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On the Radius of Analyticity of Solutions to 3D
Navier-Stokes System with Initial Data in LP*
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Abstract Given initial data ug € L? (R?) for some p in [3, 1—58 [, the auhtors first prove that

3D incompressible Navier-Stokes system has a unique solution u = ur, +v with ur, d:ef etAuo

and v € L>=([0, T); Hgfg) N L]0, T]; Hgfg) for some positive time 7" Then they derive
an explicit lower bound for the radius of space analyticity of v, which in particular extends
the corresponding results in [Chemin, J.-Y., Gallagher, I. and Zhang, P., On the radius of
analyticity of solutions to semi-linear parabolic system, Math. Res. Lett., 27, 2020, 1631—
1643, Herbst, 1. and Skibsted, E., Analyticity estimates for the Navier-Stokes equations,
Adv. in Math., 228, 2011, 1990-2033] with initial data in H*(R®) for s € [%, 2[.
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Littlewood-Paley theory
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1 Introduction

In this paper, we investigate the radius of space analyticity of solutions to the following

three-dimensional incompressible Navier-Stokes system with initial data in LP(R®) for some

p € [3, 1—58[:
du+u-Vu—Au+Vp=0, (tz)eR"xR?,
divu =0, (1.1)
u|t:0 = Uo,

where u = (u',u?,u?) denotes the velocity of the fluid, and p the scalar pressure function,

which guarantees the divergence free condition of the velocity field. Such a system can be used
to describe the evolution of a viscous and incompressible fluid.
The study of analyticity of the solutions to Navier-Stokes system originated from Foias and

Temam [6], where they studied the analyticity of periodic solutions of (1.1) in space and time
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with initial data ug € H'(T®). The result was later extended by the authors in [3, 12, 13] to

that: There exists a positive time 7' so that
9 T
[t (swpela o)) g+ [ [ jepev e, o) deat < .
RS t<T o Jrs

which in particular implies the strong solution of (1.1) with initial data ug € Hz (R?) is analytic
for positive time ¢, furthermore, the radius of analyticity R(u(t)) is greater than v/¢. With initial
data ug € H*(R?) for some s €] %, 3[, Herst and Skibsted [10] improved the instantaneous radius

of analyticity to that

— )
llingglf \/ﬁ >/2s— 1. (1.2)

In the critical case when s = 5, an explicit lower bound of the radius of analyticity was obtained
in [5], which in particular implies that }1_13(1) w = 00.

On the other hand, with initial ug € LP(R®) for some p €]3, oc], the local well-posedness of
system (1.1) was proved by the authors in [7, 14]. The critical case when p = 3 was proved by
Kato in [11]. Gruji¢ and Kukavica [9] investigated the space analyticity for such solutions of
Navier-Stokes system and obtained similar result as that in [6] for the periodic case.

The goal of this paper is to study the instantaneous smoothing effect, especially the instanta-
neous radius of space analyticity, of solutions to (1.1) with initial data in LP(R?) for p € [3, B,
which was constructed in [7, 11, 14]. We remark that the main idea in [5, 10] depends heavily
on the Hilbert structure of the solution space. Therefore the idea in [5, 10] can not be directly
applied to the case with initial data in LP(R?).

Before proceeding, we denote u, def e'®ug. Then we write the integral formulation of (1.1)

as follows

u=uy, + B(u,u) with B(u,v) det

t

/ I=)APY . (u @ v)ds, (1.3)
0

where P % Id+V(—A)~ldiv designates Leray projection operator. In what follows, we denote

vy~ ur,. Then by virtue of (1.3), we obtain
v = B(v,v) + B(v,ur) + B(ur,v) + B(ur,ur) (1.4)

for the bilinear operator B(-,-) defined by (1.3).

In [15], the second author proved that for ug € L3(R®), v defined by (1.4) belongs to
L([0,T); BY _(R*) N L*(J0,T[; B} _(R?)) for any T < T*, which is the lifespan of the
solution u cozstructed in [11]. One rr21:ay check Definition A.2 for the definition of the function
spaces. We are going to prove that v € C([0, T]; Hz (R*)) N L2(J0, T'[; H 3 (R?)). Indeed the more

precise definition of function space that we are going to work with is defined as follows.
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Definition 1.1 Let ' > 0 and p € [3,00[, E,(T') is the space of homogeneous tempered

distribution u which satisfies

def

fullzy oy ol 5, + il s, < oo
where for q € [1,00] and s € R,
Julzg ey < (2 1Al 1)) (1.5)
L%.(H?) —~ J*lLe L2y ) - .
JE

One may check the basic facts on Littlewood-Paley theory in the Appendix.

Our first result states as follows, which in particular improve the corresponding result in
[15].

Theorem 1.1 Let ug € L”(RB) with 3 < p < 1—58 be a solenoidal vector field. Then for
p = 3, there exists a positive time T, whereas for p €]3, %[, there exists a sufficiently small

constant cg, such that for any T satisfying

T uol| s < co with v %' ]% (1.6)

system (1.1) has a unique solution u = ur, +v with v € E,(T).

Next inspired by [10], we are going to investigate the radius of space analyticity of v df uU—ur,
with ug € LP(R?) for some p € 13, % [. The main result states as follows.

Theorem 1.2 Let ug € LP(R?) with 3 < p < £ and A At VTR, Let u = ur, +v be the

unique solution of (1.1) determined by Theorem 1.1. Then for any e < e1, there exist constants
t1 = t1(g, |uol|Lr) and c1 = c1(e, ||uol|Lr) such that

eV =52V, gy

H

2=

<cit™  for any t € [0, to). (1.7)

5.6
2 p
In particular, we have

lim inf 29400) o 2 (1.8)

=0 /|tlnt] — Vv

Remark 1.1 It follows from Sobolev embedding theorem that H®(R?) < LP(R?) for s =
3(% — %) We observe that

2
V2s — :\/j with’ydzefi,
gl p—3
so that (1.8) is consistent with (1.2) in the case when p €]3,2[. Theorem 1.2 in particular

improves the regularity of the initial data in [10].

