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Revisit of the Faddeev Model in Dimension Two∗

Shijie DONG1 Zhen LEI2

Abstract The Faddeev model is a fundamental model in relativistic quantum field theory
used to model elementary particles. The Faddeev model can be regarded as a system
of non-linear wave equations with both quasi-linear and semi-linear non-linearities, which
is particularly challenging in two space dimensions. A key feature of the system is that
there exist undifferentiated wave components in the non-linearities, which somehow causes
extra difficulties. Nevertheless, the Cauchy problem in two space dimenions was tackled
by Lei-Lin-Zhou (2011) with small, regular, and compactly supported initial data, using
Klainerman’s vector field method enhanced by a novel angular-radial anisotropic technique.
In the present paper, the authors revisit the Faddeev model and remove the compactness
assumptions on the initial data by Lei-Lin-Zhou (2011). The proof relies on an improved
L

2 norm estimate of the wave components in Theorem 3.1 and a decomposition technique
for non-linearities of divergence form.
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1 Introduction

Model Problem We are interested in the Faddeev model in two space dimensions, which

is a very important model in relativistic quantum field theory modelling elementary particles

(see [6–8]). The model equations can be written as follows (see Section 3 for its derivation)
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= 0. (1.1)

In the above, we use � = ∂α∂
α to denote the wave operator, with ∂α = ∂xα

, (x0, xa) = (t,−xa).

We take the metric η = diag(1,−1,−1), and the indices are raised or lowered by the metric η.

The Einstein summation convention is adopted for repeated indices. We write ‖·‖Lp = ‖·‖Lp(R2)

to denote the usual Lp-norm of a nice function and adopt the abbreviation ‖ · ‖ = ‖ · ‖L2 if no
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confusion arises. We use A . B to indicate A ≤ CB with C a generic constant, and we use the

notation 〈p〉 = (1 + |p|2) 1

2 . We note that the equations of Faddeev model can be regarded as a

quasi-linear system of wave equations.

The initial data of the Faddeev model (1.1), prescribed at t = t0 = 0, are denoted by

(ni, ∂tni)(t0 = 0) = (ni0, ni1), i = 1, 2. (1.2)

The Faddeev model is an important model in quantum field theory with extensive mathe-

matical studies. The investigations on the static Faddeev model or some related problems can

be found in the series of works [18–21] by Lin-Yang. On the other hand, the Cauchy problem

of the Faddeev model was first tackled by Lei-Lin-Zhou [15] in two space dimensions. Later

on, the sharp global regularity for the two dimensional Faddeev model was shown by Geba-

Nakanishi-Zhang [10] under some extra assumptions. Recently, the large data global existence

for the two (and three) dimensional Faddeev model was studied by Geba-Grillakis [9] and by

Zha-Liu-Zhou [27].

We note that the Faddeev model can be regarded as a generalisation of the harmonic maps

R
1+n → S

2. We recall the remarkable pioneering work [11] by Gu on harmonic maps in one

space dimension, which is relevant to our study. He succeeded in treating the harmonic maps

R
1+1 → M , where M is a complete Riemannian manifold of dimension n, including the two

dimensional sphere S
2 as a special case, and proved that the solution to the Cauchy problem

exists globally.

We recall the seminal works [13–14] by Klainerman, [3] by Christodoulou, [23] by Lindblad-

Rodnianski on three dimensional non-linear wave equations, and [1] by Alinhac on two dimen-

sional case. The Cauchy problem of the Faddeev model in three space dimensions and higher

can be solved using these classical theories. This problem is particularly tricky in two space

dimensions. Nevertheless, Lei-Lin-Zhou proved the global well-posedness of the Cauchy prob-

lem of the Faddeev model in two space dimensions with compactly supported initial data. The

prime goal of the present paper is to remove the compactness assumptions on the initial data.

We would also like to draw one’s attention to some recent progress on two dimensional wave

equations of [2, 5, 12, 16].

Main Theorem We want to show the existence of global solutions to system (1.1) and to

derive the pointwise asymptotic behavior of the solutions. Our main result is stated as follows.

Theorem 1.1 Consider the Faddeev model (1.1), and let N ≥ 5 be an integer. Then there

exists a small ε0 > 0, such that for all initial data satisfying the smallness condition

∑

|I|≤N+1

‖ΛIni0‖L2(R2) +
∑

|J|≤N

‖〈|x|〉ΛJni1‖L2(R2)∩L1(R2) < ε ≤ ε0

with Λ ∈ {∂a, r∂r,Ωab}, the Cauchy problem (1.1)–(1.2) admits a global-in-time solution n =

(ni), which enjoys the pointwise decay results

|ni(t, x)| . 〈t+ |x|〉− 1

2 〈t− |x|〉− 1

2 log(2 + t)
1

2 , |∂ni(t, x)| . 〈t+ |x|〉− 1

2 〈t− |x|〉− 1

2 . (1.3)

In general, the smallness condition on ‖ΛJui1‖L1(R2) is not assumed when treating wave

equations, but we will need it in the proof of Proposition 2.6. We note that similar assumptions

on the initial data also exist in the remarkable result [12], where the authors removed the

compactness assumptions on the celebrated result [1] by Alinhac. In [12], the authors applied a
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novel weighted L∞–L∞ estimate for the wave equations to achieve the goals. As a comparison,

we use the energy method to prove Theorem 1.1.

It is known that linear waves in two space dimensions decay at the speed of 〈t+ |x|〉− 1

2 〈t−
|x|〉− 1

2 , however, there is an extra log(2 + t)
1

2 growth in (1.3) of Theorem 1.1. We note similar

logarithmic growth also occur in the results [24, 26], when using energy method and Klainerman-

Sobolev inequality to derive the pointwise decay of the wave solution itself.

To bound the wave solution itself, a natural way is to apply the Hardy inequality. We recall

that Hardy inequality ∥∥∥w
r

∥∥∥
L2(Rn)

≤ C‖∇w‖L2(Rn)

can be used in higher dimensions n ≥ 3, while the following version of Hardy inequality
∥∥∥ w

〈t− r〉
∥∥∥
L2(R2)

≤ C‖∇w‖L2(R2)

requires the function w to be compactly supported. Unfortunately, neither of the above versions

of Hardy inequality can be applied to our case. New ideas are demanded in dealing with our

problem (1.1).

One key idea is to prove refined estimates on the wave solution itself of [15, Theorem 3.1],

which is demonstrated in Proposition 2.6. Since the Faddeev model (1.1) contains also quasi-

linear non-linearities, the result in Proposition 2.6 cannot be directly applied in the highest-order

case, which is the most difficult part of the analysis. Fortunately, utilising a decomposition can

help us conquer this difficulty; see the discussion in the begining of Section 4.2. Importantly,

this way can also be used to remove the compactness assumptions in [1].

The rest of the paper is organised as follows. In Section 2, we present some preliminaries on

wave equations. Then in Section 3, we illustrate the derivation of the equations of the Faddeev

model (1.1). Finally, we demonstrate the proof of Theorem 1.1 in Section 4.

