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(1+2)-Dimensional Radially Symmetric Wave
Maps Revisit*
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Abstract The author gives an alternative and simple proof of the global existence
of smooth solutions to the Cauchy problem for wave maps from the (1+2)-dimensional
Minkowski space to an arbitrary compact smooth Riemannian manifold without bound-
ary, for arbitrary smooth, radially symmetric data. The author can also treat non-compact
manifold under some additional assumptions which generalize the existing ones.
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1 Main Result

Let N be a smooth Riemannian k-manifold without boundary. Without loss of generality,
we assume that N C R", isometrically. We consider wave maps ® = (®1,-.. ") = &(¢,z) :
R x R? —+ N € R", satisfying the equation

06 = By — A® = B(®)(9q®,0°®) L TeN, (1.1)

where B denotes the second fundamental form of N. Writing z = (t,z) = (z%)o<a<2, We also
let O, = a%, a = 0,1,2. We raise and lower indices with the Minkowski metric n = (143) =
(n*?) = diag(—1,1,1) and tacitly sum over repeated indices.

Due to its mathematical difficulty and important physical background, the topic of wave
maps has experienced an incredible advancement in the past several decades. It has at least two
physical motivations to study wave maps. One is the nonlinear o-model which deals with the
case N is a sphere and on the other hand, vacuum Einstein equations with U(1) x R symmetries
reduce to a radially symmetric wave maps from (1+2)-dimensional Minkowski space to the
hyperbolic plane. It is Prof. Gu [3] who first gave the regularity result in (1+1)-dimensional
case. For an up to date account of the full developments, we refer to the monograph of Geba
and Grillakis [2], as well as [4-5, 8].

The main purpose of this paper is to give an alternative proof of the global existence for
(14-2)-dimensional wave maps with radial symmetry. We may assume that T'N is parallelizable.
Let €1, -+ ,€; be a smooth orthonormal frame field such that at any point p € N, the vectors
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e1(p),- - ,ex(p) form an orthonormal basis for T, N. We make the following assumptions on the
target manifold.

(H1): V,e;(p) is uniformly bounded,

(H2): V,B(p) is uniformly bounded.

We note that those assumptions are in particular satisfied for compact manifold.

The main result of this paper is the following.

Theorem 1.1 Let N C R"™ be a smooth Riemannian manifold without boundary. Assume
(H1)—(H2) satisfied for N. Then for any radially symmetric data

(Bg, ®1) = (Po(r), 1(r)) € C°(R:,TN), r=|z|, (1.2)

there exists a unique, smooth solution ® = ®(t,r) to the Cauchy problem (1.1) and (1.2), defined
for all time.

Our result slightly generalizes the work of Christodoulou-Tahvildar-Zadeh [1] and Struwe
[6-7].

As usual, the proof of Theorem 1.1 is divided into two main steps. The first step is to
show that small energy implies regularity and the second step is to show that energy can not
concentrate. Our proof of the first step is totally different from the work of Christodoulou-
Tahvildar-Zadeh [1] and our proof of the second step simplify a little bit of the argument of
Struwe [6-7]. In the work of Christodoulou-Tahvildar-Zadeh [1], the first step is achieved by a
Holder estimate using the fundamental solution of the 2-dimensional radially symmetric wave
operator which is quite complicated. While we rely on an energetic argument which we call a
new div curl lemma and has potential to work for quasilinear problems. This will be pursued
in our future work.

