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Revisit of the Faddeev Model in Dimension Two*

Shijie DONG! Zhen LEI?

Abstract The Faddeev model is a fundamental model in relativistic quantum field theory
used to model elementary particles. The Faddeev model can be regarded as a system
of non-linear wave equations with both quasi-linear and semi-linear non-linearities, which
is particularly challenging in two space dimensions. A key feature of the system is that
there exist undifferentiated wave components in the non-linearities, which somehow causes
extra difficulties. Nevertheless, the Cauchy problem in two space dimenions was tackled
by Lei-Lin-Zhou (2011) with small, regular, and compactly supported initial data, using
Klainerman’s vector field method enhanced by a novel angular-radial anisotropic technique.
In the present paper, the authors revisit the Faddeev model and remove the compactness
assumptions on the initial data by Lei-Lin-Zhou (2011). The proof relies on an improved
L? norm estimate of the wave components in Theorem 3.1 and a decomposition technique
for non-linearities of divergence form.
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1 Introduction

Model Problem We are interested in the Faddeev model in two space dimensions, which
is a very important model in relativistic quantum field theory modelling elementary particles
(see [6-8]). The model equations can be written as follows (see Section 3 for its derivation)

n ni0ny +n2lng (ny 0, (0" 110”0y — 9"130"n1) (—Bymo
O L S + 2 2
N2 1—ni{—n3 ng L —ny —nj Ovma
+ aynlaynl + 81/7123”712 ni + n%aynlaynl + n%ayn28yn2 + 2n1n28ynlayn2 ni
1—n?—n3 n2 (1 =nt—n3)? "
_ (n10um1 + n20,m2)(9"119”ng — 0"129"n1) <_8”n2> =0 (1.1)

1 —n? —n3 duny

In the above, we use [ = 9,0 to denote the wave operator, with 9, = 0., (2°,2%) = (¢, —z4).
We take the metric n = diag(1, —1,—1), and the indices are raised or lowered by the metric 7.
The Einstein summation convention is adopted for repeated indices. We write ||-||z» = ||-[| L (r2)
to denote the usual LP-norm of a nice function and adopt the abbreviation || - || = || - || 2 if no
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confusion arises. We use A < B to indicate A < C'B with C a generic constant, and we use the
notation (p) = (14 |p|2)2. We note that the equations of Faddeev model can be regarded as a
quasi-linear system of wave equations.

The initial data of the Faddeev model (1.1), prescribed at ¢t =ty = 0, are denoted by

(Tli, at’fli)(to = 0) = (Tlio, Tlil), = 1, 2. (12)

The Faddeev model is an important model in quantum field theory with extensive mathe-
matical studies. The investigations on the static Faddeev model or some related problems can
be found in the series of works [18-21] by Lin-Yang. On the other hand, the Cauchy problem
of the Faddeev model was first tackled by Lei-Lin-Zhou [15] in two space dimensions. Later
on, the sharp global regularity for the two dimensional Faddeev model was shown by Geba-
Nakanishi-Zhang [10] under some extra assumptions. Recently, the large data global existence
for the two (and three) dimensional Faddeev model was studied by Geba-Grillakis [9] and by
Zha-Liu-Zhou [27].

We note that the Faddeev model can be regarded as a generalisation of the harmonic maps
RF" — §2. We recall the remarkable pioneering work [11] by Gu on harmonic maps in one
space dimension, which is relevant to our study. He succeeded in treating the harmonic maps
R — M, where M is a complete Riemannian manifold of dimension 7, including the two
dimensional sphere S? as a special case, and proved that the solution to the Cauchy problem
exists globally.

We recall the seminal works [13-14] by Klainerman, [3] by Christodoulou, [23] by Lindblad-
Rodnianski on three dimensional non-linear wave equations, and [1] by Alinhac on two dimen-
sional case. The Cauchy problem of the Faddeev model in three space dimensions and higher
can be solved using these classical theories. This problem is particularly tricky in two space
dimensions. Nevertheless, Lei-Lin-Zhou proved the global well-posedness of the Cauchy prob-
lem of the Faddeev model in two space dimensions with compactly supported initial data. The
prime goal of the present paper is to remove the compactness assumptions on the initial data.
We would also like to draw one’s attention to some recent progress on two dimensional wave
equations of [2, 5, 12, 16].

Main Theorem We want to show the existence of global solutions to system (1.1) and to

derive the pointwise asymptotic behavior of the solutions. Our main result is stated as follows.

Theorem 1.1 Consider the Faddeev model (1.1), and let N > 5 be an integer. Then there
ezists a small g > 0, such that for all initial data satisfying the smallness condition

Z ||AI7’LZ'Q||L2(R2) + Z ||<|{E|>AJTLZ'1||L2(R2)QL1(R2) <e€ S o
[T|[<N+1 |J|I<N

with A € {04,70r, Qap}, the Cauchy problem (1.1)=(1.2) admits a global-in-time solution n =
(n;), which enjoys the pointwise decay results

ni(t, )] S (E+ )72t~ [a)"Tlog(2+ )%,  [Oni(t,x)] S (¢ +|z)THE —z)"E (1.3)

In general, the smallness condition on [[A7u (|11 (r2) is not assumed when treating wave
equations, but we will need it in the proof of Proposition 2.6. We note that similar assumptions
on the initial data also exist in the remarkable result [12], where the authors removed the
compactness assumptions on the celebrated result [1] by Alinhac. In [12], the authors applied a
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novel weighted L>°—L>° estimate for the wave equations to achieve the goals. As a comparison,
we use the energy method to prove Theorem 1.1.