2 Preliminary

We work in the (1 + 2)-dimensional Minkowski spacetime with signature (+,−,−). A

point in R
1+2 is denoted by (x0, x1, x2) = (t,−x1,−x2), and its spacial radius is denoted by

r =
√
x2
1 + x2

2. We use Latin letters a, b, · · · ∈ {1, 2} to represent space indices, while the

spacetime indices are denoted by Greek letters α, β, · · · ∈ {0, 1, 2}.
The following vector fields will be used when applying Klainerman’s vector field method

and Alinhac’s ghost weight method





translations: ∂α = ∂xα
, α = 0, 1, 2;

rotations: Ωab := xa∂b − xb∂a, a, b = 1, 2;

Lorentz boosts: La := xa∂t + t∂a, a = 1, 2;

scaling vector field: L0 := t∂t + r∂r ;

good derivatives: Ga :=
xa

r
∂t + ∂a, a = 1, 2.

We will use Γ to denote the vector fields in

V := {∂α,Ωab, La, L0}. (2.1)
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For a sufficiently nice function w = w(t, x), we define its energy by

E(w, t) :=

∫

R2

(
|∂tw|2 +

∑

a

|∂aw|2
)
dx. (2.2)

The following results on commutators will be frequently used, and one refers to [25, Chapter

II] or [17, Section 3] for the proof.

Proposition 2.1 For any Γ′,Γ′′ ∈ V , we have

[�,Γ′] = C�, [Γ′,Γ′′] =
∑

Γ∈V

CΓΓ, (2.3)

in which [A,B] = AB −BA and C,CΓ are some constants.

We have the following result, and one refers to [25, Chapter II] for its proof.

Proposition 2.2 For sufficiently nice function w(t, x), it holds

|∂w(t, x)| . 〈t− r〉−1|Γw(t, x)|. (2.4)

We recall the following estimates on the null forms

Q0(v, w) = ∂tv∂tw + ∂av∂
aw, Qαβ(v, w) = ∂αv∂βw − ∂βv∂αw. (2.5)

Proposition 2.3 For sufficiently nice functions v, w, we have the following estimates





|Q0(v, w)| + |Qαβ(v, w)| . 〈t〉−1(|Γv||∂w|+ |Γw||∂v|),

|Q0(v, w)| + |Qαβ(v, w)| .
∑

a

(|Gav||∂w|+ |Gaw||∂v|),

|Q0(v, w)| + |Qαβ(v, w)| .
∑

a

|Gav||∂w|+ 〈t〉−1|∂v||Γw|.

(2.6)

Proof For the first estimate in (2.6), one finds its proof in [25, Chapter II] for instance.

For the second estimate in (2.6), we use the relation ∂a = Ga−(xa/r)∂t to derive the desired

bounds.

For the third estimate in (2.6), we observe that for t ≥ 1,

|Gaw||∂v| ≤ |Gaw − t−1Law||∂v|+ t−1|Law||∂v|

≤ |xa(t− r)|
t r

|∂tw||∂v|+ t−1|Law||∂v| . 〈t〉−1|∂v||Γw|,

and for small t the third estimate in (2.6) is obvious.

The null forms enjoy the following commutating property, and one refers to [25, Chapter II]

for the proof.

Lemma 2.1 Let Γ ∈ V , then we have




[Γ, Qαβ(v, w)] = Cµν

Γ,αβQµν(v, w),

[Γ, Q0(v, w)] = Cµν
Γ,0Qµν(v, w) + CΓ,0Q0(v, w),

in which [Γ, Q(v, w)] = ΓQ(v, w) −Q(Γv, w)−Q(v,Γw), and C’s are constants.
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We state the classical Klainerman-Sobolev inequality in R
1+2, which will be frequently used

in the analysis to derive the pointwise decay of a function, and whose proof can be found in

[25, Chapter II] for instance.

Proposition 2.4 It holds that

〈t+ r〉 1

2 〈t− r〉 1

2 |u| .
∑

|I|≤2

‖ΓIu‖L2(R2) (2.7)

with 〈a〉 =
√
1 + |a|2.

The following ghost weight energy estimates by Alinhac [1] will play a vital role in closing

the higher-order energy estimates. We first define the generalised energy (ghost weight energy)

for a nice function w (with small δ > 0 to be fixed in Section 4)

Egst(w, t) =

∫

R2

(|∂tw|2 +
∑

a

|∂aw|2) dx(t) +
∑

a

∫ t

0

∫

R2

|Gaw|2
〈r − τ〉1+2δ

dxdτ. (2.8)

More specifically, we will need the following quasi-linear version of ghost weight energy esti-

mates.

Proposition 2.5 Consider the quasi-linear wave system

{
�w1 +Qαβ

1 ∂α∂βw1 +Qαβ
2 ∂α∂βw2 = h1,

�w2 +Qαβ
3 ∂α∂βw2 +Qαβ

4 ∂α∂βw1 = h2

(2.9)

with solution (w1, w2) decaying sufficiently fast as |x| → +∞. We assume the smallness condi-

tion ∑

α,β,1≤i≤4

|Qαβ
i | ≪ 1

100
,

the symmetry condition

Qαβ
i = Qβα

i , i = 1, 2, 3, 4,

and the hyperbolicity condition

Qαβ
2 = Qαβ

4 .

Then we have

Egst(w1, t) + Egst(w2, t) . Egst(w1, t0) + Egst(w2, t0) +

∫ t

t0

∫

R2

Rdxdτ, (2.10)

in which (with ρ = e
∫

r−τ

−∞
〈s〉−1−2δ ds)

R = |f1 ∂tw1|+ |f2 ∂tw2|+ |∂αQαβ
1 ∂βw1∂tw1|+ |∂tQαβ

1 ∂αw1∂βw1|+ |∂αQαβ
2 ∂βw2∂tw1|

+ |∂tQαβ
2 ∂αw2∂βw1|+ |∂αQαβ

3 ∂βw2∂tw2|+ |∂tQαβ
3 ∂αw2∂βw2|+ |∂αQαβ

2 ∂βw1∂tw2|
+ |Qαβ

1 ∂βw1∂tw1∂αρ|+ |Qαβ
1 ∂αw1∂βw1∂tρ|+ |Qαβ

2 ∂βw2∂tw1∂αρ|+ |Qαβ
2 ∂αw1∂βw2∂tρ|

+ |Qαβ
3 ∂βw2∂tw2∂αρ|+ |Qαβ

3 ∂αw2∂βw2∂tρ|+ |Qαβ
2 ∂βw1∂tw2∂αρ|.

Proof The proof follows from the following differential identity

1

2

∑

α,j=1,2

∂t((∂αwj)
2ρ)− ∂a(∂

awj∂twjρ) +
∑

j=1,2

∂α(Q
αβ
2j−1∂βwj∂twjρ)
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− 1

2

∑

j=1,2

∂t(Q
αβ
2j−1∂αwj∂βwjρ) + ∂α(Q

αβ
2 ∂βw2∂tw1ρ) + ∂α(Q

αβ
2 ∂βw1∂tw2ρ)

− ∂t(Q
αβ
2 ∂αw1∂βw2ρ) +

1

2

∑

a,j=1,2

|Gawj |2
〈r − τ〉1+2δ

−
∑

j=1,2

Qαβ
2j−1∂βwj∂twj∂αρ

+
1

2

∑

j=1,2

Qαβ
2j−1∂αwj∂βwj∂tρ−Qαβ

2 ∂βw2∂tw1∂αρ−Qαβ
2 ∂βw1∂tw2∂αρ

+Qαβ
2 ∂αw1∂βw2∂tρ−

∑

j=1,2

∂αQ
αβ
2j−1∂βwj∂twjρ−

1

2

∑

j=1,2

∂tQ
αβ
2j−1∂αwj∂βwjρ

− ∂αQ
αβ
2 ∂βw2∂tw1ρ− ∂αQ

αβ
2 ∂βw1∂tw2ρ+ ∂tQ

αβ
2 ∂αw1∂βw2ρ = f1∂tw1ρ+ f2∂tw2ρ.