Finally motivated by [5], we consider the case when p = 3, which is the critical regularity

of the Navier-Stokes system.
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Theorem 1.3 Let ¢ €]2,00[, ug € L*(R*) and u, 1, def e"Bug. Let u = up, + v be the
unique solution of (1.1) determined by Theorem 1.1. Then for any 0 < n < & < &9, there exist
constants ta = ta(e, n, ||uo||Ls) and ca = ca(e,n, ||uollrs) such that

2=(=o)nfjuy el 1 )} 34
Je B (o), e for anyt € [0, ta), (1.9)

3 =

which in particular implies

R(v(t
lim inf — (v(®)) _ >, (1.10)
=0 ti(_ln”un’LHqu(B% ))5
t 3,3

Remark 1.2 Tt follows from [1, Theorem 2.40] that L3(R?®) < Bg)g(R3), so that
fimg sl 4 =0 (1.11)
which together with (1.10) ensures that
R(v(t
oy B0
t—0 t2
In the rest of this paper, we shall always use the convention that: For a < b, we mean that
there is a uniform constant C, which may be different on different lines, such that a < Cb.
Let us complete this section by the sketch of this paper.
In Section 2, we shall present the proof of Theorem 1.1. Section 3 is devoted to the proof of
Theorem 1.2. In Section 4, we shall present the proof of Theorem 1.3. Finally in the Appendix,

we shall collect some basic facts on Littlewood-Paley theory.

2 The Sobolev Regularity of v

This section is devoted to the proof of Theorem 1.1. The main idea of the proof is inspired by
[15]. Indeed due to p € [2, oo[, we first deduce from [1, Theorem 2.40] that LP(R?) «— Bg)p(Rg),

tA

so that for uy, def e"“uy, it follows from Lemma A.2 that

1Ajur e ey + 2% 1 Ajurll Ly ey S [1A5u0ll e
S cjiplluoll e (2.1)

Here and all in that follows, we always denote (¢; ) ez to be a generic element of ¢"(Z) so that

> ¢}, = 1. For simplicity, we shall always denote (c; 2);ez by (¢j)jez in the rest of this paper.
jEL
The proof of Theorem 1.1 will be essentially based on the following three lemmas.

Lemma 2.1 Let ug € LP(R3) with p € [2,4[ and B(-,-) be the bilinear operator determined
by (1.3). Then there holds

IB(ur, ur)lle, ) < lluollZe. (2.2)

where the norm || - || g, () is defined by Definition 1.1.
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Proof We first get, by applying Bony’s decomposition (A.3) to ur ® uy, that
ur, Q@ ur = 2TuLuL + R(UL, uL).

Considering the support properties to the Fourier transforms of the terms above, we have

A TuLuL Z A 1uL®Aj/uL)

<4
li—3"1< N (2.3)
AJ(R uL,uL Z A /uL®Aj/uL).
j'>3-3
Due to p € [2,4[, by applying Lemma A.1 and (2.1), we find
6_3 ~
1A (R(ur,ur))ls 2y < <2672 Z [Ajrurllnse @l Ajurllp v
§>5-3
6_3) _
< 2072 fu 3, cjr.527"
Jj'>j—=3
6_1y;
< ¢1,525 1 Juo 2.
While observing that due to p € [2,4][, one has
(6-3) 6_3y;
||5'/—1uL||L S D0 25 DY A sy S €5.p2% 2 uol| L,
<j—2
from which and (2.1), we infer
18 (Tupur)lprey S Y ||5j/—1uL||Lm(Lp_2;L2)||Aj'uL||L1T<Lp)
li—i"1<4 ’
6_1y;
< €520 Juo| |2,
As a result, it comes out
18 (uz ®ur)loywe) S €52 uol s
J T( ) 7 32
< ¢;20 7 luo|13,, (2.4)

where in the last step, we used again the fact that p < 4.
On the other hand, it follows from (1.3) and Lemma A.2 that

t .
185 (Blur u)Olle 27 [ eI A un © ur) ()12 ds,
0
which together with (2.4) ensures that

14;(B(ur, wr)llLge 22y + 227118 (B(ur, wn)lles 2y S 2214, (ur @ wr)llyz2)

6 _ 5y,
< ;2672 |ug|3,,

which together with Definition 1.1 leads to (2.2), and we complete the proof of Lemma 2.1.
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Remark 2.1 It is easy to observe from the derivation of (2.4) that
_3,
18 (ur @ ur)llLy 2y S €27 luollslluclizy sz ),
from which, we deduce that

1B(urs ur)llgs(ry S luollsllucllzy sz -

def p

Lemma 2.2 Let v,w € E,(T) with p € [3,6]. Let v = . Then there holds

1
1 B(v,w)lle, 1y ST vl e, mlwle,

Proof By applying Bony’s decomposition (A.3) to vw, we write
vw = Tyw + Tyv + R(v, w).
In view of (2.3), we get, by applying Holder inequality, that
1A (Tow)ll L1 (z2) < Z 1S =10l e (pooy [ A wll L1 (2

6 _ 9y,
< Y 2G2Sl L peoy Wl -

However due to p < 6, it follows from Lemma A.1 that
3y 6 _1)5
1Sy —10llzge 2oy S > 2240 Az 22y S 20 V||l g,y
1<j—2
As a consequence, we obtain

(g_

e
1A (Tow)llLs z2) < 2 |lo| g, () 1wl &, () -

Similarly, we obtain

1211y,
205 20|l g, ) || )

A (Twv)llLy.(z2) S €52
Whereas we get, by applying Lemma A.1, that

Y ~
125 (R, w))ll a2y S 227 Y 1A 0l o | Ajawll oy 2

j'>j—3
3 12 oy
S 2% Z CJ’Q(" K vl &, () llwll £, (1)
j'>3—3
12 1 .
< ¢;25 T ol g 1y |wll 5, (1) -