It is known that linear waves in two space dimensions decay at the speed of (t + |a|) =2 (t —
|z|)~ 2, however, there is an extra log(2 + t)2 growth in (1.3) of Theorem 1.1. We note similar
logarithmic growth also occur in the results [24, 26], when using energy method and Klainerman-
Sobolev inequality to derive the pointwise decay of the wave solution itself.

To bound the wave solution itself, a natural way is to apply the Hardy inequality. We recall

I

can be used in higher dimensions n > 3, while the following version of Hardy inequality

that Hardy inequality

<C|v .
paqamy < VW)

< CvaHL2(R2)

le==
L2(R2)

{t —r)

requires the function w to be compactly supported. Unfortunately, neither of the above versions

of Hardy inequality can be applied to our case. New ideas are demanded in dealing with our
problem (1.1).

One key idea is to prove refined estimates on the wave solution itself of [15, Theorem 3.1],
which is demonstrated in Proposition 2.6. Since the Faddeev model (1.1) contains also quasi-
linear non-linearities, the result in Proposition 2.6 cannot be directly applied in the highest-order
case, which is the most difficult part of the analysis. Fortunately, utilising a decomposition can
help us conquer this difficulty; see the discussion in the begining of Section 4.2. Importantly,
this way can also be used to remove the compactness assumptions in [1].

The rest of the paper is organised as follows. In Section 2, we present some preliminaries on
wave equations. Then in Section 3, we illustrate the derivation of the equations of the Faddeev
model (1.1). Finally, we demonstrate the proof of Theorem 1.1 in Section 4.

2 Preliminary

We work in the (1 4 2)-dimensional Minkowski spacetime with signature (+,—,—). A
point in R'*2 is denoted by (2, 2!, 2?) = (¢, —x1, —x2), and its spacial radius is denoted by
r = y/x? +x3. We use Latin letters a,b,-- € {1,2} to represent space indices, while the
spacetime indices are denoted by Greek letters «, 3,--- € {0,1,2}.

The following vector fields will be used when applying Klainerman’s vector field method
and Alinhac’s ghost weight method

translations: 0y =05, a=0,1,2;
rotations:  Qgp := 2,0y — ©p0a, a,b=1,2;
Lorentz boosts: L, := 2,0; +10,, a=1,2;

scaling vector field: Lg := t0; + r0,;

good derivatives: G = ~28, + s, a=1,2.
r
We will use I" to denote the vector fields in

V = {0, Qab, La, Lo }- (2.1)
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For a sufficiently nice function w = w(t, x), we define its energy by

E(w,1) ;:/ (19l + 3 0w dz. (2.2)
R2 -
The following results on commutators will be frequently used, and one refers to [25, Chapter
IT] or [17, Section 3] for the proof.

Proposition 2.1 For any I'',T" € V, we have

O =co, [I"=>) Cr, (2.3)
rev

in which [A, Bl = AB — BA and C,Cr are some constants.
We have the following result, and one refers to [25, Chapter II] for its proof.

Proposition 2.2 For sufficiently nice function w(t,z), it holds
|ow(t, z)| < (t — )7 Tw(t, z)|. (2.4)
We recall the following estimates on the null forms
Qo (v, w) = OQdw + Igvd®w, Qap(v, w) = 0avIdzw — Jgvdw. (2.5)
Proposition 2.3 For sufficiently nice functions v, w, we have the following estimates
Qo (v, )] + |Qas (v, w)| < (&)~ (|Tv]|ow] + Tw||0v]),

Qo (v, w)| + [Qas(v,w)| S Y (|Gav]|dw] + |Gaw||dv]), (2.6)

Qo (v, w)| +1Qas (v, )| $ Y |Gavl|dw| + (t) " |9w][Twl.

Proof For the first estimate in (2.6), one finds its proof in [25, Chapter II] for instance.

For the second estimate in (2.6), we use the relation 9, = G, — (z,/7)0; to derive the desired
bounds.

For the third estimate in (2.6), we observe that for ¢t > 1,

|G qwl||0v] < |Gaw — t ™  Low||0v] + t~ | Law]||Ov]

a t_ — _
< w@wnam +t7 Low||0v] < ()71 0v|[Tw,

and for small ¢ the third estimate in (2.6) is obvious.

The null forms enjoy the following commutating property, and one refers to [25, Chapter 1]
for the proof.

Lemma 2.1 Let " € V, then we have
[Fv Qaﬁ (U7 w)] = C#,VatﬂQ/’“/ (’U, w),
[Fv QO (Uv w)] = O#:E)Q,uu (Uv ’UJ) + CF,OQO(Uv ’UJ),

in which [T, Q(v,w)] =TQ(v,w) — Q(T'v,w) — Q(v,Tw), and C’s are constants.
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We state the classical Klainerman-Sobolev inequality in R'*2, which will be frequently used
in the analysis to derive the pointwise decay of a function, and whose proof can be found in
[25, Chapter II] for instance.

Proposition 2.4 [t holds that

(t+r)at—r)eul < S IT ul pare) (2.7)
[11<2

with {a) = /1 + |al?.

The following ghost weight energy estimates by Alinhac [1] will play a vital role in closing
the higher-order energy estimates. We first define the generalised energy (ghost weight energy)
for a nice function w (with small § > 0 to be fixed in Section 4)

G wl|?
Egst(w,t):/ |6tw|2+2|8 wl]?) da(t —l—Z/ /R2 7"|—7' 1|+25 dadr. (2.8)

More specifically, we will need the following quasi-linear version of ghost weight energy esti-
mates.