To estimate the L2 norm of the wave components themselves (with no derivatives), we

introduce the following result, which can be regarded as an enhanced version of [15, Theorem

3.1] (see also [4]).

Proposition 2.6 Suppose w solves the wave equation

{
�w = f,

w(0, ·) = w0, ∂tw(0, ·) = w1,
(2.11)

and suppose that

‖w0‖L2(R2) + ‖w1‖L2(R2)∩L1(R2) < +∞, (2.12)

as well as

∫ t

0

‖f(τ, ·)‖L2(R2)∩L1(R2) dτ . Cf 〈t〉β , β ∈ [0, 1). (2.13)

Then the following L2 norm bound is valid

‖w‖L2(R2) .

{
B(t) + log

1

2 (2 + t)Cf , β = 0,

B(t) + 〈t〉β log
1

2 (2 + t)Cf , 0 < β < 1,
(2.14)

in which B(t) = ‖w0‖L2(R2) + log
1

2 (2 + t)‖w1‖L2(R2)∩L1(R2).

Proof We revisit its proof in [4, 15].

First, we write (2.11) in the Fourier space to get

{
∂ttŵ(t, ξ) + |ξ|2ŵ(t, ξ) = f̂(t, ξ),

ŵ(0, ·) = ŵ0, ∂tŵ(0, ·) = ŵ1,

in which (with i =
√
−1)

ŵ(t, ξ) =

∫

R2

w(t, x)e−ixaξ
a

dx.

For this second-order ordinary differential equation in t, we can write its solution as

ŵ(t, ξ) = cos(t|ξ|)ŵ0 +
sin(t|ξ|)

|ξ| ŵ1 +

∫ t

0

sin((t− τ)|ξ|)
|ξ| f̂(τ) dτ.
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Thus we get

‖w‖L2(R2) . ‖w0‖L2(R2) +
∥∥∥ sin(t|ξ|)|ξ| ŵ1

∥∥∥
L2(R2)

+

∫ t

0

∥∥∥ sin((t− τ)|ξ|)
|ξ| f̂(τ)

∥∥∥
L2(R2)

dτ

=: ‖w0‖L2(R2) +A1 +A2. (2.15)

The terms A1, A2 need to be carefully treated.

Next, we try to estimate the term A1, and we find

A2
1 =

∫

{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2 |ŵ1|2 dξ +

∫

{ξ:|ξ|≥1}

sin2(t|ξ|)
|ξ|2 |ŵ1|2 dξ

≤ ‖ŵ1‖2L∞(R2)

∫

{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2 dξ + ‖ŵ1‖2L2(R2).

In succession, we have

∫

{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2 dξ =

∫

S1

dS1

∫ 1

0

sin2(t|ξ|)
|ξ| d|ξ|

.

∫ t

0

sin2 p

p
dp

.

∫ 1

0

1 dp+

∫ t+2

1

1

p
dp,

in which we used that sin |p| ≤ |p| and | sin p| ≤ 1. Gathering the above results leads us to

A2
1 . log(2 + t)‖w1‖2L2(R2)∩L1(R2),

which yields

A1 . log
1

2 (2 + t)‖w1‖L2(R2)∩L1(R2). (2.16)

By the analysis for A1, we then estimate the term A2

∥∥∥ sin((t− τ)|ξ|)
|ξ| f̂(τ)

∥∥∥
L2(R2)

. log
1

2 (2 + t− τ)‖f(τ)‖L2(R2)∩L1(R2).

Hence we have

A2 . log
1

2 (2 + t)

∫ t

0

‖f(τ)‖L2(R2)∩L1(R2) dτ.

By the assumptions on the function f , and gathering the results in the previous steps, we finally

complete the proof.

3 The Faddeev Model

The mappings of the Faddeev model from the Minkowski spacetime (R1+n, η) to the unit

sphere S
2 are denoted by

n : (R1+n, η) → S
2, (3.1)

whose Lagrangian density reads as folllows (see [6–8])

L(n) = 1

2
∂µn · ∂µn− 1

4
(∂µn ∧ ∂νn) · (∂µn ∧ ∂νn).



804 S. J. Dong and Z. Lei

The corresponding Euler-Lagrange equations turn out to be

n ∧ ∂µ∂
µn+ [∂µ(n · (∂µn ∧ ∂νn))]∂νn = 0, (3.2)

and one refers to [6–8] and [22] and the references therein.

Denote n = (n1, n2, n3), and we expand the equations in (3.2) to get




n2�n3 − n3�n2 = ∂µ(n · (∂µn ∧ ∂νn))∂νn1,

n3�n1 − n1�n3 = ∂µ(n · (∂µn ∧ ∂νn))∂νn2,

n1�n2 − n2�n1 = ∂µ(n · (∂µn ∧ ∂νn))∂νn3.

(3.3)

These three equations are linearly dependent. Recall that n lies on the unit sphere S
2, which

means

n2
1 + n2

2 + n2
3 = 1.

We consider the small perturbations around the point (0, 0, 1) ∈ S
2, and thus n3 is expected

to be close to 1. For this reason, we only consider the first two equations appearing in (3.3),

which are 



�n1 =
n1

n3
�n3 +

1

n3
∂µ(n · (∂µn ∧ ∂νn))∂νn2,

�n2 =
n2

n3
�n3 −

1

n3
∂µ(n · (∂µn ∧ ∂νn))∂νn1.

(3.4)

Recall the relation

n3 = (1− n2
1 − n2

2)
1

2 ,

and we replace n3 appearing in (3.4) by the expressions of n1, n2.

First, we note that

∂µ(1− n2
1 − n2

2)
1

2 = −(1− n2
1 − n2

2)
− 1

2 (n1∂µn1 + n2∂µn2).

In succession, we obtain

�(1− n2
1 − n2

2)
1

2 = ∂µ∂
µ(1− n2

1 − n2
2)

1

2

= −(1− n2
1 − n2

2)
− 3

2 (n1∂µn1 + n2∂µn2)(n1∂
µn1 + n2∂

µn2)

− (1− n2
1 − n2

2)
− 1

2 (∂µn1∂
µn1 + ∂µn2∂

µn2 + n1�n1 + n2�n2).

On the other hand, we find

n · (∂µn ∧ ∂νn)

= n1(∂
µn2∂

νn3 − ∂µn3∂
νn2) + n2(∂

µn3∂
νn1 − ∂µn1∂

νn3) + n3(∂
µn1∂

νn2 − ∂µn2∂
νn1)

=
1

(1 − n2
1 − n2

2)
1

2

(∂µn1∂
νn2 − ∂µn2∂

νn1).