Therefore we obtain

B_i
12 (vw)ll Ly 12y S 27 =2 ol g, o llwl s,y

(2.5)
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Thanks to (2.8), we deduce from (1.3) that

j ! —c(t—s)2%
18,(BE ) ywn < 2| [ e 18,00 w)(s) e,
T
il ep92i
S 2T e | g 1850 @ Wl e

1 (929 _6)y,
<S¢ 772770 || g, o Wl g, () - (2.9)

On the other hand, due to 3 < p < 6, it follows from the law of product in Besov spaces

(see [1] for instance) that

||vwllioo(Hgf%) S ||U||Zw(Hgfg)||w||Zm(Hgfg),
T T T
which implies
12 7ys
1A (vw)[ e 2y S Cj2( B z)jHU”Ep(T)Hw”Ep(T)v

so that we deduce from (1.3) that

j ! —c(t—s)2%
I18/BE g e 2| [ A w o)l ds,
T
T
ST [le " | 211 (v @ w)llLge(r2)

1 _(5_6y\,;
< T2 g, oy Wl 5, () -

This together with (2.9) ensures (2.6), and we conclude the proof Lemma 2.2.

Lemma 2.3 Let ug € LP(R?) and v € E,(T) withp € [3, % [, then one has

1
[B(ur, v)llg, ) S T [JuollLe vl e, (1)- (2.10)

Proof In view of (A.3), we write
vur, = Ty, v+ Tyur, + R(v,ur).
Yet it follows from Lemma A.1 that

EY) 2
ISj-1urllpzriroey S Y 27 1ALl 2o 10y S 277 luo]l Lo,
0<j—2

-3 SRt
||Ajv||Lp—2¥Lz(Lz) S AN L (1) 1A50N Ly (1) S €272 7 |lvll sy (),
T

so that we deduce
1A (Tl 2o S > 1Sy —aunll e o) 1850 20
L) S ! Ly (L?)

(T _6y,
S 27T uo | Lo 0]l s, ().
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Along the same line, we infer

35 ~
185 (Rlur, o) gy S257 30 85wl 1850l s,

2 (12) Pt 7
3 _(I_3yi
S200 Y 2T uo| ool s,
J'25—-3

(I_6y,
S 270 lug| ool s, ().
Finally, due to p < %, we have

3
S Z 29| Agv|| oo (12)

[1Sj—1vll 2o
Ly@e=2) =, 50,
< ) < n.9(3—3)J
S Z 2l 3-gy S 2 0l 8-
0<j—2
so that by applying Holder inequality, we find
A (T, ury, 2 ,S S‘/_lv 2 A'/UL 2
R I D S PR L
_(T_6yi
S > 2B ullg, ey luoll e
[7—3"1<4
< 9= (5=%)j
S 272 ol e ||vl &, (1)
where we used the fact that
e pas
. < . P X P
||AJUL||L§+&3(LP) ~ ||AJUL||L%<>(LP)||AJ“L||L1T(Lp)
$ 2770 uo o
As a consequence, we obtain
_(I_6Y;
120 @ur)| 2z S e2”F T luo) ool - (2.11)

Ly
Then we get, by a similar derivation of (2.9), that

14;(B(ur,v)llLge L2y + 27|85 (B(ur, )l (22)

S 204 (ur @)Ly (12

(L?)

4 (5 6,
S T 270 lug|| o 0|, 7).

< 9T A
SYTHIA s 20| 2

from which and Definition 1.1, we conclude the proof of (2.10).

Remark 2.2 It follows from the proof of (2.11) that

_3s
18 (Tupv+ Rur, v) L2y S 272 ucll., 1 [lollg,m),
LT(B3,3)
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3,
18 (Toun)ly oy S €2 Fllurlzy s 1ol 5,
from which, we infer

1Bz, )y < (el - luslizy g el oy (2.12)

With the above lemmas, to prove Theorem 1.1, we also need the following lemma from [4].

Lemma 2.4 (see [4, Lemma 2.1]) Let X be a Banach space. Let L be a continuous linear
map from X to X and B be a bilinear map from X x X to X. We define

def def
ILllecx) = sup Lzl and [|Blsx) = sup  [|B(z,y)].
[lz]|=1 llell=llyll=1
If IL|lz(x) < 1, then for any x¢ in X such that
(1= |ILllex))?
lzollx < —m7—> (2.13)
4| Blls(x)

the equation
x =uz9+ Lz + B(z,x)

has a unique solution in the ball of center O and radius %.
B(X)
Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Let us take X % E,(T), which is defined by Definition 1.1, we

denote

Lvd:efB(v,uL)—i—B(uL,v) and x9 = B(ur,ur). (2.14)

We first consider the case when p € ]3, % [ Then it follows from Lemmas 2.1-2.3 that
1 L
[zollx < ClluolZe, |IBllsx)y <CT> and ||L]zx) < CT [|uo] e

for 7 determined by (1.6). So that under the assumption that T3 lluollzr < o for some ¢
sufficiently small, there holds CT= |uollL» < 1, which ensures (2.13). Hence we deduce from
Lemma 2.4 that (1.4) has a unique solution v in E,(T"). Then by virtue of (1.3), u = ur + v is
the unique solution of (1.1) on [0, T].

While for the case when p = 3, we deduce from (2.5), (2.6) and (2.12) that

lzollx < Clluollwslluclizy sz ) I1Bllsx) <€ and
1Ll (x) < C(||UL||Z6T(B§3) Fllurllzy sz ,)-

Yet it follows from (1.11) that there exists some positive time T so that
1

1
Cllucll, 3 +lucllzyg,) <5 and C2HU0HL3||ULH51T(B§YS)Sﬁa

L5 (Bfa)
which ensures (2.13). Hence we deduce from Lemma 2.4 that (1.4) has a unique solution v in
E5(T). Then by virtue of (1.3), u = uy, + v is the unique solution of (1.1) on [0,T]. We finish
the proof of Theorem 1.1.
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3 The Radius of Analyticity of v for p € }3, 15—8[

In this section, we shall investigate the radius of analyticity of v def o — uy, with initial
data ug € L? (Rg) for some p € }3, % [, namely, we are going to present the proof of Theorem
1.2. The main idea of the proof is inspired by [10]. In order to do so, we first introduce the
functional space we are going to work with.