Proposition 2.5 Consider the quasi-linear wave system

(2.9)

Ow; + Q?ﬂaaag’wl + Q§‘58a85w2 = hyq,
DOws + Q5P 0a05ws + Q5P 005w1 = ho

with solution (wy,ws) decaying sufficiently fast as |x| — 4+00. We assume the smallness condi-

1
af
>Ry < — o5

a,B,1<i<4

tion

the symmetry condition
Q7 =Q, i=1234,

and the hyperbolicity condition
aB _ ~Hap
2 =Wy

Then we have

t
Egst (wla t) + Egst (w27 t) 5 Egst (wh t()) + Egst (w2, t()) + / RdZIIdT, (210)
R2

in which (with p = el )T ds)

= | f10vwi| + | f2 Oewa| + |00Q5Pdsw18w1 | + 101 Q5P Daw1dpw1 | + |04 Q5 pwadiw |
+10:Q5? 00 w205w1 | + |06 Q5° 5wadiws| + 0,Q5° awadpws| + |0.QS° Dsw: dyws,|
+ Q% 85w1 w100 p| + Q5P a1 Bsw1dsp| + Q5 Dswadiw: Bap| + Q5 a1 Dpwadp|
+ Q57 95w20,w200 p| + |Q5° Daw205w20:p| + Q5 D51 Byw2dap).

Proof The proof follows from the following differential identity

Z 3 ((Daw;)?p) — Da(0w;0w;p) + Z 0(Q5) 9pw;0w; p)

a,j=1,2 7j=1,2
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1 [e3 [e3 [e3
5 2 0(Q5] 1 00w;Opw;p) + 0(Q5" Opw2dywi p) + 9(Q5" Dpundywp)
j=1,2

o 1 Gaw;l? o
— 815(@258&11)18[%11)20) + = Z ﬁ — Z sz_lﬁgwjatwjaap

2 « ;
a,j=1,2 7j=1,2

1 o o &2
+ 3 Z Q2jﬁ_18awj85wj8tp — QQﬁagwgatwlaap - QQﬂﬁgwlﬁtwgﬁap
j=1,2

« (0% 1 (0%
+ Q57 0aw1 0wadip — Y 0aQ5r0pw;Ow;p — 5 > 2iQ57  0aw;dsw;p
j=1,2 J=1,2

— 00Q5P Dpwa0,w1 p — B0 Q3 pw1 Brwap + QS Daur Bpwap = fLOyw1p + fadywap.

To estimate the L? norm of the wave components themselves (with no derivatives), we
introduce the following result, which can be regarded as an enhanced version of [15, Theorem
3.1] (see also [4]).

Proposition 2.6 Suppose w solves the wave equation
Ow = f,
! (2.11)
w(0,:) = wo, Ow(0,-) =wy,
and suppose that
lwoll 2wz + lwillL2®2)nr w2y < 400, (2.12)

as well as
t
/ 17 oz dr < CpBP, B € [0,1). (2.13)
0

Then the following L? norm bound is valid

B(t) +log® (2 + )Cy, B =0,

. (2.14)
B(t) + (t)?logZ (2 +t)Cy, 0< B <1,

||w||L2(]R2) S {

in which B(t) = ||U}QHL2(R2) + log% (2+ t)||w1||L2(R2)ﬂL1(]R2)-

Proof We revisit its proof in [4, 15].
First, we write (2.11) in the Fourier space to get

On(t,€) + €Dt €) = f(¢,6),
{@(0, ) =wo, 9w(0,-) = Wi,
in which (with i = /~1)
B(t,€) = / w(t, 7)e==+" dz.
R2
For this second-order ordinary differential equation in ¢, we can write its solution as

sin(tlg) ; , [*sin( =7l 7
. w1+/0 ol

w(t, &) = cos(t[¢])wo +
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Thus we get
sin(tf¢]) sin((t — 7)lg]) 5
lolza@e) S llwollza@e) + H €] @ ‘ L2(R2?) +/0 HT (T)‘ L2(R2)
=: [lwo||L2(r2) + A1 + As. (2.15)

The terms A;, As need to be carefully treated.
Next, we try to estimate the term A;, and we find

.2 " 2
A% _ / Sin ( |§|) |,&51|2 df +/ Sin (t|€|) |,&71|2 df
{&:1€1<1} {&:1€1=1}

G G
2
5 sin”(tleD) oy
< @] / SO CIED e 2
FE ele<y 1812 L2(R?)

In succession, we have

sin (t|€|) 1 gin2 t|€|
d ds d
/{E:I£|§1} e L / G €l
< sin? pd
~ /0 p

1 t+2 9
§/ 1dp+/ —dp,
0 1 p

in which we used that sin |p| < |p| and |sinp| < 1. Gathering the above results leads us to
A3 Slog(2 + 1) |lwi |72 g2)nrr geys
which yields
Ay S 103 2+ O)][wn | ey v2)- (2.16)

By the analysis for A;, we then estimate the term Ao

‘ sin((t —7)[€]) 2

i f(T)‘ 51Og%(2+t_T)Hf(7')||L2(R2)ﬁL1(]R2)-

L2(R2)

Hence we have .
1
Ar Slogh2+0) [ 170y dr
0

By the assumptions on the function f, and gathering the results in the previous steps, we finally
complete the proof.

3 The Faddeev Model

The mappings of the Faddeev model from the Minkowski spacetime (R'*" 7)) to the unit
sphere S? are denoted by

n: (R n) = §?% (3.1)
whose Lagrangian density reads as folllows (see [6-8])

L(n) = %Bun -OMn — i(@un A Oyn) - (OFn A 0"n).
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The corresponding Euler-Lagrange equations turn out to be
nAd,0'n+ [0u(n- (0"nA0d"n))|0,n=0, (3.2)

and one refers to [6-8] and [22] and the references therein.
Denote n = (n1,n2,n3), and we expand the equations in (3.2) to get

Tl2|:|n3 — Tl3|:|’fl2 = 8#(n . (8”11 A 3”11))8,,711,
nsdni —ni0ng = 0, (n - (0¥n A 0Vn))d,noe, (3.3)
ni0ng — neny = 0y (n - (0¥n A 0Vn))0,ns.