2 Intrinsic Setting

Let ® = ®(t,r) be a smooth radially symmetric wave maps. Then (1.1) and (1.2) can be
rewritten as

P,
By — @y — —= = 4B(®)(By, &), >0, (2.1)
o = (I)()(T'), (I)t = (I)l (’f‘), t=0. (22)

We denote u =t —r, v =1t+r, then

t:%(u—i—v), 8t:8u+ava 8u:%(6t_ar);
’f’:%(’l}—u); 6r:6v_au7 B’U:%(at—i_ar)’

, = 0,P, ®,=0,0, Py =0P, etc.

and we have the energy conservation law

oo 1 (oo}
B(t) = 5/0 P02 + |0, 2)dr = Ep = 5/0 F() P + @1 [2)dr. (2.3)
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Let D be the pull-back covariant derivative in «*T'N, we may write (2.1) as
1
Do, — —D,.(r®,) = 0. (2.4)
r

From (€;)1<i<k, we obtain a frame e; = R;;(€; o ®),1 <14 < k for the pull-back bundle, where
R = R(z) = R(R;;) maybe any smooth orthogonal matrix. Denoting

Dae; = Alye;, 0<a<2 (2.5)

with a matrix-valued connection 1-form A = A,dx®. We compute the curvature F' of D via
the commutation relation

DoDge; — DgDae; = Do(Alye;) — Dg(Al )
= (OaAly — 05 AL, — A, Aly — Al Al Jer
= »L'kaﬁeka
or, more precisely,

dA + %[A, Al =F. (2.6)

In the radially symmetric case, we may choose R = R(t,r), A = Agdt+ A;dr. Following Struwe
[7], we may impose “exponential gauge” condition A; = 0, which yields the relation

xdA = —8TA0 = F()l. (27)

If we normalize Ay(t,00) = 0, V¢, from this relation, we obtain

Ay = - Fyids. (2.8)
By (H1), we get
|[Fou| < Cldef*. (2.9)
Thus we deduce the estimate
| 40| < /+OO |d®|?ds < Egr—!. (2.10)
Let
D, = qéei, D, = qiei. (2.11)

Using the notation

D,0pg® = Da(qéei) = (804(]% + Ai‘ﬂqé)eﬂ'
= (Dags)'e;, (212)

we then may write (2.4) in the form

1 1
Diqo — ;Dr(rql) = 0iqo + Aoqo — ;Br(rql) =0. (2.13)
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Moreover, we have the commutation relation
Dyqo = Dtqy = 01 + Aoqa- (2.14)
Taking inner product in R™ of (2.13) with ¢, we get
¢ (3th + Aogo — Orq1 — %) =0, (2.15)

which yields

— 0(r' " *q190) + %Br(rl‘“(qg +a1)) + %r‘“(q?) +47)
= —r""%q1 - (Aoqo) + (Aoqr) - qo]- (2.16)
Noting (2.11), we get
—0(r' 9, ®,) + %ar(rl—a(|<1>t|2 +1®,*) + %r—a(@tl? +[®,*) = Fa, (2.17)
where
Fo = —r""%q1 - (Aogo) + (Aoq1) - qo)- (2.18)
By (2.10), we get

|Fal S Eor™®[®¢]|®,]. (2.19)

3 New Div Curl Lemma

The purpose of this section is to prove the following Lemma 3.1 and Lemma 3.2. We call
Lemma 3.2 a new div curl Lemma.

Lemma 3.1 Suppose that

O F '+ 0,F2=G", r>0 0<t<T, (3.1)
OuF? —9,F2 =G2%, r>0,0<t<T '
where F'Y, F12 F21 F22 gre all nonnegative. Moreover,
r=0: F'' - 12 =2 4 22 =, (3.2)
Then there hold
2T —u min{v,2T—v}
sup/ FY (u,v)du + sup/ FY2(u,v)du
u |u\ v —v
oo T 00
< / (F'' + F')(0,7)dr + / / |G1]|(t, r)drdt, (3.3)
0 o Jo

2T —u min{v,2T—v}
sup/ F2 (u,v)du + sup/ F*(u,v)du
|

u u\ v —v

< / (F2 + F2)(T,r)dr + / (F?' 4+ F?2)(0,r)dr
0 0

T oo
+ /0 /0 |G2|(t, r)drdt. (3.4)
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Proof We only prove

