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1 Introduction

Multiplier ideal sheaves have been playing an important role in several complex variables

and complex geometry, since its introduction in 1990’s (e.g., see [4, 17, 23–24]). The basic

properties of a multiplier ideal sheaf include its coherence, integral closedness and Nadel’s

vanishing theorem.

Later on, Demailly (see [4–5]) proposed the strong openness conjecture which asserts that a

multiplier ideal sheaf satisfies the strong openness property. The conjecture was also stated by

Siu, Y.-T. in [22] and many others. In 2013, the first author and the third author solved the

conjecture (see [13]).

In this paper, we study a more general openness property called stability for a multiplier

ideal sheaf. The paper was posted on arXiv (see [8]).

Let D ⊂ Cn be a bounded pseudoconvex domain, o ∈ D be the origin of Cn and ϕ ∈ Psh(D)

be a plurisubharmonic function on D. The multiplier ideal sheaf I (ϕ) consists of germs of

holomorphic functions f such that |f |2e−ϕ is locally integrable, which is a coherent sheaf of

ideals (see [5]).

Demailly’s strong openness conjecture (SOC for short) (see [4]) If (f, o) ∈ I (ϕ)o,

then there exists δ > 0 such that (f, o) ∈ I ((1 + δ)ϕ)o.

Here δ seems to be dependent on the germ (f, o), however, by the coherence of the multiplier

ideal sheaf, δ is actually independent of the germ (f, o).
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Note that I (ϕ)o is finitely generated by (fj)j=1,··· ,k0 . Let I (ϕ)o = (f1, · · · , fk0). The truth

of SOC implies that there exists δj > 0 such that (fj , o) ∈ I ((1 + δj)ϕ)o for any 1 ≤ j ≤ k0.

Then, SOC is equivalent to the equality I (ϕ)o = I ((1 + δ0)ϕ)o, where δ0 = min
1≤j≤k0

{δj} which

is independent of the germ (f, o).

As I ((1 + δ0)ϕ)o ⊂ I+(ϕ)o :=
⋃
δ>0

I ((1 + δ)ϕ)o ⊂ I (ϕ)o, SOC is also equivalent to the

equality I (ϕ)o = I+(ϕ)o.

Another reformulation of the strong openness conjecture is that {p ∈ R : |f |2e−pϕ is locally

integrable} is open. When I (ϕ)o is trivial, the so-called openness conjecture was solved by

Berndtsson in [2]. Such assertions originate from the fundamental fact in calculus: the set{
p ∈ R : 1

|x|pc = e−pϕ is locally integrable at the origin
}
is open, which is actually =

{
p < 1

c

}
,

where ϕ = c log |x|, c > 0. This explains why openness and strong openness are named so.

In [13], Guan and Zhou proved the above SOC. Moreover, they also established an effec-

tiveness lower bound for δ in the conjecture in [14].

In the present article, we obtain the following stability of multiplier ideal sheaves.

Theorem 1.1 Let (ϕj)j∈N+ be a sequence of negative plurisubharmonic functions on D,

which is convergent to ϕ ∈ Psh(D) in Lebesgue measure, and I (ϕj)o ⊂ I (ϕ)o. Let (Fj)j∈N+ be

a sequence of holomorphic functions on D with (Fj , o) ∈ I (ϕ)o, which is compactly convergent

to a holomorphic function F . Then, |Fj |
2e−ϕj converges to |F |2e−ϕ in the L1 norm near o.

In particular, there exists ε0 > 0 such that I (ϕj)o = I ((1 + ε0)ϕj)o = I (ϕ)o for any large

enough j.

The last conclusion in the above theorem can be obtained by [14, Proposition 1.8] and by

the finite generation of I (ϕ)o.

The following proposition can be deduced from [16, Theorem 4.1.8]. Here we give another

proof by using our main theorem.