Thus we obtain (1.1), i.e.,

�

(
n1

n2

)
+

n1�n1 + n2�n2

1− n2
1 − n2

2

(
n1

n2

)
+

∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)

1− n2
1 − n2

2

(
−∂νn2

∂νn1

)

+
∂νn1∂

νn1 + ∂νn2∂
νn2

1− n2
1 − n2

2

(
n1

n2

)
+

n2
1∂νn1∂

νn1 + n2
2∂νn2∂

νn2 + 2n1n2∂νn1∂
νn2

(1− n2
1 − n2

2)
2

(
n1

n2

)

− (n1∂µn1 + n2∂µn2)(∂
µn1∂

νn2 − ∂µn2∂
νn1)

1− n2
1 − n2

2

(
−∂νn2

∂νn1

)
= 0.
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4 Proof of Theorem 1.1

We rely on the bootstrap method and the vector field method to prove Theorem 1.1. We

recall the model equations in (1.1) with ΓI acted are
{
�ΓIn1 = ΓIg1 + ΓIf1,

�ΓIn2 = ΓIg2 + ΓIf2,
(4.1)

in which we used g, f to denote the quasi-linear terms and the semi-linear terms, respectively,

with
(
g1
g2

)
= −n1�n1 + n2�n2

1− n2
1 − n2

2

(
n1

n2

)
− ∂µ(∂

µn1∂
νn2 − ∂µn2∂

νn1)

1− n2
1 − n2

2

(
−∂νn2

∂νn1

)
,

(
f1
f2

)
= −∂νn1∂

νn1 + ∂νn2∂
νn2

1− n2
1 − n2

2

(
n1

n2

)
− n2

1∂νn1∂
νn1 + n2

2∂νn2∂
νn2 + 2n1n2∂νn1∂

νn2

(1− n2
1 − n2

2)
2

(
n1

n2

)

+
(n1∂µn1 + n2∂µn2)(∂

µn1∂
νn2 − ∂µn2∂

νn1)

1− n2
1 − n2

2

(
−∂νn2

∂νn1

)
. (4.2)

We note that in the semi-linear part, the first (cubic) term is the worst, so in the sequel we will

mainly focus on the estimate of this term.

Based on the local well-posedness theory, we assume that the following estimates hold for

all t ∈ [t0 = 0, t1)




‖ΓIni‖ ≤ C1ε〈t〉δ, |I| ≤ N − 1,

‖ΓIni‖ ≤ C1ε〈t〉3δ, |I| ≤ N,

Egst(t,Γ
Ini)

1

2 ≤ C1ε, |I| ≤ N.

(4.3)

In the above, the parameter 0 < δ ≪ 1
24 is a small number, C1 ≫ 1 is a large number to be

determined, and ε ≪ 1 is sufficiently small such that C1ε ≪ 1
4 . We note t1 is defined by

t1 := sup{t > t0 : (4.3) holds}. (4.4)

Our goal is to show the refined estimates under the assumptions in (4.3) that




‖ΓIni‖ ≤ 1

2
C1ε〈t〉δ, |I| ≤ N − 1,

‖ΓIni‖ ≤ 1

2
C1ε〈t〉3δ, |I| ≤ N,

Egst(t,Γ
Ini)

1

2 ≤ 1

2
C1ε, |I| ≤ N.

(4.5)

Once this is done, we can derive a contradiction by the definition of t1 if t1 < +∞, which means

t1 = +∞. Hence we assert that the solution to (1.1) exists globally.

Combined with the Klainerman-Sobolev inequality in Proposition (2.4), we have the follow-

ing pointwise estimates.

Proposition 4.1 Let the estimates in (4.3) hold, then the following estimates are valid





|ΓIni| . C1ε〈t− r〉− 1

2 〈t+ r〉− 1

2
+3δ, |I| ≤ N − 2,

|ΓIni| . C1ε〈t− r〉− 1

2 〈t+ r〉− 1

2
+δ, |I| ≤ N − 3,

|∂ΓIni| . C1ε〈t− r〉− 1

2 〈t+ r〉− 1

2 , |I| ≤ N − 2.

(4.6)
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We have the following result.

Proposition 4.2 Under the assumptions in (4.3), we have

{
‖�ΓIni‖ . (C1ε)

3〈t〉− 3

4 , |I| ≤ N − 1,

|�ΓIni| . (C1ε)
3〈t〉− 5

4 , |I| ≤ N − 3.
(4.7)

Proof We first show the second estimate in (4.7). By recalling (4.1), we apply the triangle

inequality to get

|�ΓIn1|+ |�ΓIn2| ≤ |ΓIg1|+ |ΓIg2|+ |ΓIf1|+ |ΓIf2|.

Summing over the indices |I| ≤ N − 3 yields

∑

|I|≤N−3

(|�ΓIn1|+ |�ΓIn2|) ≤
∑

|I|≤N−3

(|ΓIg1|+ |ΓIg2|+ |ΓIf1|+ |ΓIf2|).

Taking into account of (4.2), we find

∑

|I|≤N−3

(|ΓIg1|+ |ΓIg2|) .
∑

|I|≤N−3

(|�ΓIn1|+ |�ΓIn2|)
∑

|I|≤N−3

(|ΓIn1|+ |ΓIn2|)2

+
∑

|I|≤N−3

|ΓI(∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νn2)|

+
∑

|I|≤N−3

|ΓI(∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νn1)|. (4.8)

By the estimates in (4.6), we find

∑

|I|≤N−3

(|ΓIn1|+ |ΓIn2|)2 . (C1ε)
2〈t〉−1+6δ

as well as

∑

|I|≤N−3

|ΓI(∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νn2)|

+
∑

|I|≤N−3

|ΓI(∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νn1)|

.
∑

|J|≤N−2

(|∂ΓJn1|+ |∂ΓJn2|)3 . (C1ε)
3〈t〉− 3

2 .

Similarly, we get ∑

|I|≤N−3

(|ΓIf1|+ |ΓIf2|) . (C1ε)
3〈t〉− 3

2
+3δ.

Gathering these estimates, we arrive at

∑

|I|≤N−3

(|�ΓIn1|+ |�ΓIn2|)

≤C(C1ε)
2〈t〉−1+6δ

∑

|I|≤N−3

(|�ΓIn1|+ |�ΓIn2|) + C(C1ε)
3〈t〉− 3

2
+3δ.
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The smallness of C1ε and the smallness of δ lead us to
∑

|I|≤N−3

(|�ΓIn1|+ |�ΓIn2|) . (C1ε)
3〈t〉− 5

4 .

In a similar manner, we can show the first estimate appearing in (4.7). Thus the proof is

complete.

4.1 Refined lower-order energy

In this part, we will derive the refined estimates for the lower-order case, which are relatively

easier.

We start with one lemma.