Definition 3.1 Let A & V=A, let \,T > 0 and ¢ €]0,1]. We define the norm of the

functional space F;,(T') as

) & et I

22 AL A
llls Leqd-d, T TSI L, e )

where the norm of qu(HS) is defined by (1.5).
We start the proof of Theorem 1.2 by recalling the following lemma from [8].

Lemma 3.1 (see [8, Lemma 6.2.7]) Let m(§) be a complex-valued bounded function on

R™\{0} that satisfies for some A < oo,

([ leem(@Pa)” <ars-
R<[¢|<2R

for any multi-index |a| < [§] 4+ 1 and all R > 0. Then for all 1 < p < oo, any f € LP(R"), we

have
[m(D)fllzr < Cnmax(p, (p— 1)™")(A+ [[m|ze)|| fl| -

Thanks to the above lemma, we are going to derive the following estimate for the heat
semi-group acting on ug.

Lemma 3.2 Let n > 0 and w1, def e"Pug. Then for any n < e, there exists a positive

constant Ce ,, so that for any £ € Z,
A%t ozt g o2t
||e 11-e) Te" VT AguLHLP < CEWHA[UJ”)LHLP < C’sme ent2 ||AguOHLp. (3.2)

A2 t
Proof Let us denote m(t, &) def o~ a=sy + ARl - (1-mtlel”, Observing that

T+ Al — (= i = (A~ VISR + (- el

Due to n < ¢, one has
[[m(t, )L < 1. (3.3)

While observing that for ¢ € R*\{0},

t &

0cm(1,) = m(t ) (A= i = 201~ i),
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Notice that < €, one can always find § > 0 so that (1—¢)(1+8)?—1+n < 0. Then we deduce
that

EllVm(t, €)] < A%|§|e“”ﬁ‘%-Wﬁ:ﬁ—mﬂﬂwﬂﬁlfe<<1—5><1+6>2—1+n>t\s\2
VT
21— n)ﬂﬂze—(s—n)t\&\?e—w%\/%—Fl—sﬁw
< Cepe (3.4)
Similarly for £ € R"\{0},
t &
VT €]
i &
+ /\\/—Tafj (E) —2(1- 77)755ij),

from which, we deduce that

2(1 - W)tfi) (/\ L&

Og, e, m(1,€) = m(t, ) ((A TRy 20 - 0i)

t t 2\ _sat
2|72 A= 1€l
V2m(t, )] < C(A—=le + (A= lel) e o
[EI7 [V m(t, )] \/Tlﬁl ﬁlfl
+ C((L = mHE + (1= )P [g| e (e Her
< Cepe (3.5)

By combining (3.3), (3.4) with (3.5) and then applying Lemma 3.1, we conclude the proof
of (3.2).

Remark 3.1 In the rest of this section, we always take 7 in Lemma 3.2 to be 5.

Then the key ingredients used to prove Theorem 1.2 will be the following lemmas.

Lemma 3.3 Let ug € LP(R®) with 3 < p < 4. Then there holds

)\2
IB(ur, ur)lgs(r) < Cee™ 3 ||ug||Z,- (3.6)

Proof Let u} def e’\ﬁAuL. Then in view of (2.3), we get, by Holder inequality and the
convex inequality that [£| < |€ — (] +|¢|, that

2
||e‘z<?775>%eAﬁAAj(TuLUL)HLlT(Lz)

< A2t A
S Z ||e 4(1—e) TSj/_l’U,LHLOO
T

A2t A
p_2;L2)||e =T Ajug| Ly ey
li—j'1<4

(L
However due to p < 4, we deduce from Lemmas A.1 and 3.2 that

2 2
le™ @S qup | S 20T e F A 1 )
F(Er?) 0<j’
<j' =2
<Co > 257" A s o)

<5 —2
3

< Cecj p27 ™2 |fug| o, (3.7)
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where in the last step, we used the fact that p < 4.
Similarly, we have

A2 s _
le™ 3= T Aju || 3 (1) < Ce27%¢;pluoll Lo

(3.8)
Hence we obtain
_AZ ozt gy 6_ 7Y
le™ 2= T VT AN (T, ur) || Ly (z2y < Ce2 75 ¢; pfuol|7-
Along the same line, we deduce from (2.3) and Lemma A.1 that
2
o™= F AT AN (R(ur, ur)) 1y 12)
6_3 A% ¢ A2~
<2673 3" Jlem a1 A || Lo lle” T T Ay |y 1oy
j’>j 3
Q § ’
p 2) Z Cj p2 % ||’U,0||%p
3'>j—3
6_1y.
< Cetj 52073V |luol
Hence for 3 < p < 4, we obtain
_2Z ot a_t g 6 _Ty;
le™ 205 TN (ug, @ up)| py (r2y < Coe;20 2 [lug|| 7. (3.9)
On the other hand, we observe that for any ¢ € [0, 1]
2
o= Fem AT A 1o < | £ 2 (3.10)
from which, we infer
H/ T (- IANTABYA (uy, © ur)(s) ds |
</ o™ Tom T o= (1= (1=9) 42 A A —e(t—s) A2
X e A9 =5 TATAPVA, jur @ ur)(s)| L2 ds
t 1 . S S
5 / e4(1—5)Te_s(t_5)22]2j||e_2(l)\—e)TGAWAAJ‘(’U,L ®’LLL)(S)||L2 ds. (311)
0

Thanks to (3.9) and (3.11), we deduce that

o~ AT A0 (Bug, up)l 22y + 29”05 SR A0 (Blug, up))llps 2
<e4(1 €)2J||e 2(1 s)

= )\
VAN (ug ®ur)L1 (L2
< Cue;25 I |lug 2,

which leads to (3.6). This completes the proof of Lemma 3.3.

