicM (x) ≤ K(ρ(x)) ≤ − 1+ε
ρ2 log ρ

for ρ(x) ≥ R and ρ̃(z) is the distance function

in D between z and the origin O.

Corollary 2.3 Assumptions are the same as in Corollary 2.2 and f : [0,∞) → R is a C∞

nondecreasing (i.e., f ′ ≥ 0) function. Then

∆f(ρ(x)) ≥ ∆̃f(ρ̃(z)) (2.4)

for every x ∈ M and z ∈ D such that ρ(x) = ρ̃(z).

A benefit of this new version of the new Laplacian comparison Theorem 2.1 is the deletion

of the factor 1
n−1 in the comparison inequality. We end this section with presenting a simply

proof of Theorem 2.2.

As done in [5], for a parallel orthogonal unit bases {e1(t), · · · , en(t)} along the normal

geodesic γ inM (where en(t) = γ̇(t)), the n−1 independent normal Jacobian fields {Ui(t)}1≤i≤n−1

along γ are presented by



U1(t)
...

Un−1(t)


 = A(t)




e1(t)
...

en−1(t)


 ,
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where A = A(t) : [0, b] → gl(n − 1,R). Since {Ui}1≤i≤n−1satifty the Jacobian equation, we

equivalently have that
{
Att +AK = 0,
A(0) = 0, At(0) = I,

(2.5)

where K = (Kij)1≤i,j≤n−1, Kij = 〈R(γ̇, ei)γ̇, ej〉 in which R stands for the curvature operator.

Similarly, we have that a normal Jacobian field Ũ(t) along γ̃ in M̃ is presented by Ũ(t) =

Ã(t)ẽ(t), where ẽ(t) is a parallel unit vector field along γ̃ orthogonal to ˙̃γ(t) and Ã satisfies

{
Ãtt + ÃK̃ = 0,

Ã(0) = 0, Ãt(0) = 1,
(2.6)

where K̃ = K̃(t) is the Gauss curvature of M̃ at the point γ̃(t). One notes that Ã(t) is a scalar

function of t.

Lemma 2.2 Assume that A and Ã solve respectively (2.5) and (2.6), and (1) A−1(t) and

Ã−1(t) exist on (0, b]; (2) A−1At is semi-definite for every t ∈ (0, b]; (3) trK ≤ K̃ for every

t ∈ (0, b]. Then

tr(A−1At) ≥ Ã−1Ãt, t ∈ (0, b]. (2.7)

Proof First of all, we choose a small ε0 ≥ 0 such that on (0, ε0),

tr(A−1At) ≥ tr(Ã−1Ãt) (2.8)

and

(tr(A−1At)− (Ã−1Ãt))|t=ε0 ≥ 0. (2.9)

In fact, from (2.5) we have that A(0) = 0, At(0) = I, Att(0) = 0, Attt(0) = −K(0) and hence

when t → 0+, A(t) ∼ tI − t3K(0)
6 , At(t) ∼ I − t2K(0)

2 , A−1(t) ∼ I
t
+ tK(0)

6 . Similarly, when

t → 0+, Ã(t) ∼ tI − t3 K̃(0)
6 , Ãt(t) ∼ I − t2 K̃(0)

2 , Ã−1(t) ∼ I
t
+ t K̃(0)

6 . Therefore, when t → 0+,

tr(A−1At)− tr(Ã−1Ãt) ∼





n− 2

t
, when n ≥ 3,

0, when n = 2.

This confirms our above claim for some small ε0 > 0 in the case of n ≥ 3 and ε0 = 0 of n = 2.

What remains to prove is that (2.7) holds for every t ∈ (0, a]. For this purpose, we see that

[tr(A−1At)− Ã−1Ãt]t = K̃ − trK + Ã−1ÃtÃ
−1Ãt − tr(A−1AtA

−1At). (2.10)

Since A−1At is semi-definite, we have that

tr(A−1AtA
−1At) ≤ (tr(A−1At))

2.

and it is easy to see that

(Ã−1ÃtÃ
−1Ãt) = (Ã−1Ãt)

2.
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Hence from (2.10), we obtain

[tr(A−1At)− Ã−1Ãt]t ≥ −(tr(A−1At))
2 + (Ã−1Ãt)

2. (2.11)

Now. setting p(t) = tr(A−1At), q(t) = Ã−1Ãt and h(t) = p(t)− q(t), we have the follows from

(2.11),

ht(t) + h(t)[p(t) + q(t)] ≥ 0. (2.12)

Based on this differential inequality, as done in [5], we may arrival at that on [ε0, t],

h(t) exp
( ∫ t

ε0

(p(τ) + q(τ))dτ
)
− h(ε0) ≥ 0,

or equivalently,

h(t) ≥ h(ε0) exp
(
−

∫ t

ε0

(p(τ) + q(τ))dτ
)
, t ∈ (ε0, b]. (2.13)

Since (2.9), we know that h(ε0) ≥ 0. Hence, (2.13) and (2.8)–(2.9) imply that our desired

inequality (2.7) holds on (0, b]. This completes the proof of Lemma 2.2.