Proposition 1.1 Let (ϕj)j∈N+ be a sequence of negative plurisubharmonic functions on

D. If ϕj is convergent to ϕ ∈ Psh(D) in Lebesgue measure, then ϕj converges to ϕ in the

L
p
loc (0 < p <∞) norm.

Proof It suffices to prove when p ∈ N+. By scaling, we can assume the Lelong number

ν(ϕ, o) < 1. Thus, I (ϕj)o ⊂ I (ϕ)o = Oo. Then, the desired result follows from Theorem 1.1

and the inequality
1

p!

∫

D

|ϕj − ϕ|pdλn ≤

∫

D

|e−ϕj − e−ϕ|dλn,

which follows from the inequality 1
p! (a− b)p ≤ (ea−b − 1)eb for any a ≥ b ≥ 0.

As an application of Theorem 1.1, we can conclude the following semi-continuity of complex

singularity exponents.

Corollary 1.1 (see [6, Main Theorem 0.2]) Let X be a complex manifold, K ⊂ X be a

compact subset and ϕ be a plurisubharmonic function on X. If c < cK(ϕ) (complex singularity

exponent of ϕ on K) and (ϕj) is a sequence of plurisubharmonic functions on X which is con-
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vergent to ϕ in L1
loc norm, then e−2cϕj converges to e−2cϕ in L1 norm over some neighborhood

U of K.

Indeed, by subtracting a constant, we can assume that ϕ is negative on K. As
∫
K
ϕjdλn ≤∫

K
|ϕ − ϕj |dλn +

∫
K
ϕdλn, we obtain that ϕj is also negative on K. Then, Corollary 1.1 is a

special case of Theorem 1.1 when I (ϕ)o = Oo.

With the additional conditions ϕj ≤ ϕ and Fj = F , Theorem 1.1 reduces to the main result

in [18].

If ϕ = log |g| with |g|2 := |g1|
2 + · · · + |gJ |

2 for holomorphic functions g1, · · · , gJ on a

concentric polydisk ∆n ×∆, then it follows that the following holds.

Corollary 1.2 (see [19, Main Theorem]) Assume that
∫
∆n |g(z, 0)|−δ < ∞. Then there

exists a smaller concentric polydisk ∆′n ×∆′ so that the function c 7→
∫
∆′n |g(z, c)|−δ is finite

and continuous for c ∈ ∆′ ⊂⊂ ∆.

2 Lemmas Used in the Proof of Main Results

Let L2
O(D) be the Hilbert space of homomorphic functions on D with finite L2 norm, i.e.,

L2
O(D) :=

{
f ∈ O(D)

∣∣∣ ‖f‖2D =

∫

D

|f |2dλn <∞
}
,

whose inner product is defined to be (f, g) =
∫
D
f · gdλn, ∀f, g ∈ L2

O(D).

We are now in a position to prove the following lemma.

Lemma 2.1 Let I ⊂ Oo be an ideal and (ek)k∈N+ be an orthonormal basis of

HI := {f∈L2
O(D) | (f, o) ∈ I},

a closed subspace of L2
O(D). Then, there exist a neighborhood U0⊂⊂D of o, an integer k0 > 0

and some constant C0 > 1 such that

∞∑

k=1

|ek|
2 ≤ C0 ·

k0∑

k=1

|ek|
2 on U0.

Proof It follows from the strong Noetherian property of coherent analytic sheaves that the

sequence of ideal sheaves generated by the holomorphic functions

(ek(z)ek(w))k≤N , N = 1, 2, · · ·

on D×D∗ is locally stationary, where D∗ := {w | w ∈ D}.

Let B⊂⊂D be a ball centered at o. Then there exists k0 > 0 such that for any N ≥ k0, we

have (ek(z)ek(w))k≤N = (ek(z)ek(w))k≤k0 on B ×B.