Lemma 3.4 Let v,w € §;(T') with p € [3,6[. Then for v determined by (1.6), one has

A2 1
|B(v, w)||3s(r) < CeeT =T [0l 32 (m) [wllgs (1) (3.12)
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Proof For simplicity, we shall denote v*(¢,z) df e’\ﬁAv(t,x). By applying Plancherel

equality and convex inequality that || < |€ — | + [¢], we write
2
o™= 7 M AA (Tw)ll 1 1)
_LL _Li
S Z |e”*@=o TSj’—l”’\||L;9(L°°)||€ 1=e TAj’w’\HLlT(Lz)-

li—3"1<4

Yet due to p < 6, we get, by applying Lemma A.1 and Definition 3.1, that,

A% 3p — A% ¢ 6_1);
lle 4(175)TSj’—1/U>\||L%°(L°°) < Z 23€He 4(17€)TA€U)\||L%O(L2)§2(F’ DJHU”S;(T%

~

<4 -2

so that

__ 2%t ozt g 1211y,
le™ == T VTN (Tyw) || pr 12y S 5207 ~ 2 0l 5s ¢y w7 -

~

Similarly, we have

12 1

e~ =50 F AN (Tuv)l 1y 1) € 520%™V Jollgs ey el (-
Whereas it follows from Lemma A.1l that
e T F AL AN (R0, w)) |11 (1)
<2 3 e T F A g lleT T F Byt 1e)

J'23=3

35 12 gy
<o S 02 g oy il o
§'>j-3
12 11y,
< 205 o] o oy ol g -

As a consequence, we deduce from (2.7) that
_ A2t ozt g 1211y
le” 7= TeMVTAA (v @ W) pr 12y S ;207 T2 )JHU”S;(T)HMHS;(T)' (3.13)
Along the same line, one has

2
||e_ﬁ %e)\ﬁAAj (v® w)”L;’?(Lz)

(3.14)

_6 .
P

)

~ -] 5_6

< 6-2(%_%””6_4(7&5)%GX#AML 5. 6 ||e_4(?7fg)%e>‘#‘4w||~
LyE(a? ) L

i
Then we get, by applying (3.10), that
2 t
o™ =T F XA (B(o, w)) (1) 2

t 2 4. t—s
e
0

D CR S I
X e 11— Te VT ]P’VAJ‘(’U@U})(S)HLQ ds

2 t o 2 .y s
5eﬁ/ e=(t=92% 9i | T-T F A VTAA (v @ w)(5)]| 2 ds, (3.15)
0
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which together with (3.13) implies

2
le™ =5 T VA A (B (v, w)) | 11 (122)
A

2 ) 2 R
5 e4(f\75) T% ||e_5t22] ||L§ ||e_2<?*5) %e \/”TAAJ‘ (’U X w)||L%(L2)

T
. 2
< Ce;2” BT T |lu] g o | 5
As a result, it comes out

At 122
le” 502 T ABv,w)|, S CT7e 09 |[v][gs (m) lwll 35 (7). (3.16)

Li(H
Similarly, we deduce from (3.14) that
2 ¢ t
le™ T T AT AN (B(v, )| (z2)

‘/ e(t—s)2% 27||e 2(1 e)Te f A (vw)(5)||L2 dS‘L

< e4(1 6)
T

1 402 R GRS}
,S 64(1*5) QJT’Y ”e et2°7 ||L§ ||e 2(1—¢) ;e VT Aj(’U’w)HL%O(Lz)
5 . 2
< Cocy2” B BITT 309 |[0]| 32 () [[w 55 (),

which implies

A= 1 A%
le T ENTAB | 5 s < CTF 0 ol gy ol -

L2 7)
This together with (3.16) ensures (3.12), which completes the proof of Lemma 3.4.

Lemma 3.5 Let v € 5 (T) and ug € LP(R®) with 3 < p < 8. Then there holds

I
1B(v, ur)lgs(r) S CT27eT0=9 [[uol| e vl (T)- (3.17)

Proof By applying Holder inequality and Plancherel equality, we find
2 + o
||e_ 2(1>\—€) T e)\ ﬁAAj (TU’LLL) ||L§-(L2)

% ¢ A A% ¢ A
< Z le” =TS, v ||L%O(L%)||e =T Ajug Ly (Lr)-

~

l7—3"<4

Due to p < %, we deduce from Lemma A.1 that

A2t A 3y A% A
||e 4<1*E)TSj/_1v ||LOo LP_Z*% 5 Z 2» ||e =T Ayv ||L§S’(L2)
Furn Y
9_5 9__5y)5
Z c2'r 2>£||”||S§(T)§Cj2(p 2)J||U||s§,(T),
<5/ —2

from which and (3.8), we infer

9

I _ 9y,
le” 309 TGAﬁAAj(TvUL)HLlT(p) < Cec;2% 72 |l Lo |0l 55 7 (3.18)
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Similarly, we have
o™= T AVEAA (T )|t (1)

2
< > ||e-—4ufs>fsj,_luLnL%o(Lw)||e-—4<?fs>%Aj,vAHLlT(p).
l7—3"1<4

While we get, by a similar derivation of (3.7), that

2% ¢ N Bp, ——A2 ¢ N
e T TSy _1u) |l pee(pey S Z 27 ]le” T3 T Agu || Lo (1)
<4 -2

S Cecyp20 |luo] v,
which together with Definition 3.1 ensures that
e = A VTAN (T, 0 Oy 2y S Coei25 ™2 flug o 055 (-
Whereas we get, by applying Lemma A.1, that
e F AT AN (R, 0) 1 1)