Lemma 4.1 Let the assumptions in (4.3) hold, then the following estimate is valid for all

|I| ≤ N − 1

‖ΓIf1‖L1
⋂

L2 + ‖ΓIf2‖L1
⋂

L2 + ‖ΓIg1‖L1
⋂

L2 + ‖ΓIg2‖L1
⋂

L2 . (C1ε)
3〈t〉− 5

4
+4δ. (4.9)

Proof We note that the bounds of the L2 part in (4.9) are easier than the L1 part, so we

will only provide details of the estimates for the L1 part.

First, we find
∑

|I|≤N−1,1≤i,j,k≤2

‖ΓI(ninj�nk)‖L1

.
∑

|I1|+|I2|+|I3|≤N−1
1≤i,j,k≤2

‖ΓI1niΓ
I2nj�ΓI3nk‖L1

.
∑

|I1|+|I2|≤N−1,|I3|≤N−3,
1≤i,j,k≤2

‖ΓI1ni‖‖ΓI2nj‖‖�ΓI3nk‖L∞

+
∑

|I2|+|I3|≤N−1,|I1|≤N−3,
1≤i,j,k≤2

‖ΓI1ni‖L∞‖ΓI2nj‖‖�ΓI3nk‖

. (C1ε)
3〈t〉− 5

4
+4δ,

in which N−1
2 ≤ N − 3 (i.e., N ≥ 5) suffices to guarantee the last inequality. Thus we have

∑

|I|≤N−1,1≤i,j,k≤2

∥∥∥ΓI ninj�nk

1− n2
1 − n2

2

∥∥∥
L1

.
∑

|I|≤N−1,1≤i,j,k≤2

∥∥∥Γ
I(ninj�nk)

1− n2
1 − n2

2

∥∥∥
L1

+
∑

|I1|≤N−2,1≤|I2|≤N−1
1≤i,j,k≤2

∥∥∥ΓI1(ninj�nk) Γ
I2

1

1− n2
1 − n2

2

∥∥∥
L1

. (C1ε)
3〈t〉− 5

4
+4δ, (4.10)

in which we used the observation that ΓI2 1
1−n2

1
−n2

2

produces higher-order (better) terms in the

last step. Next, we note
∑

|I|≤N−1,1≤i≤2

‖ΓI [∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νni]‖L1
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.
∑

|I1|+|I2|≤N−1,1≤i≤2

‖ΓI1∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)Γ

I2∂νni‖L1

. x〈t〉−1
∑

|J1|+|J2|≤N,|J3|≤N−2
1≤i,j,k≤2

‖ΓJ1∂nj‖‖ΓJ2nk‖‖ΓJ3∂ni‖L∞

+ 〈t〉−1
∑

|J1|+|J2|≤N−2,|J3|≤N−1
1≤i,j,k≤2

‖ΓJ1∂nj‖L∞‖ΓJ2nk‖‖ΓJ3∂ni‖

. (C1ε)
3〈t〉− 3

2
+2δ.

Since again the terms ΓJ 1
1−n2

1
−n2

2

, 1 ≤ |J | ≤ N − 1 will not cause trouble, we obtain

∑

|I|≤N−1,1≤i≤2

∥∥∥ΓI ∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νni

1− n2
1 − n2

2

∥∥∥
L1

.
∑

|I|≤N−1,1≤i≤2

∥∥∥Γ
I [∂µ(∂

µn1∂
νn2 − ∂µn2∂

νn1)∂νni]

1− n2
1 − n2

2

∥∥∥
L1

+
∑

|I1|≤N−2,1≤|I2|≤N−1
1≤i≤2

∥∥∥ΓI1 [∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)∂νni] Γ

I2
1

1− n2
1 − n2

2

∥∥∥
L1

. (C1ε)
3〈t〉− 3

2
+2δ. (4.11)

The estimates (4.10) and (4.11) lead us to
∑

|I|≤N−1

(‖ΓIg1‖L1 + ‖ΓIg2‖L1) . (C1ε)
3〈t〉− 5

4
+4δ, (4.12)

and hence
∑

|I|≤N−1

(‖ΓIg1‖L1
⋂

L2 + ‖ΓIg2‖L1
⋂

L2) . (C1ε)
3〈t〉− 5

4
+4δ. (4.13)

Similarly, we have
∑

|I|≤N−1

(‖ΓIf1‖L1
⋂

L2 + ‖ΓIf2‖L1
⋂

L2) . (C1ε)
3〈t〉− 3

2
+6δ. (4.14)

The proof is done.

Proposition 4.3 Under the assumptions in (4.3), we have

{
‖ΓIni‖ . ε+ (C1ε)

3〈t〉δ, |I| ≤ N − 1,

Egst(t,Γ
Ini)

1

2 . ε+ (C1ε)
3, |I| ≤ N − 1.

(4.15)

Proof By the estimates in Lemma 4.1 and Proposition 2.6, we get

‖ΓIni‖ . ε+ (C1ε)
3 log

1

2 (2 + t), |I| ≤ N − 1, (4.16)

which is even stronger than the first one appearing in (4.15).

Similarly, by the estimates in Lemma 4.1 and the ghost weight energy estimates in Propo-

sition 2.5, we easily obtain the second estimate in (4.15).

The proof is complete.
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4.2 Refined higher-order energy

This part is devoted to show the refined estimates of the highest-order case.

Before we estimate ‖ΓIni‖ for |I| = N , we first introduce the following decomposition. We

recall that (the same argument applies to n2)

�ΓIn1

= ΓIg1 + ΓIf1

=
−n2

1�ΓIn1 − n1n2�ΓIn2

1− n2
1 − n2

2

+
∂µΓ

I(∂µn1∂
νn2 − ∂µn2∂

νn1)∂νn2

1− n2
1 − n2

2

+ ΓIg1 +
n2
1�ΓIn1 + n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

+ ΓIf1

= −∂µ
n2
1∂

µΓIn1

1− n2
1 − n2

2

+ ∂µ
n2
1

1− n2
1 − n2

2

∂µΓIn1 − ∂µ
n1n2∂

µΓIn2

1− n2
1 − n2

2

+ ∂µ
n1n2

1− n2
1 − n2

2

∂µΓIn2

+ ∂µ
ΓI(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

− ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1)∂µ
∂νn2

1− n2
1 − n2

2

+ ΓIg1 +
n2
1�ΓIn1 + n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

+ ΓIf1.

We reorganise the terms to get

�ΓIn1

= ∂µ

(−n2
1∂

µΓIn1 − n1n2∂
µΓIn2 + ΓI(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

)

+ ∂µ
n2
1

1− n2
1 − n2

2

∂µΓIn1 + ∂µ
n1n2

1− n2
1 − n2

2

∂µΓIn2

− ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1)∂µ
∂νn2

1− n2
1 − n2

2

+ ΓIg1 +
n2
1�ΓIn1 + n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

+ ΓIf1. (4.17)

We next introduce the new variables

(m0,m1,m2,m3),

which are solutions to the equations

�mµ =
−n2

1∂
µΓIn1 − n1n2∂

µΓIn2 + ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1)∂νn2

1− n2
1 − n2

2

,

(mµ, ∂tm
µ)(t0) = (0, 0),

(4.18)
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and

�m3 = ∂µ
n2
1

1− n2
1 − n2

2

∂µΓIn1 + ∂µ
n1n2

1− n2
1 − n2

2

∂µΓIn2

− ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1) ∂µ
∂νn2

1− n2
1 − n2

2

+ ΓIg1 +
n2
1�ΓIn1 + n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

+ ΓIf1,

(m3, ∂tm
3)(t0) = (m3

0,m
3
1),

(4.19)

in which

(m3
0,m

3
1)

= (ΓIn1, ∂tΓ
In1 −

−n2
1∂

0ΓIn1 − n1n2∂
0ΓIn2 + ΓI(∂0n1∂

νn2 − ∂0n2∂
νn1)∂νn2

1− n2
1 − n2

2

)(t0).