These three equations are linearly dependent. Recall that n lies on the unit sphere S?, which
means

n? +ni + ng =1.
We consider the small perturbations around the point (0,0,1) € S?, and thus n3 is expected
to be close to 1. For this reason, we only consider the first two equations appearing in (3.3),
which are

Ony = EDTLg + iBu(n - (0"n A 0"n))0,na,
n3 n3 (3.4)

Ong = @Dng — i(?M(n- (0"*n A 9"n))0,n;.
ns ns

Recall the relation

1
ngz(l—n%—ng)%

and we replace ng appearing in (3.4) by the expressions of ni,ns.
First, we note that
9, (1 —ni — n%)% =—(1-ni— n%)_%(nlﬁﬂnl + n20,n2).
In succession, we obtain
01 —nf — n%)% =0,0"(1 —ni — n%)%
=—(1-n?- n%)_%(nlaunl + n20,n2)(n10"ny + n2dno)
—(1- n% — ng)_%(aﬂnla"nl + 0,n20"ny + n10ny + nolno).
On the other hand, we find
n- (0"n A 0"n)

= nl((?“nga”ng — BHTL;),BV?’LQ) + ng(ﬁ“ngﬁl’nl — a“nla”ng) + ng(a“nlﬁl’ng — B“ngt?”nl)

1
= m(@“nlaung — 6NTL26V’I’L1).

Thus we obtain (1.1), i.e.,
al(™) 4 n1ny + nolng (nyg . 0, (0"n10"ng — 0*n20¥ny) ((—0,no
n2 1-n?—-n3 \n2 1 —n2 —n3 dyn1
Oyn10”ny + 0,n20"n2 (n, n30,m10"n1 + n30,m20"n2 + 2n1120,m10" N2 (n4
+ 2 _ 2 + 2 _ 22
1—ni—n3 n9 (1 —n7 —nj) N2
B (n10un1 + n20un2)(0#n10"ng — O#n2d¥ny) <—(’9,,n2) —0

1—n?—n3 Oy
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4 Proof of Theorem 1.1

We rely on the bootstrap method and the vector field method to prove Theorem 1.1. We
recall the model equations in (1.1) with I'! acted are

Orin, = Tlg +TLf),
{ 1=+ 104 (4.1)

DFITLQ = FIQQ + FIfQ,

in which we used g, f to denote the quasi-linear terms and the semi-linear terms, respectively,
with

g1\ _ _7’L1|:|TL1 +nslng (ny B au(al‘nl(?”ng — B“nga”nl) —0,ng
92) 1 —n2 —n3 n2 1—n2 —n2 oyn1 )’

f1\ _&,nl@”nl 4+ 0yn20¥ns (g B n20,m10"n1 + n30,m20"ns + 2n1120,M10" N2 (N4
f2) 1 —n2 —n3 no (1 —n? —n3)?
" (nlaunl + ngaung)((?“nl@”ng — B“ngﬁ”nl) <—8un2>

2 2 &,nl

4.2
1—n7—n3 (42)

We note that in the semi-linear part, the first (cubic) term is the worst, so in the sequel we will
mainly focus on the estimate of this term.
Based on the local well-posedness theory, we assume that the following estimates hold for
all t € [to = 0,t1)
Hl"lan S Cl<€<t>6, |I| S N — 1,
IT7n;|| < Cre(t)®, | <N, (4.3)
Eget(t,TTn;)2 < Cie,  |I| < N.
In the above, the parameter 0 < § < 2—14 is a small number, C; > 1 is a large number to be
determined, and € < 1 is sufficiently small such that Cie < i. We note t; is defined by

t1 = sup{t > o : (4.3) holds}. (4.4)

Our goal is to show the refined estimates under the assumptions in (4.3) that

1
Pl < SCre®)’, <N -1,
1
1T ]| < 5016<t>35, [I| < N, (4.5)
o1
Egst(t,l—‘ ’I’Li)2 S 5018, |I| S N.

Once this is done, we can derive a contradiction by the definition of ¢; if ¢; < +o00, which means
t1 = +o00. Hence we assert that the solution to (1.1) exists globally.

Combined with the Klainerman-Sobolev inequality in Proposition (2.4), we have the follow-
ing pointwise estimates.

Proposition 4.1 Let the estimates in (4.3) hold, then the following estimates are valid
ITTng| < Crelt —r)~2(t+7r)"2t35 |I| < N -2,
ITln;| < Cre(t —ry~2(t+r)=2+0 |[| < N -3, (4.6)

1

0T n;| < Crelt —ry~2(t+7r)"2, |I|<N—2.
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We have the following result.

Proposition 4.2 Under the assumptions in (4.3), we have

Orn|| < (Cie)3)—%, |I|< N —1,
{| DR (47)

IO 0| < (Cie)3(t)~%, |I|< N —3.

Proof We first show the second estimate in (4.7). By recalling (4.1), we apply the triangle
inequality to get

00 n| + O no| < [T g1| + [T gaf + [T fo] + [T fol.
Summing over the indices [I| < N — 3 yields

> (O n |+ 00 ne) < >0 (M ga| + T ga| + [T fi] + [T fa).
[I|<N-3 [I|<N-3

Taking into account of (4.2), we find

ST (Mgl + Mg < Y. (OMm|+ (O na)) Y- (T ]+ D ngl)?