% — i AL — gt A
$29 Y 1o gl T ey
j'>j—=3
SCE2%j Z chQ(E_%)j,||uO||Lp||U||3;(T)
Jj'zj—3

9 _9y)4
< Cec; 2578 |lug | Lo |vll s (1)

- . . . . 18
By combining (3.18), (3.19) with the above inequality, we achieve for 3 <p < ¥

2
o™= VTN (ur © 0) g 3) < Ceci257

Similarly, for 3 < p < %, we have

2
||e_ﬁ%ek#AA‘(UL®U)||L°°(L2>
2_3) A=
< Ceeg20 ™ ugllpo o™ WA T L gy

Then by virtue of (3.10), we infer
H/ oIS F (A A APY A (v ®ur) dsH

o 2
< efio EJ/ o e(t=92 gi|le ™20 T A VF AN (0 @ g )| 2 ds,
0

which together with (3.20) ensures that
2 4 t
||e_4<1A*E) Te)\ﬁAAj (B(’U, UL))HL%,(Lz)

2 . R 2 s s
S eTATH o™= ||y 27|le” T TAMVFAA (0 @ ur) 11 (12
Lp+3 T

T

lfuol| o |0l 55 (7)-

763

(3.19)

(3.20)

(3.21)
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. 2
< Cec;2G3 DT T |lug Lo |oll3; (3.22)
for v being determined by (1.6). Therefore, we obtain

2 2
e T TV B(o, ur)| - < C.T% e ug|| o [0l 55 (1)- (3.23)

.9_ 6
Lyt

)

Along the same line, one has
__ 22t oata
le” T = Te VT A;(B(v,ur))| L (z2)
DI _ 27 ; __ 22 s A—=_A
S eTITH o2 gp Vo™ T TN (0 @ us) 1 e
. 2
S Cee;25DITH 07 ug| o 0]l
which implies

2
e T T VT B (v, ug)| -

1A%
et 8 S CeT27eT09 [[ug|| e[|l 32 (1)
T

6
D)
This together with (3.23) ensures (3.17), and we complete the proof of Lemma 3.5.

Now we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Once again we are going to prove Theorem 1.2 via Lemma 2.4.
In order to do so, we take X = §7(7'), which is determined by Definition 3.1. Let L and z¢ be
determined by (2.14). Then it follows from Lemmas 3.3-3.5 that

a2
lollx < Ceet= luollZ,.
2
|Bllax) < C.eT=T7

A2 1
Ll ecx) < CeeT=aT27 [|ug|| -
For T' < 1 and c sufficiently small, we take T to be so small that
A2 1
CeT=T27 ||lul|r = c. (3.24)

Then we deduce from (3.24) that
2(1 -
)\d:ef\/(ig)ln|T|+ln
v

It is easy to observe that under the condition (3.24), there holds (2.13). Then we deduce from

_— 3.25
Colluoler (3.25)

Lemma 2.4 that (1.4) has a unique solution in v € §(7'). In particular, for T' < t1(e, [[uol|z»)
small enough, it follows from Lemma 2.4 and (3.1), (3.25) that

2 — 2
o T oV T gs < 22; ¢TI T
£

5_
2

3o

which implies (1.7).
Since (1.7) holds for any e > 0, we deduce (1.8) from (1.7). This finishes the proof of
Theorem 1.2.
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4 The Critical Case p = 3

The goal of this section is to present the proof of Theorem 1.3. The main idea is again to
use Lemma 2.4. In order to do so, we first introduce the functional space we are going to work

with.

Definition 4.1 Let e €]0,1[, T > 0 and 2 < q < co. Let A At TR, We define the norm
of the functional space &3 (T) as

def \ 2%t At a .
lullogr) = e ™7V ully yy) +lle” T T u|\~ o by (4.1)
where the norm || - HZ“T(HS) is given by (1.5).

In the rest of this section, we always fix some ¢ €]0,1[, 0 < 7 < € and ¢ €]2,00[. Then the

key ingredients used to prove Theorem 1.3 will be the following lemmas.

Lemma 4.1 Let up € L3(R?) and u, 1, def e"Aug. Then there holds

)\2
1B(ur,ur)|e:(ry < Cene™=9 uy,r|? (4.2)

!

24(By'3)
_t_

Proof As in the previous section, we still denote u} def e*vF4u,. Then in view of (2.3),

we get, by Holder inequality and convex inequality that || < [€ — (| + [¢], that
2
o™ =0 F AT AN (T, ur) g n)

G A S S A
< Z e 4(14)TS"—1“L||L2T‘1(L6)||9 4(1*€>TAj’uLHL2Tq(L3)'
l7—3"<4

It follows from Lemmas A.1 and 3.2 that

a2 N < AN G A
He 4(1—5)TSj/_1UL||L§Q(LG)N Z 22He 4(1—5)TA€’U/L||L§§(L3)

<5 —2
< Cepy c322 ™ )||Un,LH~
Z Bshy
Lo(3=2)i
< Ca7an732 HU L”Z%(Bs;,s)’ (4.3)
where in the last step, we used the fact that ¢ > 2.
Hence we obtain
2
le™ 7= T AVFAA (T ur) |l g 22y < Cone 23 D uppl®, )
" L2(By)

Along the same line, we deduce from (2.3) and Lemma A.1 that
2 ¢ t
||e_2(1A75) Te)\ﬁAAj (R(UL, UL))”L%(L?)

j 2?2 ¢ S G
<22 Z [le”7a=2) TAJ’“%HL?(LS)HG 4“’5>TAJ’U%HL2TQ(L3)
Jj'2j—3
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Sos,nz% Z Cj/2_§j/||un,L||2~2 L1
>33 L1'(Bg's)
< Comei2 ™V upl?, s

T2
LTq(BSq,S)