We note that the relation between n1 and (mµ,m3) reads as follows

ΓIn1 = ∂µm
µ +m3. (4.20)

Thus, to estimate the unknown ΓIn1, it suffices to estimate the new variables (mµ,m3). We

comment that this strategy can also be applied to remove the compactness assumptions on the

model problem studied in [1].

Proposition 4.4 Under the assumptions in (4.3), we have

‖ΓIni‖ . ε+ (C1ε)
3〈t〉3δ , |I| = N. (4.21)

Proof We only provide the proof for ‖ΓIn1‖ with |I| = N .

Step 1 Bounds for ‖∂mµ‖. Recall the equations in (4.18), and the energy estimates for

waves imply

E(mµ, t)
1

2

. E(mµ, t0)
1

2 +

∫ t

t0

∥∥∥−n2
1∂

µΓIn1 − n1n2∂
µΓIn2 + ΓI(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

∥∥∥ dτ

.

∫ t

t0

∑

i

‖∂ΓIni‖
∑

i,|J|≤N−2

∥∥∥n
2
i + |∂ΓJni|2
1− n2

1 − n2
2

∥∥∥
L∞

dτ

. (C1ε)
3

∫ t

t0

〈τ〉−1+2δ dτ . (C1ε)
3〈t〉2δ.

Step 2 Bounds for ‖m3‖.
We rely on Proposition 2.6 to achieve this, so we only need to bound the right-hand side of

equation (4.19), i.e.,

∫ t

t0

∥∥∥∂µ
n2
1

1− n2
1 − n2

2

∂µΓIn1 + ∂µ
n1n2

1− n2
1 − n2

2

∂µΓIn2
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− ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1) ∂µ
∂νn2

1− n2
1 − n2

2

+ ΓIg1 +
n2
1�ΓIn1 + n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

+ ΓIf1

∥∥∥
L1

⋂
L2

dτ.

We first estimate the cubic term ΓI(ni∂µnj∂
µnk) in ΓIf1, which is the worst term in ΓIf1.

We find

∑

i,j,k

‖ΓI(ni∂µnj∂
µnk)‖L1

.
∑

i,j,k,|I1|+|I2|+|I3|≤N

‖ΓI1ni∂µΓ
I2nj∂

µΓI3nk‖L1

.
∑

a,i,j,k,|I1|≤N−2
|I2|≤N,|I3|≤N−2

‖|ΓI1ni| |GaΓ
I2nj| |∂ΓI3nk|‖L1

+ 〈τ〉−1
∑

i,j,k,|I1|≤N−2
|I2|≤N,|I3|≤N−2

‖|ΓI1ni| |∂ΓI2nj | |ΓΓI3nk|‖L1

+ 〈τ〉−1
∑

i,j,k,|I1|≤N
|I2|≤N−2,|I3|≤N−3

‖|ΓI1ni| |ΓΓI2nj| |∂ΓI3nk|‖L1

.
∑

a,i,j,k,|I1|≤N−2
|I2|≤N,|I3|≤N−2

‖ΓI1ni‖
∥∥∥ GaΓ

I2nj

〈τ − r〉 1

2
+δ

∥∥∥‖〈τ − r〉 1

2
+δ∂ΓI3nk‖L∞

+ 〈τ〉−1
∑

i,j,k,|I1|≤N−2
|I2|≤N,|I3|≤N−2

‖ΓI1ni‖L∞ ‖∂ΓI2nj‖ ‖ΓΓI3nk‖

+ 〈τ〉−1
∑

i,j,k,|I1|≤N
|I2|≤N−2,|I3|≤N−2

‖ΓI1ni‖‖ΓΓI2nj‖‖∂ΓI3nk‖L∞

. (C1ε)
3〈τ〉− 3

2
+4δ + (C1ε)

2〈τ〉− 1

2
+2δ

∑

a,j,|I2|≤N

∥∥∥ GaΓ
I2nj

〈τ − r〉 1

2
+δ

∥∥∥

In the same way, we obtain

∑

i,j,k

‖ΓI(ni∂µnj∂
µnk)‖L1

⋂
L2

. (C1ε)
3〈τ〉− 3

2
+4δ + (C1ε)

2〈τ〉− 1

2
+2δ

∑

a,j,|I2|≤N

∥∥∥ GaΓ
I2nj

〈τ − r〉 1

2
+δ

∥∥∥

Thus we proceed to get

∫ t

t0

∑

i,j,k

‖ΓI(ni∂µnj∂
µnk)‖L1

⋂
L2 dτ

. (C1ε)
3 + (C1ε)

2
(∫ t

t0

〈τ〉−1+4δ dτ
) 1

2
∑

a,j,|I2|≤N

( ∫ t

t0

∥∥∥ GaΓ
I2nj

〈τ − r〉 1

2
+δ

∥∥∥
2

dτ
) 1

2

. (C1ε)
3〈t〉2δ. (4.22)
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Very similarly, we can show

∫ t

t0

∥∥∥∂µ
n2
1

1− n2
1 − n2

2

∂µΓIn1 + ∂µ
n1n2

1− n2
1 − n2

2

∂µΓIn2

− ΓI(∂µn1∂
νn2 − ∂µn2∂

νn1)∂µ
∂νn2

1− n2
1 − n2

2

+ ΓIf1

∥∥∥
L1

⋂
L2

dτ

. (C1ε)
3〈t〉2δ. (4.23)

In this step, we are only left with estimating

∫ t

t0

∥∥∥ΓIg1 +
n2
1�ΓIn1 − n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

dτ.

We observe that

∥∥∥ΓIg1 +
n2
1�ΓIn1 − n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

.
∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥�ΓI1n1 Γ
I2

n2
1

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

+
∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥�ΓI1n2 Γ
I2

n1n2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

+
∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥∂µΓI1(∂µn1∂
νn2 − ∂µn2∂

νn1) Γ
I2

∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

.

By recalling the results in Proposition 4.2, we easily get

∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥�ΓI1n1 Γ
I2

n2
1

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

+
∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥�ΓI1n2 Γ
I2

n1n2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

. (C1ε)
3〈τ〉− 5

4
+6δ.

We note that

∑

|I1|+|I2|≤N,|I1|≤N−1

∥∥∥∂µΓI1(∂µn1∂
νn2 − ∂µn2∂

νn1) Γ
I2

∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

.
∑

|J|+|I2|≤N+1
|J|≤N,|I2|≤N,µ

∥∥∥ΓJ(∂µn1∂
νn2 − ∂µn2∂

νn1) Γ
I2

∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

.