Proof of Theorem 2.2 First of all, one may verify that all the conditions in Lemma

2.2 are satisfied under the conditions of Theorem 2.2 (for example, the non-positivity of the

curvature guarantees that A−1At is semi-definite). Next, by noting that (refer to [5])

∆ρ(γ(t)) = tr(A−1At)

and

∆̃ρ̃(γ̃(t)) = tr(Ã−1Ãt)

and applying Lemma 2.2, we may easily obtain the inequality (2.3) in Theorem 2.2. This proves

Theorem 2.2.

It is easy to see that Corollary 2.2 is a direct consequence of Theorem 2.2 and Corollary 2.3

is a consequence of Corollary 2.2.

3 The Existence of Bounded Subharmonic Functions

In this section, we shall show our main Theorem 1.1. In fact, Theorem 1.1 is a consequence

of the following proposition and the Kelvin-Nevanlinna-Royden criteria.

Proposition 3.1 Let M be an n-dimensional complete non-compact Riemannian manifold

with nonpositive curvature and o be a fixed point in M . The distance function between x ∈

M \ {o} and o on M is denoted by ρ = ρ(x). If the Ricci curvature of M satisfies

Ric(x) ≤ −
1 + ε

ρ2 log ρ
outside a geodesic ball Bo(R) for some R > 0. (3.1)

Then there exists a C∞ bounded non-constant subharmonic function ϕ on M .
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Proof The proof of Proposition 3.1 is constructive. The main idea is, under the assump-

tions, to construct a bounded function ϕ on M and then to show such a function is in fact

subharmonic by applying the comparison Corollary 2.3.

First of all, because of (3.1), we may choose a nonnegative smooth function k(ρ) on [0,∞)

such that

Ricci curvature(x) ≤ −k(ρ(x)) and − k(ρ) ≤ −
1 + ε

ρ2 log ρ
for large ρ.

By Lemma 2.1, the unit disk D = {|z| < 1} possesses a unique complete Riemannian metric

h = η(r)dzdz̄, where r = |z| and η(r) > 0 is a suitable function of r, such that its (Gauss)

curvature K satisfies K = k(ρ̃), where ρ̃ denotes the distance function of h based at the origin

O ∈ D. Thus if σ : [0,∞) → R is any nondecreasing function, Corollary 2.3 implies that

∆σ(ρ(x)) ≥ ∆̃σ(ρ̃(z)) (3.2)

for every x ∈ M and z ∈ D such that ρ(x) = ρ̃(z).

Next, we choose σ as done in [9] section 6. For the completeness of the proof, we outline

the construction of σ as follows. Since ρ̃ is a rotational symmetric function on D, it is regarded

as a C∞ function: [0, 1) → [0,∞). Extending ρ̃ to be a function on (−1, 1) in the way that

ρ̃(−t) = −ρ̃(t). As a function on (−1, 1), ρ̃ is still C∞ since it is the inverse function of the

normal geodesic γ : (−1, 1) → D that sends 0 to O ∈ D. The desired function σ : R → [0, 1) is

now defined by

σ(ρ̃(t)) = t2 for all t ∈ (−1, 1),

that is to say, σ is the square of the inverse function of ρ̃ and is a C∞ even function on R.

Now one observes that σ(ρ̃(z)) = |z|2 = r2, where r = |z|. Meanwhile, one also sees that, with

ρ : M → [0,∞) as indicated above, σ(ρ) : M → [0, 1) is C∞.

Finally, it is obvious that σ : [0,∞) → [0, 1) is a nondecreasing function (since so is the

function ρ̃(t) : [0, 1) → [0,∞)). By applying Corollary 2.3 to M and (D,K), we have

∆σ(ρ(x)) ≥ ∆̃σ(ρ̃(z)) = ∆̃(r2)(z), (3.3)

where z ∈ D and x ∈ M with ρ(x) = ρ̃(z). Because of the fact that

∆̃(r2) =
4

η(z)

∂2

∂z∂z̄
|z|2 =

4

η(z)
> 0,

we obtain from (3.3) that the bounded function ϕ = σ(ρ) is strictly subharmonic. This proves

Proposition 3.1.

Combining the Kelvin-Nevanlinna-Royden criteria with Proposition 3.1, we obtain Theorem

1.1 directly. There are lots of complete manifolds that satisfy the conditions in Theorem 1.1,

but not the conditions of Greene and Wu’s. For example, the product manifold D ×D (here

D = {z ∈ C | |z| < 1} with the Gauss curvature K(x) ≤ 0 and K(x) = − 1+ε
r2(x) log r(x) outside

a geodesic ball for some ε > 0, where r(x) stands for the geodesic distance from O to x in D)
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does not satisfies Greene and Wu’s condition, but it admits the sectional curvature ≤ 0 and the

Ricci curvature ≤ − 1+ε
ρ2(x) log ρ(x) outside a geodesic ball. Hence D ×D is nonparabolic by our

criterion. This indicates that our new criterion is more widely useful than that of Greene and

Wu’s criterion. Finally, we believe that the new version of the Laplacian comparison Theorem

2.2 deserves to being applied in the study of the structure of Kähler manifolds with nonpositive

bisectional curvature.
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