2T —u
sup/ F' (u,v)du
\

u u|

%) T o
5/ (F* +F12)(O,r)dr—|—/ / |G1|(t, r)drdt.
0 0 0

The other estimates are similar. Noting (3.2), we have

2T —u
Ou F' (u,v)du
|l
2T —u
= —F11|v:2T_u — F11|v:|u‘sgn(u) + / O F1dv
|ul
2T —u 2T —u
Dy F*2dv +/ |G1|dv

Ju]

— _F11|v:2T—u - F11|v:|u\sgn(u) _/
[ul
2T —u

= _F11|v:2T—u - F12|v:2T—u - F11|v:\u|sgn(u) + F12|v:|u\ +/ |G1|d11
|

|u
2T —u
S (F" 4+ F?)ig + / G |dv.

Jul

Integration in u yields the desired estimate.

Lemma 3.2 Under the assumptions of Lemma 3.1, we have

T %)
/ / (FU'F22 ¢ FRE2Y) (¢, r)drdt
0 0

< (/OOO(FH +F12)(0,r)d7‘+/0T ‘/OOO |G1(t,7‘)|d7‘dt)

.(AM(F21+F22)(07T)dr+Am(F21+F22)(T7T)dr+ATAm|G2(t,7")|d7"dt).

Proof Similarly to the proof of Lemma 3.1, for v < 2T — u, we get

3u Fll(u, U)d’U —+ F12(’UJ,E) 5 (Fll + F12)|u+5:0 —+ Gldl],

|l |l

Thus

F2(u,0)0, | F"™(u,v)dv+ F* (u,7)F'?(u, D)
Jul

< F2 (u, 0)(FY 4 F')|yim—0 + ( G1(u, v)dv) F?Y(u,).

Ju]

789
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By the second equation in (3.1), the first term is

0.[F? (u,7) /

ul

=0y [Fm(u,ﬁ)/

ul

v

F(u, v)dv} — 0y F?! (u, ) / FY(u,v)dv
|l
Fll(u,v)dv] — 05 F?2(u,7) | F'(u,v)dv

Ju]

—Gz(u,ﬂ)/ F' (u,v)dv
lul

=0y [Fﬂ(u,ﬁ) /F Fll(u,v)dv] - (%{F”(u,ﬁ) /F FY(u,v)dv

Jul

+ F2(u,7)F" (u,7) — Ga(u,T) F (u,v)dv.

Therefore, we get

F?2(u,0)F* (u,0) + F?! (u,7) F'?(u, 7)

< %[F”(u,ﬁ) / F(u, v)dv} — Oy [Fm(u,ﬂ) / F(u, v)dv}
|l |
F' (u,v)dv + F? (u,7)(F" + F'%)|yq0—0 + ( G1(u, v)dv) F2 (u, 7).

|l

+G2(u,5)/

Jul

Integration in the region {0 < u+7 < 2T, ¥ — u > 0} and using Lemma 3.1 for the boundary
estimate, we get the desired conclusions.

4 Small Energy Implies Regularity

In this section, we assume
EQ S €1 (41)

is sufficiently small. Under this assumption, we shall prove the solution is smooth. For that
purpose, we only need to give the H? estimate of the solution, see [4].
Let U = ®&,. Differentiating the equation (2.1), we get

\Ijtt - \Ijrr - % = 4B((I))(\Ijua (I)v) =+ 4B((I))((I)u, \I/v) + 40 - B/((I))(q)m (I)v)v (42)

thus

v,
¥y - (‘I/tt -V, — —)
r

= 4y, - B(®) (U, By) + 4Ty - B(®) (D, U,) + 4T, - [ - A'(D)(D,,, D,)],
U . B(®) = 0.