The way we show (4.22) leads us to

∑

|J|+|I2|≤N+1
|J|≤N,|I2|≤N,µ

∫ t

t0

∥∥∥ΓJ(∂µn1∂
νn2 − ∂µn2∂

νn1) Γ
I2

∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

dτ . (C1ε)
3〈t〉2δ.

Thus we obtain
∫ t

t0

∥∥∥ΓIg1 +
n2
1�ΓIn1 − n1n2�ΓIn2

1− n2
1 − n2

2

− ∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)∂νn2

1− n2
1 − n2

2

∥∥∥
L1

⋂
L2

dτ



Revisit of the Faddeev Model in Dimension Two 813

. (C1ε)
3〈t〉2δ. (4.24)

The combination of (4.23)–(4.24) and Proposition 2.6 yields

‖m3‖ . ε+ (C1ε)
3〈t〉3δ. (4.25)

Step 3 Bounds for ‖ΓIni‖.
By the estimates in the first two steps, we arrive at

‖ΓIn1‖ . ‖∂µmµ‖+ ‖m3‖ . ε+ (C1ε)
3〈t〉3δ, |I| = N. (4.26)

The same also holds for n2, thus the proof is complete.

Recall the expressions of g1, g2 in (4.2), and we rewrite them as

{
g1 = Pαβ

1 ∂α∂βn1 + Pαβ
2 ∂α∂βn2,

g2 = Pαβ
3 ∂α∂βn2 + Pαβ

4 ∂α∂βn1,
(4.27)

in which




Pαβ
1 =

n2
1η

αβ − ∂νn2∂
νn2η

αβ + ∂αn2∂
βn2

1− n2
1 − n2

2

,

Pαβ
2 =

n1n2η
αβ + ∂νn1∂

νn2η
αβ

1− n2
1 − n2

2

− ∂αn1∂
βn2 + ∂αn2∂

βn1

2(1− n2
1 − n2

2)
,

Pαβ
3 =

n2
2η

αβ + ∂αn1∂
βn1 − ∂νn1∂

νn1η
αβ

1− n2
1 − n2

2

,

Pαβ
2 =

n1n2η
αβ + ∂νn1∂

νn2η
αβ

1− n2
1 − n2

2

− ∂αn1∂
βn2 + ∂αn2∂

βn1

2(1− n2
1 − n2

2)
.

(4.28)

Thus the model equations (1.1) can be written as

{
�n1 + Pαβ

1 ∂α∂βn1 + Pαβ
2 ∂α∂βn2 + f1 = 0,

�n2 + Pαβ
3 ∂α∂βn2 + Pαβ

4 ∂α∂βn1 + f2 = 0.
(4.29)

Acting ΓI with |I| = N to the equations, we further get

{
�ΓIn1 + Pαβ

1 ∂α∂βΓ
In1 + Pαβ

2 ∂α∂βΓ
In2 = −ΓIf1 +Q1,

�ΓIn2 + Pαβ
3 ∂α∂βΓ

In2 + Pαβ
4 ∂α∂βΓ

In1 = −ΓIf2 +Q2,
(4.30)

in which
{
Q1 = Pαβ

1 ∂α∂βΓ
In1 + Pαβ

2 ∂α∂βΓ
In2 − ΓIg1,

Q2 = Pαβ
3 ∂α∂βΓ

In2 + Pαβ
4 ∂α∂βΓ

In1 − ΓIg2.
(4.31)

We note that

Pαβ
i = P βα

i , i = 1, 2, 3, 4

and

Pαβ
2 = Pαβ

4 ,

which guarantee the hyperbolicity of the quasi-linear system.

We first show the estimates for the source terms in (4.30).
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Lemma 4.2 For |I| = N we have

∫ t

t0

(‖ − ΓIf1 +Q1‖+ ‖ − ΓIf2 +Q2‖) dτ . (C1ε)
3. (4.32)

Proof We will only provide the detailed estimates for the term −ΓIf1 + Q1 as the term

−ΓIf2 +Q2 can be bounded in the same way.

We recall that the estimates of (4.22) and (4.23) can be applied to show

∫ t

t0

‖ − ΓIf1‖ dτ . (C1ε)
3,

so we will only need to consider ∫ t

t0

‖Q1‖ dτ.

We observe that

ΓIg1 =
∑

I1+I2=I

ΓI1
−n2

1

1− n2
1 − n2

2

ΓI2�n1 +
∑

I1+I2=I

ΓI1
−n1n2

1− n2
1 − n2

2

ΓI2�n2

+
∑

I1+I2=I

ΓI1
∂νn2

1− n2
1 − n2

2

ΓI2∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)

=
−n2

1

1− n2
1 − n2

2

ΓI�n1 +
−n1n2

1− n2
1 − n2

2

ΓI�n2

+
∂νn2

1− n2
1 − n2

2

ΓI∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)

+
∑

I1+I2=I
|I2|<|I|

ΓI1
−n2

1

1− n2
1 − n2

2

ΓI2�n1 +
∑

I1+I2=I
|I2|<|I|

ΓI1
−n1n2

1− n2
1 − n2

2

ΓI2�n2

+
∑

I1+I2=I
|I2|<|I|

ΓI1
∂νn2

1− n2
1 − n2

2

ΓI2∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1).

For the third term in the right-hand side of the above equation, the commutator estimates yield

∂νn2

1− n2
1 − n2

2

ΓI∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)

=
∂νn2

1− n2
1 − n2

2

∂µΓ
I(∂µn1∂

νn2 − ∂µn2∂
νn1)

+
∑

|J|≤N−1

Cα
J,µ

∂νn2

1− n2
1 − n2

2

∂αΓ
J(∂µn1∂

νn2 − ∂µn2∂
νn1)

=
∂νn2

1− n2
1 − n2

2

∂µ(∂
µΓIn1∂

νn2 − ∂µn2∂
νΓIn1)

+
∂νn2

1− n2
1 − n2

2

∂µ(∂
µn1∂

νΓIn2 − ∂µΓIn2∂
νn1)

+
∑

|I1|+|I2|≤|I|
|I1|<N,|I2|<N

CI1,I2

∂νn2

1− n2
1 − n2

2

∂µ(∂
µΓI1n1∂

νΓI2n2 − ∂µΓI2n2∂
νΓI1n1)
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+
∑

|J|≤N−1

Cα
J,µ

∂νn2

1− n2
1 − n2

2

∂αΓ
J(∂µn1∂

νn2 − ∂µn2∂
νn1),

in which C’s are constants. Gathering the above two identities and recalling (4.31) give us

Q1 = Pαβ
1 ∂α∂βΓ

In1 + Pαβ
2 ∂α∂βΓ

In2 − ΓIg1

=
∑

I1+I2=I
|I2|<|I|

ΓI1
−n2

1

1− n2
1 − n2

2

ΓI2�n1 +
∑

I1+I2=I
|I2|<|I|

ΓI1
−n1n2

1− n2
1 − n2

2

ΓI2�n2

+
∑

I1+I2=I
|I2|<|I|

ΓI1
∂νn2

1− n2
1 − n2

2

ΓI2∂µ(∂
µn1∂

νn2 − ∂µn2∂
νn1)

+
∑

|I1|+|I2|≤|I|
|I1|<N,|I2|<N

CI1,I2

∂νn2

1− n2
1 − n2

2

∂µ(∂
µΓI1n1∂

νΓI2n2 − ∂µΓI2n2∂
νΓI1n1)

+
∑

|J|≤N−1

Cα
J,µ

∂νn2

1− n2
1 − n2

2

∂αΓ
J(∂µn1∂

νn2 − ∂µn2∂
νn1).