[I|<N-3 II<N-3 I|<N-3
+ Y M(0u(0"110"ng — 0"n20"n1)dyma )|
[II<N-3
+ > T (0u(0"110"ng — 0"120"n1)dyma ). (4.8)
[[|<N-3

By the estimates in (4.6), we find

Z (0 na| + T7ng))® < (Cre)?(t) =19
[I|<N-3

as well as

>IN (0u(0"110 0y — 8*120"n1)Dyma))|

[1|<N-3
+ > T (0u(0"n10 0y — 0"120"n1)dyma )|
[1|<N-3
< D0 (orm | + 10T nal)® < (Cre)® ()3,
|J|<N—2

Similarly, we get

S (T AL+ I D S (e,

[I|<N-3
Gathering these estimates, we arrive at
> (a0 ny | + O ng))
[I|<N-3

<C(C1e)*(t) % 3" (|00 | + (O naf) + O(Cre)(r) =3+,
[I|<N-3
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The smallness of Ci¢ and the smallness of § lead us to
> (IOr | + O na|) < (Cre)*(t) 3.
[I|<N-3

In a similar manner, we can show the first estimate appearing in (4.7). Thus the proof is
complete.

4.1 Refined lower-order energy

In this part, we will derive the refined estimates for the lower-order case, which are relatively
easier.
We start with one lemma.

Lemma 4.1 Let the assumptions in (4.3) hold, then the following estimate is valid for all
[I| <N -1
I fillor e + 0 fellqze + 10 gullor oz + 10 goll e S (Cre)® (@) ~5F4. (4.9)

Proof We note that the bounds of the L? part in (4.9) are easier than the L' part, so we
will only provide details of the estimates for the L! part.
First, we find

> T (nin;Ong) || 2
[]<N-1,1<i,j,k<2
< > [Thn; T 2n, OB ny || 11
[Ty |+|I2|4+|I3| <N -1
1<, j, k<2
< > I | [T 2705 || O e | oo
1| +|I2| <N —1,| I3[ <N =3,
1<, j, k<2
+ > I 70| oo (T2 |02 |
2| +|I3| <N —1,| 11| <N =3,
1<i,5,k<2

S (Cre)P (=it

in which % < N —3 (i.e., N > 5) suffices to guarantee the last inequality. Thus we have

1 niniOng
D

—n Ll
[I|<N—-1,1<i,j,k<2 Lo
I
- Z r (nmank)‘
~ 1—n?—nZ Il
[I|<N-1,1<4,5,k<2
1
Z I I
- - —n?—n3liL
[1:|<N-2,1<[I2|<N -1
1<4,5,k<2
3\ —5+48
< (Cref (e, (4.10)

in which we used the observation that I'/2 m%_—ng produces higher-order (better) terms in the
1 2

last step. Next, we note

S I [0,(0"01 8" ng — 910 n )0l

[I[SN—-1,1<i<2
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5 Z HFII (’9” (B“nla”ng — 8“n28”n1)1“12 &,niHLl
1|+ T2 <N —1,1<i<2
Sa(t)™! > |07 9| T2 | D72 O | .
[J1]|+]J2| <N, [J5| <N -2
1<i,5,k<2
+(7 > 1070l < || D72 || [T O |
[J1|+|J2|<N=2,|J3|<N-1
1<4,5,k<2

S (Cre)’(t) 7320,

Since again the terms '/ ——3——,1 < |J| < N — 1 will not cause trouble, we obtain
1 2

FI 8ﬂ(8*‘n18"n2 — 8“7123”’/11)8,,7%
Z 1—n2 —n2 Lt
[[|<N—1,1<i<2 1 2
< FI[BM((?“nla”ng — 8”n28”n1)8,,ni]
~ Z 1—n?—n3 L
[[|<N-1,1<i<2 1 2
1
+ 3 Hrh [0, (0110”13 — 0128”11 Dymi] rbﬁ‘
|| <N-2,1<|Is|<N—1 L=ny—n3lin
11> A2
1<i<2
< (Cre)3 ()~ 2128, (4.11)
The estimates (4.10) and (4.11) lead us to
> (Mgl + 1T gall ) S (Cre)* ()1, (4.12)
TI<N—1
and hence
S U gl e + 1M gallr qz2) S (Cre)® )= 3 44, (4.13)
TI<N-1
Similarly, we have
_3
> (P Allraze + 1T fallrqz2) S (Cre)P(t) =2+, (4.14)
[[]<N-1
The proof is done.
Proposition 4.3 Under the assumptions in (4.3), we have
Il S e (Cuopte?, <N -1, s
Egt(t,T7n)2 S e+ (Cre)3, |[I| <N —1. '
Proof By the estimates in Lemma 4.1 and Proposition 2.6, we get
IDTni|| < e+ (Che)®log? (2 +1¢), |I| <N —1, (4.16)

which is even stronger than the first one appearing in (4.15).

Similarly, by the estimates in Lemma 4.1 and the ghost weight energy estimates in Propo-
sition 2.5, we easily obtain the second estimate in (4.15).

The proof is complete.
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4.2 Refined higher-order energy

This part is devoted to show the refined estimates of the highest-order case.

809

Before we estimate |['/n;|| for |I| = N, we first introduce the following decomposition. We

recall that (the same argument applies to ns)

DFInl
=T'g+1'f
_ —R%DFITM — Tlﬂ”LQDFITLQ T QLI‘I(@“nl&”nQ — 8”7128”711)8,,712
1—n? —n 1—n? —n3
nfDFlnl + Tlﬂ”LQDFITLQ auFI (8“7118”712 — 8”7128”711)81,712
1 —n? —n2 1—n? —n
n2oHTIn, n? ninOPTIng n1M9
=—9,—* 0, 1 M In, — 9 0
“1—n%—n§+ 1 —n? —n3 " “1—n%—n§+ "1—-n?—n3

I/an v Al v
r (8 n16 no 26 TL226 nl)&,ng —I‘I(B“nlt?”ng —8‘“712(9”7“)6 5,,112

+Tg; + +T1f

+0,

300 ny + nyn 00 ng B 9, T (0Fn10"ng — 0Mnsd”ny)Oyna

2 2
1—n{—n3 1—n7—n3

+ g1 +

We reorganise the terms to get

arfin,
_9 (—n%@“Flnl — ninedHT g 4+ TH(0Mn10%ny — 8”7128”711)8,,712)
=0y

2_ 2
1—-n7—n3

2
n ning
9 "1 gupl 0y ————0"T!
+ "1 —n? —n? m "1-nf—nj "
aun
I v " vit2
— DO 00y = 00" )Ou T s

n%DFlnl + anLQDFITLQ 8#F1(8“n18”n2 — 8“712811711)8,,712

—|—FIgl + — —I—Flfl.