Differentiating with respect to ¢ yields

U, B(®) = —0-[U- A (D).
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So we get

9, [%(xpf L] -0, W,
— 4V U B(®)](Vy, By) + 47T - [ - B (0)](Dy, Uy) + 41T, - [0 - B (0)](D,, D)
e (4.3)

In a similar way, let ¥ = ®,.(¢, 7). We get

Lico | =2 02 I .0
) [5 (xyt L2 ﬁ)r} —8.[r U, - U]
=40 - [V B (®)|(Vy,®,) + 41V - [T - B (®)](®yy, U,) + 41T, - [U - B'(®)](D.,, Py)

=G (4.4)

Integrating in t,r, we get

T o)
0235T|D2<1>|§2(R2)(t)5|v2u0|iZ(R2>+|Vu1|iZ(R2>+/O /0 (|G1|+ |G1])(t, r)drdt.  (4.5)

The main purpose of this section is to prove

T %)
/ / (1Grl + 1G1 ) (t, r)drdt < e1 B, (4.6)
o Jo
where
El = |v2U0|%2(R2) + |VU1|%2(R2). (47)

For that purpose, we use an induction argument and first we assume

T [e%s)
/ / (1Gal + 1G1 ) (¢, r)drdt < Ey. (4.8)
o Jo
Then we get
|D?®|7252)(t) S B (4.9)

To obtain (4.6), we only estimate Gy. The estimate of G can be done in a similar way. By the
expression of G, we get

G1l S TCP( T @] + [Pu [0 )1+ [T | (2] ]| B])r
=01+ g2 (4.10)

We first estimate g1. Let % <p< %, we have

T o)
/ / |g1|drdt
o Jo

T foo 1 T foo 1
S Gwre e taa J[ [ ] @
0 0 0 0
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By Sobolev-Hardy inequality, we obtain

> o i B 0 1-8
[T witar s ([T rweerar) ([T wea)’([Clepa) )
0 0 0 0
thus
// lg1/drdt S // (0|02 + 2420, )2 Prat] // W]
El .

< (4.13)

Take o = 8 in (2.17) and integrate for 0 <r < 400, 0 <t <T. Noting (2.19), we get

00 T T 00
/ / SO + [B[2)drdt = (/ rl_ﬁ\I/\IJ)‘O—F/ / Fodrdt
0 0 0
< (/ i Bw —l—Cal/ / BW[2 + [T2)drdt.
0

So when ¢; is sufficiently small, we get

/ / B(1|? + [B|?)drdt < (/000 Tl_fB\IJ\T/)E.

By Sobolev-Hardy inequality and noting (4.9), we get

thus

/ / B(W)? + | )drdt) <ePTTRE (4.14)
Rewrite (4.3) as
Ou[r(0yW)?] + 0y [r(0.,T)?] = 2G,. (4.15)
Take oo = 8 in (2.17) and rewrite it as
0ulr' P (0,®)] = 0, [r' =P (0u®)%) = —2F + prl (| + |U]?) = Gp. (4.16)

Noting that (4.14) implies

8
/ / |Ggl|(t,r)drdt < 61 E2. (4.17)

We apply Lemma 3.2 to get
_8 IS
/ / BY2(D,0)? + (0, 0)2(0,®)2]drdt < &' F BT (4.18)

So we get

T oo
/ / lg1|drdt S e1En. (4.19)
o Jo
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Now we estimate go.

T %) T o % oo %
// |92|d7”dt§/ (/ [, Prar) (/ W10, 2|0, Prdr) " dt
0 0 0 0 0
1 T o) %
sef [ (] 1oPeapie.Prar) (4.20)
0 0
We have
/ |\I!|2|<I>u|2|<I>U|2rdr:/ |<I>u|2|<I>v|2dr/ W[2AdA
0 0 0
——2 [ [ AN @, T+ (BP0, 5]
0 0
<2 [T ar [ RPATP AN o 0] (B0, + ][0 )
0 0