Hence for 2 < g < oo, we obtain

2 .
le™ 0 T A VEAA (ug, @ ur)| a2y < Cenei2F ™ luy Ll (4.4)
L3 (Bgly)
Therefore thanks to (3.11), we infer
2
le 0= T AN (B(ur, un)) | Lz o)
2 ) . 2 s
5 64({\*5) 2J||e—st22j || e ||e_2({\7s) Te)\\/STAAj (UL ® ’UJL)”L%(LZ)
Li
R 2
< Cepei272e 09 Jlug |17 1 (4.5)
7(B4y)

Along the same line, one has
R At A
le” 3= T e VT AG(B(ur, uL))l Ly 22)

22 . _ 27 _ A2 s A=A
<eti-227|le t2 ]||L1T||e 30-9 T VT Aj(ur ®uL)”L9F(L2)

)

2
o= G+Digs 2
< 22 edi=s) ||“n7L||~2q .1
LT (BS,S)

which together with Definition 4.1 and (4.5) leads to (4.2). This completes the proof of Lemma
4.1.

Lemma 4.2 Let v,w € &(T). Then one has

)\2
1B, w)lles(r) < Coe™ [[0llesz (7 0] 2 - (4.6)

Proof Once again we denote v(t, ) fef e)‘%Av(t,x). By applying Plancherel equality

and convex inequality that || < |€ — ¢| + ||, we write
2
o™ =05 F X ITAN (Tyw) g, 1)

_LL _Li
< Z e 4(14)Tij—lv’\||L2Tq(Loo)||e 4(17€)TAj,w>\”L2Tq(L2)'
li—3"1<4
Yet by applying Lemma A.1 and Definition 4.1, one has
A2 ¢ 3 A2 1N,
- A 30— % A -1
le™ =0T S 10| 2oy S Y 22T T T A ||L2TQ(L2)5cj2< D [v]| e (1),

0<j'—2
so that

A% b oyt g 1_2yu
le™ 2= T VT AN (Tw)| Loy S Y, €227 D7 [v]les iy lwllos )
[7—3"1<4
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767
12y
< 207 ol e oy lwll s () -
Similarly, we have
22t oa_tnp 1_2y;
le™ 2= T VAN (Tyv)l| g 12y S €227 7 ||v]lws () [0l ().
Whereas it follows from Lemma A.1 that
2%t ozt g
[e” 2= T " VT A (R(v, w))| 2 (£2)
3 A2 ¢ A2t~
S 2% Z lle” 7= TAj’”)\HLqu(m)He e TAj’w)\HLiq(L?)
J'2j—3
34 —(14+2)4'
$28 Y 27U ol oy llwll s )
J'2j—3
1_2y;
< 207 vl e oy llwll s () -
As a consequence, we deduce from (2.7) that
A%t oa_tp 12y,
le”T=a T VT AA (v @ ) Lo (z2) S 227V vl oe () lwllos (- (4.7)
Thanks to (3.15) and (4.7), we infer
2
o™= F VAN (B(o, w)) g 22
2 t o 2 .
< e ’ e=(t=92% 9i |~ T-T F A VT AN (0 @ w)(5)] 12 ds‘
S ; Le
Az _ 2j __ 22 s A—==A
S et 27| |y [le” 209 T VT OA (vw)| g (12)
_(142y;
< Cees2” 5 ol oy 1wl )
and
2
o™ T F VTN (B(v, w)) | (2
2 t j 2 s s
< ooy ‘/ e S gl T FATTAN, (1 ) (5] 2 |
0 Ly
A2 . 2j A2 s s
ey —et2%7 ~3(1=e) T A=A .
Sett=2|le™® ||L§z—1||e 2= T VIEAj (vw) | 1 (r2)
i
< Ceci27 2 |ullos () |wlles (1),
which together Definition 4.1 ensures (4.6). This completes the proof of Lemma 4.2.
Lemma 4.3 Let v € &(T) and ug € L3(R®). Then there holds
)\2
[1B(v,ur)legr) < Cene® @ luncl_, 1 lvllegm):- (4.8)
LT (B3,3)

Proof By applying Holder inequality and Plancherel equality, we find

2
lle™ 705 T VAN (Tyur )| o cr2)
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< _LL A _Li A
< Z le” 70578, v ||L§5(L6)||e -9 TAj’uL||L2Tq(L3)'
l7—3"1<4
Yet it follows from Lemma A.1 that

G A < O —2 2 by
||e 4(1—5)T84/_1U ||L§q(L6) ~ Z 2 ||e 4(1—5)TAE'U ||L§?(L2)
0<j5'—2

1_1 1_ 1y,
S > e Y ullesry S 6227 olles (1),
1<z -2

from which, we infer
2
le™ 7055 F A VTAN (Tyur) | g, 12

(-2
<Cey Y 25 ulleslluncl,, 2
=37l <4 Lr'(Bsa)

o(3—2)i
< Cener2 Dl ol (19)
Similarly, we have
2
e 7= F AN (T, 0)| g (12

A% ¢ A A% ¢ A
5 Z ||e 4(1—5)TSj/_1UL||L§q(Lw)||e 4(1—5)TAJ-/’U ||L§?(L2)'
li—3"1<4

While we get, by a similar derivation of (3.7), that

22 N T A
|e” == TSj'—1UL||L2T‘1(L°°) S Z 2|e” T TAeuL||L2Tq(L3)
<jr—2

1
< Cep D 2070 uy i

1</ —2

< CE,nQ(l_%)jHun

1
L3 (Bgls)

i,
,LHZqu(B;g)
which together with Definition 4.1 ensures that

22t oa_tg 12y
e T2t AN (T, gy < Con 3 2 D gl s ollogery
=" L' (Bes)

1_2

< Os,r,cj2(7_5)j||Un,L||Z )||U||®g(T)- (4.10)

1
§1Q(B3‘{3
Whereas we get, by applying Lemma A.1, that
2
o™ 2059 7 AT AN (R(uz, ) g (1)