2 2

2 _ 2
1 —n3 1—n

1—-n {—ns

We next introduce the new variables

(mo, mt,m2, m3),

which are solutions to the equations

—n20PTIny — ningd"TIng + T (0Hn10"ng — 0Hn2dny)0,na

2 2 )
1— N3

Om# =

1—n
(m,u7 8tm#)(t0) = (07 O)a

1 2
1—n? —n2 L—mni—mnj

 E— +T!f1.

3 8#FITLQ

(4.17)

(4.18)
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and

Om? =9 30" T + 0,7 T2 9T n,

1 —n? —n3 —n? —nj
8 N9

—I‘I@“ d"ng — Mnod” 87
(0M110"n2 n20"n1) CE n? —n2

n%DFInl —|—n1n2DF N9 (419)
1 —n% —n%

0,1 (9110 ny — OMned¥nq)dun
Oy ( 1 22 22 1) 2+l"1f1,
1—-ni—n3

(m37 Bth)(to) = (mg, mili)v

+Tg; +

in which

(mj, m¥)

—n20°T ng — n1nad°Tng + (010" Ny — 8°1n20"n1)0,no

P} P} )(tO)'

= (I‘Inl,@tl"lnl
1—-ni—n3

We note that the relation between n; and (m*, m?) reads as follows
IMny = 9,mt +m?. (4.20)

Thus, to estimate the unknown I''nq, it suffices to estimate the new variables (m*, m?). We
comment that this strategy can also be applied to remove the compactness assumptions on the
model problem studied in [1].

Proposition 4.4 Under the assumptions in (4.3), we have
IT"nl| S e+ (Cre)®*()®,  |I| = N. (4.21)

Proof We only provide the proof for | Tn:| with [I| = N

Step 1 Bounds for |[Om#||. Recall the equations in (4.18), and the energy estimates for
waves imply

E(m“,t)%
b =n3orT g — orT! (04110 ny — 0*120"n1)0,
SE(m“,to)%—i-/ ni ny — nin2 7;24— 2( ;11 N2 n20"ny) nngT
to —ny— Ny
t T |2
n? 4 |or n|
S D S e A
to i |J|<N-2 1 2

t
S (@ [ S @0
to
Step 2 Bounds for ||m?|.
We rely on Proposition 2.6 to achieve this, so we only need to bound the right-hand side of
equation (4.19), i.e

t 2
ny ning
#78@‘ ny + aﬂﬁﬁ“lﬂnz
1 n3 ny —ns
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n%Dl"Inl + nyne0lng

o,n
— FI (8”7113”712 — 8“7128”711) aﬂﬁ + FIgl 1 7’L2 nQ
Tl T2 Tl T2

_ 0T (8"n10"ng — 0"120"n1) 0o + I‘Ifl‘

2 _ 2
1—-n7—n3

L'N L2

We first estimate the cubic term I' (rn;0,m;0"ny) in T f1, which is the worst term in T' f

We find
D IT (1:0,m;0"ns) | o
.5,k
Z 1T 0,;0, T2 n;0MT 0y || 11
b0,k [Ty |+ 2|+ 13| <N
S > 107 724] | GaT 25| [OT T e .

~

<

a,i,j,k, [ 11| <N -2
[I2|<N,|I3|<N -2

+ ()t > [T 74| [T 25| [TT 2 || 1
1,5k, | 11 |[<N—2
[I2|<N,|I3|<N -2
+(n)~! > [T 0| LT 2] [OT 2 1 || L1
4,4,k | 1| <N

[I2|<N—-2,|I3]<N-3
GoI'2n,
s X el i - er g

a,i gk, [ 11| <N —2
[I2|<N,|I3|<N -2

+(r)™! > T i 2o [T 2n | [PT o ny

1,5k, | 11 |[<N—2
[I2|<N,|[I3|<N -2

+(r)~! > T [[[TT 2 ||| 0T g | oo
i.g.k,| I | <N
|I| <N —2,| 5| <N -2
: Gal'l2n;
S (e g (e i Y | e
ailn<n (T =T
In the same way, we obtain
D T (r30um;0#ng) | £ 12
N
Gal"fz .
S (Crefn) 0 4 (Crepir) i S || S
ATAPT A Gtk
Thus we proceed to get
/ > T (ni0un; 0" ni) || L1 2 dT
to 0,5,k
t 1 t I
Gal2n; P2
s@or ([ mea)t S (| EEgs] )
to wiinien o T =)

< (Cre)* ().