1

o0 _ oo R R _ 3
§2(/0 w2 Bdr)(/o (10| + [T ?|,[2)r P

00 1
(/ (@[22, 2 ar) .
0

T 00 1 T 00 %
/ / \go|drdt < B2 (/ / |x11|2r—ﬁdrdt)
0 0 0 0

T oo
(/ / PP(TPI, + [T 180 ) drdr)
0 0

T 0 1
(/ / |<I>u|2|q>v|2r3ﬁdrdt) ' (4.21)
0 0

The first term in the right-hand side can be estimated by (4.14), and the second term can be

Therefore we get

=

estimated in a way similar to (4.18). Thus, it remains to prove

T %) 38 38
/0 /0 |, 2@, 2 drdt S ey T BT

We have by (4.16) with § replaced by «

Du[r'™(0,®)?] — D [r' (0, ®)?] = Gl. (4.22)
We have
D,
Oy - By — Py — — =0,
T
so we get
Dulr' = (0,®)%] + Bu[r' (0. ®)?] = Ga,
where

Go = (1 = a)r~[(8,®)? — (9,®)?].
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Thus, we have

T ')
/ / (Gl + |Gal)drdt < &5 EE
0 0

So we apply Lemma 3.2 to get

T 00
/ / 272 (0,®)2(9,®)%drdt < 27 EY.
0 0

Take 2 — 2a = 33, we get
e 38 2 2 1437 1=
(0, @)% (0, @) *drdt S, T E] 2.
o Jo
This completes the proof of the regularity with small energy.

5 Energy Do Not Concentrate

Let ®(t,7) : [0,t0) x R? — N C R™ be a smooth radially symmetric wave map blowing up
at time to. Necessarily, blow-up occurs at » = 0. Shifting and reversing time and then scaling
our space-time coordinates suitably, we may assume that u is a smooth radial solution to (1.1)
on (0, 1] x R? blowing up at the origin.

Let KI = {z = (t,) : 0 < |z| < ,5 <t < T} be the forward light cone with lateral
boundary MY = {(t,z) € K%, |z| = t}. Denoting as

1 1
e= (18 +|2:), f=5(®+ &)’

the energy and flux density of u, respctively, and denoting as

E(®,R) :/ edz,
Br(0)
Flux(®,5,T) = Fdo.
Mg

We have
(1) Energy inequality

E(u(t),R) < E(u(t+ 1), R+ |7]);
(2) Flux decay
Flux(®,5,7) -0 asT — 0, S —0;
(3) Exterior energy decay
E(®(t),t) — E(®(t),AMt) >0 forany 0 < A\ < 1;
(4) Decay of time derivatives

1
—/ |®:?’dz -0 asT — 0, S — 0.
T Kg‘
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Take a = —1 in (2.17), we get
By (r?®; - @) — 0:(r%e) +re = r?[g1 - (Aogo) + (Aoqr) - qo] = 7F.

Integrating in Kg, we get

and
1
— [at(r2<1>t ®,.)—0 (TQe)]dz
T Jyer
1
——[—/ r¢t~¢>rdz+/ r®, - ®,.dz
T B(0,T) B(0,5)
+ f Mg rFdo.
We have

T

1 1
‘—/ r<I>t-<I>sz‘ < —‘/ r@t-érdx‘—i—/ edz
T JBo,r) Tl JBo,ar) B(0,T)— B(0,AT)
< /\/ edx—|—/ edx
B(0,AT) B(0,T)—B(0,\T)

g,\EO+/ edx — \Ep,
B(0,T)—B(0,AT)

1
— ercrﬁ/ Fdo — 0,
ME ME

S
l}/ r<I>t-<I>de} < §/ edr < —FEy — 0.
Tl JBo,s) T Jp,s) T

Thus, taking limit, we get

1
limsup — edz < \Ej,
s=r2, 701 JKT

where A > 0 is arbitrary. So we get

) 1
limsup — edz = 0.
s=r2,T7-01 JKT

By the monotonicity of the energy, we prove that
E(®(S),]S]) =0 as|S|—0.

This shows that energy can not concentrate, thus by the conclusion of the last section, we prove
Theorem 1.1.
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