. A2 ¢ A 22 4~ N
<2 Z lle 74(1—5)TAj,uL||L§q(L3)||e -9 T Ay ||L2Tq(L2)

3'23-3
<Cen? 30 20wyl fullescr
en = J n 20(53,) 2(T)
1_2y,
< Conei2 D ugpll 1 [olles ().
Tq(BSq,S)
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By summing up the estimates (4.9), (4.10) with the above inequality, we achieve

__ 2%t ozt g 1.2y,
le™ == T VT A (ur, @ )| L (12) < Cepne;22 ")JHUn,Lszq(Bg )HUH@g(T)-
T 3,3

Then similar to the estimate of (3.22), we infer

2
le™ 7= T A VEA A (B(v, ur) | pe (12

2 . . 2 s
ST e |y e T F NN (0@ ur) g 2

T

. 22
S Cs,ncj2_%e4(lfs> H“n7L||~2q

a1 vllesr
T(BSq,S) q( )

and
2
He_ﬁ%e’\ﬁAAj(B(vaUL))||LqT(L2)
2 j 1 2 %
S eit=a||lem=2 |y 27|l 205 F A VTAA (0 @ ur) 10 (12

9= (5+2)j %
SCa7nC]2 2T alledll=e ”un)LHZi"(B??QHU”QSZ(T)’

769

(4.11)

which together with Definition 4.1 ensures (4.8), and we complete the proof of Lemma 4.3.

Now we are in a position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3 Once again we are going to prove Theorem 1.3 via Lemma 2.4.
In order to do so, we take X = &;(T’), which is determined by Definition 4.1. Let L and xo be

determined by (2.14). It follows from Lemmas 4.1-4.3 that

)\2
loollx < Cene™ flugcl?, , .
L7 (B33)

2
IB|ls(x) < Coe®a,

)\2
L < C.,eT=9 ||u 1.
|| HL‘(X) = Yenm || n’LHZiﬂ(BS%?,)

In view of (1.11), for ¢ sufficiently small, we take T so small that

)\2
Cepe™=9 ||U77,LHZ§5(B§3) =c,

which implies that

A% 11— ) ¢

Cenllu 1
6777” n’LHizT"(BS%?,)

(4.12)

(4.13)

Observing that under the condition (4.12), for (1.4), there holds (2.13), so that we deduce

from Lemma 2.4 that (1.4) has a unique solution v in &¢(7'), which in particular satisfies

2 2
e T ||e’\ﬁAv(T)H 1 < cene” el

2
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Hence thanks to (1.11) and (4.13), there exists some t5 so that there holds (1.9), from which,
we infer
t
lim inf E(v(®) >2vV1 —¢,

t—0 tz( 1n||unLH~2q(B ))%
3,3

which implies (1.10). This finishes the proof of Theorem 1.3.

Appendix A Tool Box on Littlewood-Paley Theory

For the convenience of readers, we shall collect some basic facts on Littlewood-Paley theory

in this section. Let us first recall the following dyadic operators from [1]:

d f —j ~ d f —i ~
Aja = FH e [¢ha), Sja = FH(x(277IE)a), (A.1)
where @ denotes the Fourier transform of a, while 7~ 'a denotes its inverse Fourier transform,
x(7) and ¢(7) are smooth functions such that
Su c{ eR~§<||<§} and > 027T) =1, ¥r >0
pp ¥ T -4_7'_3 ‘<P T)=41, VT )
JEZ
4
SuppxC{TER:MSg} and  x(7 +Z<p2j)—1 VreR.

7>0

Definition A.1 (Besov spaces) Let (p,r) be in [1,00]* and s in R. Let us consider u € Sj,

which means that u is in S'(R*) and satisfies lim ||Sjullr~ = 0. We set
j——o00

def
= [12°1Aull v) jezller @)

oIfs<% (OTSS% ifr=1), we deﬁner,) (R )d—ef{ €S (R | ||ul

e IfkeN andif§—|—k<s< §—l—/c—i—l (0rs< 34 k+1 zfrzl), then weﬁneB;_’T(R?’)
as the subset of u € Sh(R3) such that 0°u belongs to BS k(R whenever |8 = k.
In the particular case when p = r = 2, 3272(}1@3) is the classical homogenous Sobolev space
H5(R?).

In order to obtain a better description of the regularizing effect of the transport-diffusion

B . < 00}.

equation, we need to use Chemin-Lerner type spaces Z’%(Bf”,))

Definition A.2 Let g € [1, +o0] and T €]0, +o0]. If ¢ < 0o, we define Zq(O,T;B;T) as
the completion of C([0,T]; S(R*)) by the norm

T r 1
def s A%
lallzaorsg < {02 ([ 185001, 06)"}

jez

e

with the usual change if ¢ = co. For simplicity, we shall denote H(IHZ"T(B;,T) aHZ‘Z(QT;B;‘,J)'
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Lemma A.1 Let B be a ball of R®, and C be a ring of R®; let 1 < py < p; < 0o and
1< g2 <q1 <oo. Then there holds:
If Supp @ C 2B = 0%l < 271365750 | a| 1o

if Supp @ C 2°C = |la|prr <27 sup [|0%a) Les -
la]=N

We also recall the action of the heat semigroup on distribution with the Fourier transform

of which is supported in an annulus.

Lemma A.2 (see [1, Lemma 2.4]) Let C be an annulus. Then there exist constants ¢ and

C, such that for any p € [1,00] and any couple of (t,\), there holds

Supp @ C AC = [l ul|Lr < Ce ™ |lul| L. (A.2)

To deal with the estimate of product of two distributions, we constantly use the following

para-differential decomposition from [2]: For any functions f, g € S'(R?),

f9="Trg+T,f +R(f,9), (A.3)
where
def dof e i
e e ~ . ~ e
Trg S 8, 1f 00, R(£.9) S AfR9 with B9 37 Ayg.
JEL JEZ jr=j—1
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