1
2

811

(4.22)
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Very similarly, we can show

t 2
n ning
0y———a——0"Tny + 0, ————=0"T'n
/toH”l—n%—ng PRI 2 o2 E
)
v dr
L' L2

< (Cre) (). (4.23)

— 101,80 ny — P1pd”n1 )8, —2 12 4 I ‘
(0*n10"no n20"n1) “1—n%—n%+ fi

In this step, we are only left with estimating

/t
to

We observe that

I n%DFlnl — anLQDFITLQ 8#F1(8“n18”n2 — 8“712811711)8,,712
Do+ 1—n? —n3 B 1 —n?—n2 ’
1 2 1 2

LN L2

HFI 4 n%DFlnl — anLQDFITLQ - QLFI(&“nl@”nQ — 8“7128”’/11)8,,712}
g 1—n2 —n3 1 —n2 —n3 LN L2
2
< Z thn FI2 ni
~ Yore o n2llenee
[L1 [+ 12| <N, |1 | SN -1 .
I I n1n2
+ Z HDFlmrzl—n?—nz‘Llﬂw
L[ +|L2| <N, | L] <N -1 L2
aun
+ 3 0" (@118 nz — 0nz0 ) T 22 ,
1—ni—n3llLrnL2
[I1]+]12| <N, [[1|<N -1
By recalling the results in Proposition 4.2, we easily get
2
n
Z HDFIlnl ke > 2‘
1—n7—n3llLriNL2
[I1]|+]12| <N, [[1|<N -1
+ 3 |arin, re 2|
1—n?2 —n2llcinee
[ |+ 12| <N, | |[<N-1
S (Cre)(r) i,
We note that
oyn
3 [ et
—ni —nsllLinec?

[I1|+[ 2| <N, |1 |[<N-1

Oyn
< J o v _ap v I vit2
s Y Memern -0t ”1>F21_n§_ng‘mm2-
[J|+[12|<N+1
[JISN, 12| <N,
The way we show (4.22) leads us to
E /t HFJ((?NTLl(?VTLQ — 8“n28”n1)l"12%‘ dr < (016)3<t>26
to 1—n?2—nilleine: ™~ '

||+ T2 SN +1
[JISN, [ I2|<Np

Thus we obtain

t
»/to

FI n%DFInl — Tlﬂ”LQDFITLQ QLI‘I(@“nl&”nQ — 8”7128”711)8,,712
g1+ 1—n?—n32 B 1—n? —n3
1 2 1 2

LN L2
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S (Cie)* ()™,

The combination of (4.23)—(4.24) and Proposition 2.6 yields

Im?|| S &+ (Cre)* ().
Step 3 Bounds for |[Tn,].
By the estimates in the first two steps, we arrive at
IT 0]l S N0um” || + [m?]| S e+ (Cre)’()*,  |I] = N.

The same also holds for no, thus the proof is complete.

Recall the expressions of g1, g2 in (4.2), and we rewrite them as

g1 = PP 0,051 + P§P0,08ns,
g2 = P§P0,05m5 + PP 04,0501,

in which
pos _ n2n*8 — 0,me0"nan®? + 0%nedPny
! 1 —n? —n2 ’
pes _ ninan®? 4+ 0,m10"nyn>8 B 0°n10%ns + 0%n20Pny
2 1—n2 —n3 2(1 — n? —n3)
P?)aﬂ _ n2n®? + 0°n10°n, — 8,m10"n NP
1 —n? —n2 ’
pes _ n1nen®® + 0,m10" nan™? B 0°n10%ny + 0%n20Pn,
2 1—n?—n3 2(1 —n? —n3) '

Thus the model equations (1.1) can be written as

Ony + Plaﬁaaaﬁnl + Pga'gaaa,em + f1 =0,
Ono + P3P 0,05m2 + PeP0,0sm1 + f2 = 0.

Acting T'Y with |I| = N to the equations, we further get

DFITll + Pf“ﬁaaaﬁl“’nl + P;ﬂaaagrlnz = —FIfl + Q1,
O ny 4 PP 0005 ng + PP 0,057 0y = =TT fy + Qa,
in which
Q1 = PPP0,05T 01 4 PSP 0,057 ng — T gy,
Q2 = P2P 0,05 ng + PP 0,057 0y — T g,
We note that
PP —pPr i=1,234
and

P;ﬁ — Pfﬁ

3

which guarantee the hyperbolicity of the quasi-linear system.
We first show the estimates for the source terms in (4.30).

813

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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Lemma 4.2 For |I| = N we have

/ (I =TT f + Qull + [ =T f2 + Q2] dr < (Cre)®. (4.32)

to

Proof We will only provide the detailed estimates for the term -1 f1 + Q1 as the term
—I'' f + Q2 can be bounded in the same way.
We recall that the estimates of (4.22) and (4.23) can be applied to show

H — T filldr < (Cre)’,

to
so we will only need to consider
t
Q1] dr.
to
We observe that
Mg = Y Fh;ﬁzmn + ¥ Fhﬂplzgn
gL = 1-—n?2— ! 1—n?—n3 ?
I 1 1 2
1+12=1 I +1,=1
+ Y et Qv T 0u(0 M0 s — 0z )
I +1>=1
2
+F1Dn1 + AN
1 —n? —n3 —ni—
0
+ %rfau(aﬂnlavng — 9"nyd¥ny)
—n?—
- —nin2
+ Z Fh 1"12 Dnl + Z FII mrlz DTLQ
I+1I>=1I L+ To=T 1 2
[12]<1| [T2]<|T]
17)
oy T _n”"? T%20,,(0"110"ng — 9120 ny).
Ii+1Ix=1I 1
La1< 1]

For the third term in the right-hand side of the above equation, the commutator estimates yield

(91,712
1—n?—
&,nz I v v
= fa I (3‘“7118 ng — 8””28 nl)
1—n2 —n3
8 no J v
+ Z 78 ' (0"n10"ng — 0"n20"ny)

|J|I<N-1

n% Flaﬂ(ﬁ“nla”ng — 8#71281/711)