We find all of the terms to be estimated are null terms, so the analysis in Lemma 4.1 can

be used to deduce ∫ t

t0

‖Q1‖ dτ . (C1ε)
3.

The proof is complete.

Proposition 4.5 Under the assumptions in (4.3), we have

Egst(t,Γ
Ini)

1

2 . ε+ (C1ε)
2, |I| = N. (4.33)

Proof According to the ghost weight energy estimates in Proposition 2.5, we only need to

show ∫ t

t0

∫

R2

Rdxdτ . (C1ε)
4,

in which (with w1 = ΓIn1, w2 = ΓIn2)

R = |(−ΓIf1 +Q1) ∂tw1|+ |(−ΓIf2 +Q2) ∂tw2|+ |∂αPαβ
1 ∂βw1∂tw1|+ |∂tPαβ

1 ∂αw1∂βw1|
+ |∂αPαβ

2 ∂βw2∂tw1|+ |∂tPαβ
2 ∂αw2∂βw1|+ |∂αPαβ

3 ∂βw2∂tw2|+ |∂tPαβ
3 ∂αw2∂βw2|

+ |∂αPαβ
2 ∂βw1∂tw2|+ |Pαβ

1 ∂αw1∂tw1∂βρ|+ |Pαβ
1 ∂αw1∂βw1∂tρ|+ |Pαβ

2 ∂βw2∂tw1∂αρ|
+ |Pαβ

2 ∂αw1∂βw2∂tρ|+ |Pαβ
3 ∂αw2∂tw2∂βρ|+ |Pαβ

3 ∂αw2∂βw2∂tρ|+ |Pαβ
2 ∂βw1∂tw2∂αρ|

=: R11 +R12 +R13 + · · ·+R44.

We divide these terms into three classes

• Class I: R11,R12.

• Class II: R13,R14,R21,R22,R23,R24,R31,R33,R41,R43.

• Class III: R32,R34,R42,R44.

In each class, we will only illustrate the details of the estimates for one representative term,

and others can be estimates analogously.
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By the estimates in Lemma 4.2, we get
∫ t

t0

∫

R2

R11 dxdτ .

∫ t

t0

‖ − ΓIf1 +Q1‖ ‖∂tΓIn1‖ dτ . (C1ε)
4,

and similarly
∫ t

t0

∫

R2

R12 dxdτ . (C1ε)
4.

Next, we treat the term R13. We first ignore the denominator in Pαβ
1 , and find

∂α(n
2
1η

αβ − ∂νn2∂
νn2η

αβ + ∂αn2∂
βn2)∂βw1∂tw1

= 2n1∂αn1∂
αw1∂tw1 − 2∂ν∂αn2∂

νn2∂
αw1∂tw1

+ ∂α∂
αn2∂

βn2∂βw1∂tw1 + ∂αn2∂α∂
βn2∂βw1∂tw1,

in which we note each term in the right-hand side is null. By Proposition 2.3, we have
∫

R2

|2n1∂αn1∂
αw1∂tw1| dx

.
∑

a

∫

R2

|n1||∂n1||Gaw1||∂tw1| dx+

∫

R2

〈τ〉−1|n1||Γn1||∂w1||∂tw1| dx

.
∑

a

‖〈τ − r〉|n1||∂n1|‖L∞

∥∥∥ Gaw1

〈τ − r〉
∥∥∥‖∂tw1‖+ 〈τ〉−1‖|n1||Γn1|‖L∞‖∂w1‖‖∂tw1‖

. (C1ε)
3
∑

a

〈τ〉−1+6δ
∥∥∥ Gaw1

〈τ − r〉
∥∥∥+ (C1ε)

4〈τ〉−2+6δ ,

and we proceed to get
∫ t

t0

∫

R2

|2n1∂αn1∂
αw1∂tw1| dxdτ

. (C1ε)
3
∑

a

(∫ t

t0

〈τ〉−2+12δ dτ
) 1

2

(∫ t

t0

∥∥∥ Gaw1

〈τ − r〉
∥∥∥
2

dτ
) 1

2

+ (C1ε)
4

∫ t

t0

〈τ〉−2+6δ dτ

. (C1ε)
4.

In the same manner, we can treat other terms in R13 and show
∫ t

t0

∫

R2

R13 dxdτ . (C1ε)
4.

Thus, similarly we get the same bound for other terms in this class.

Now we estimate the term R32. By the smallness of n1, n2, we have

R32 . |n2
1∂αw1∂

αρ∂tw1|+ |∂νn2∂
νn2∂αw1∂

αρ∂tw1|+ |∂αn2∂αw1∂
βn2∂βρ∂tw1|

. |n2
1||∂αw1∂

αρ∂tw1|+ |∂νn2∂
νn2||∂w1||∂tw1|+ |∂n2||∂αn2∂αw1||∂tw1|,

in which we used the relation |∂ρ| . 1 (recall ρ = e
∫

r−τ

−∞
〈s〉−1−2δ ds). Since the last two terms

can be bounded in the same way as we did for the term R13, so we will only estimate the first

term in the right-hand side of the above inequality. We observe that

∂tρ = e
∫

r−τ

−∞
〈s〉−1−2δ ds −1

〈r − τ〉1+2δ
, ∂aρ = e

∫
r−τ

−∞
〈s〉−1−2δ ds 1

〈r − τ〉1+2δ

xa

r
,
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which lead to

Gaρ =
xa

r
∂tρ+ ∂aρ = 0.

By the estimates for null forms in Proposition 2.3, we have
∫

R2

|n2
1||∂αw1∂

αρ∂tw1| dx

.
∑

a

‖〈r − τ〉n2
1‖L∞

∥∥∥ Gaw1

〈r − τ〉
∥∥∥‖∂tw1‖

. (C1ε)
3
∑

a

〈τ〉−1+6δ
∥∥∥ Gaw1

〈r − τ〉
∥∥∥.

By the smallness of δ, we get

∫ t

t0

∫

R2

|n2
1||∂αw1∂

αρ∂tw1| dxdτ

. (C1ε)
3
∑

a

( ∫ t

t0

〈τ〉−2+12δ dτ
) 1

2

(∫ t

t0

∥∥∥ Gaw1

〈r − τ〉
∥∥∥
2

dτ
) 1

2

. (C1ε)
4.

Thus, we get the same bound for other terms in this class.

The proof is done.

We are now ready to provide the proof for our main result.

Proof of Theorem 1.1 By the refined estimates in Propositions 4.3–4.5, we can choose

C1 ≫ 1 very large, and ε ≪ 1 sufficiently small, such that the estimates in (4.5) hold. This

means the solution to the Faddeev model (1.1) exists globally.

The pointwise decay in (1.3) can be seen from (4.15)–(4.16) and the Klainerman-Sobolev

inequality in Proposition 2.4.
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