Ovna 0,(0"T 010”0y — 90" T ny)

g
Byng I / .
T 7 g On(@ M T ing = 90 m)
0y
+ Z Cn.1, %au(a“l“hnlﬁ”I‘th — 0" T2y T iy
—ny N
|1 [+ T2 | <]

[T1|<N,[I2| <N
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oun
+ 0y cmliza I (0"n10"ny — 8"n29"ny),
|J|<N—1

in which C’s are constants. Gathering the above two identities and recalling (4.31) give us

Q1 = PP, agrfnl + Paﬂa 95T ng — Tl gy

—nNning
= Z Pll 1"12 Dnl + Z FII mI‘IZDnQ
I +Io=I Li+I=I 1 2
[I2]<|I] [I2] <[]
+ oy et Oz FI28 (0110”05 — P12 my)
I +1>=1
[I2|< ||
0
Y O 00 T md T g — 9T nad T )
Ty |+ T2 <| 1| ro
[I1|<N,|I2|<N
+ > CJ#1 0 I(0"n10"ny — 0"120"n1).
|J|<N-—1

We find all of the terms to be estimated are null terms, so the analysis in Lemma 4.1 can
be used to deduce

||Q1|| dr < (Cre)’.

The proof is complete.

Proposition 4.5 Under the assumptions in (4.3), we have
Bat (t,TTn;)2 S e+ (Cie)?,  |I] = N. (4.33)

Proof According to the ghost weight energy estimates in Proposition 2.5, we only need to

show

t
/ Rdzdr < (Cre),
R2
in which (Wlth wyp = Flnl, wo = FITLQ)

= (=T f1 + Q1) Qewr| + [(=T" fo + Q2) Qywa| + |06 P{P dgw10pw1| + |0, 7 D1 B |
+ 100 PSP 5w dyw | + 10, PSP 0wadpwn | + |00 PP Ogwadyws| 4 |0, P3P dawedgws|
+ 100 PSP 03w1 Oywa | + | PR Oqwy Oywy g p| + | PR Oqun Dgw: 8yp| + |P2a'8(9,3w26tw16ap|
+ | PSP 80wy 85w20, p| + | PSP 80w Brwadpp| + | PSP 80wadpwadyp| + | PSP 85w1 0ywadepl
=:Ri1 +Riz2+Riz+ -+ Rua.

We divide these terms into three classes

e Class I: R11,R12.

o Class II: R13, Ri4, Ra1, Raz, Ras, Roa, R31, Raz, Ra1, Ras.

e Class I1I: R32, R34, Ra2, Raa.
In each class, we will only illustrate the details of the estimates for one representative term,
and others can be estimates analogously.
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By the estimates in Lemma 4.2, we get

t t
/ Rudedr < [ | = T2 f + Qull |0 m | dr < (Cae)*,
t

o JR? to

and similarly
t
/ ng dadr S (016)4.
to JR2

Next, we treat the term R13. We first ignore the denominator in P;* A , and find

Oy, (n%naﬁ — 3yn28”n2no‘ﬂ + 80‘n28'8n2)85w18tw1
= 2n18an16°‘w18tw1 — 26V8an28”n26°‘w18tw1

+ 000120 n905w1 04wy + 0*N200,0° n205w1 Oy,

in which we note each term in the right-hand side is null. By Proposition 2.3, we have

/ [21104m1 0% w1 Opw1 | d
]R2

gz/ |n1||8n1||Gaw1||8tw1|dx+/ (7)Y~ Yna| [Ty || 0w || Dyw, | das
o JR2 R2

Gow
S ol =m0

’ + (ClE)4<T>_2+66,

10wl + ¢7) = Nl 0 | o< O Guen |

S (018)3 Z<T>_1+66 H <fa_w;>

and we proceed to get

t
/ / [211 0411 0%w1 Oy w1 | dadr
to JR2

< (Che)? Z (/t<T>—2+125 dr) B (/t: H <fll_w;> szr)% + (Cie)* /t:<7_>—2+66 dr

to

< (Cre)t.

In the same manner, we can treat other terms in Rq3 and show

t
/ ng dzdr 5 (015)4.
to R2

Thus, similarly we get the same bound for other terms in this class.
Now we estimate the term R3o. By the smallness of ny,no, we have

Raz < [n30aw10%pdywy | + |0,m20" nadaw1 0% pOywy | + |80‘n28aw185n235p8tw1|
< |n%||8aw13°‘p8tw1| + |0yn20" na||Ows ||Opwr | + |Ona||0%nedawy ||Opw |,

—1-25 g .
). Since the last two terms

in which we used the relation |0p| < 1 (recall p = A
can be bounded in the same way as we did for the term Rq3, so we will only estimate the first
term in the right-hand side of the above inequality. We observe that

_ frgor<s>f1725 ds —1 _ fr;r<s>f1725 ds 1 x_a
8tp_e <7’—T>1+25’ 8ap_e <T—T>1+25 r )
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which lead to

By

By

T4
Gup = 76tp + 0qp = 0.

the estimates for null forms in Proposition 2.3, we have
/ 12|00 w1 0% pOwr | da
R2
Gawl
MR LI e (A1

S (Cre* Yoy | 2|

- (r—m)

the smallness of J, we get
t
// 12|00 w1 0 pdyw: | dzdT
to R2

s T ([ o) ([ 2o < 0o

to

Thus, we get the same bound for other terms in this class.

Cy

The proof is done.
We are now ready to provide the proof for our main result.

Proof of Theorem 1.1 By the refined estimates in Propositions 4.3-4.5, we can choose
> 1 very large, and ¢ < 1 sufficiently small, such that the estimates in (4.5) hold. This

means the solution to the Faddeev model (1.1) exists globally.

The pointwise decay in (1.3) can be seen from (4.15)—(4.16) and the Klainerman-Sobolev

inequality in Proposition 2.4.
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