Complete (ek) to an orthonormal basis (ẽα) of L2
O(D). Then,

∞∑
k=1

|ek(z)|
2 is a subsum

of
∞∑
α=1

|ẽα(z)|
2, which is known to converge uniformly on compact subsets by the theory of
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Bergman kernel. Thus, it follows from the inequality

∣∣∣
q∑

k=p

ek(z)ek(w)
∣∣∣ ≤

( q∑

k=p

|ek(z)|
2

q∑

k=p

|ek(w)|
2
) 1

2

that
∞∑
k=1

ek(z)ek(w) is uniformly convergent on every compact subset of D×D∗.

By the closedness of the sections of coherent analytic sheaves under the topology of com-

pact convergence (see [7]),
∞∑
k=1

ek(z)ek(w) is a section of the coherent ideal sheaf generated

by (ek(z)ek(w))k≤k0 over B×B. Then, there exist a smaller ball B0⊂⊂B centered at o and

functions ak(z, w) ∈ O(B0×B0), 1 ≤ k ≤ k0, such that on B0×B0,

∞∑

k=1

ek(z)ek(w) =

k0∑

k=1

ak(z, w)ek(z)ek(w).

Finally, by restricting to the conjugate diagonal w = z, we get

∞∑

k=1

|ek|
2 ≤ C0 ·

k0∑

k=1

|ek|
2 on B0.

In order to prove Theorem 1.1, we also need the following lemma (see the Appendix 4 for a

proof), whose various forms already appear in [10–12, 14].

Lemma 2.2 Let B ∈ (0,+∞) be arbitrarily given and t0 be a positive number. Let D ⊂ Cn

be a bounded pseudoconvex domain containing the origin o. Let ψ be a negative plurisubharmonic

function on D such that ψ(o) = −∞ and ϕ be a plurisubharmonic function on D. Then, for

any bounded holomorphic function F on {ψ < −t0} satisfying

∫

D

1

B
1{−t0−B<ψ<−t0}|F |

2e−ϕdλn ≤ C1 < +∞, (2.1)

there exists a holomorphic function F̃ on D such that
∫

D

|F̃ − b(ψ)F |2e−ϕ+v(ψ)dλn ≤ (1− e−(t0+B))C1, (2.2)

which implies

(F̃ − F, o) ∈ I (ϕ)o,

where C1 > 0 is a constant, b(t) = 1−
∫ t
−∞

1
B
1{−t0−B<s<−t0}ds and v(t) =

∫ t
0
(1 − b(s))ds.

It is clear that 1{−t0<t<+∞} ≤ 1 − b(t) ≤ 1{−t0−B<t<+∞} and max{t,−t0 − B} ≤ v(t) ≤

max{t,−t0}.

The following lemma is well known in real analysis (see the proof of [15, Theorem 13.44]).

Lemma 2.3 Let (fj)j∈N+ be a sequence of functions in L
p
loc(D) (p > 1), which is convergent

to f in Lebesgue measure. If there exists some constant M > 0 such that

(∫

D

|fj|
pdλn

) 1
p

< M,
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then ∫

D

|fj − f |dλn → 0, j → ∞.

3 Proof of Main Result

Let I ⊂ Oo be an ideal and ϕ be a negative plurisubharmonic function on some bounded

psedoconvex domain D ⊂ Cn with ϕ(o) = −∞. Choose ek, k0, U0, C0 as in Lemma 2.1, C1 as

in Lemma 2.2 and put

C = Cε(ϕ) :=
[
(k0(1− e−ε(t0+1))C0C1)

− 1
2 − 1−

(
k0∑
k=1

∫
D
1{ϕ<−t0}|ek|

2dλn

k0(1− e−ε(t0+1))C1

) 1
2
]−1

,

where ε ∈ (0, 1] and t0 are two positive numbers. When choosing t0 large enough and ε small

enough, C could be positive.

At first, we obtain the following estimation of the weighted L2 norm near the singularities

of plurisubharmonic weight related to SOC.

Proposition 3.1 Assume that I (ϕ)o ⊂ I ⊂ Oo. If C > 0, then

∫

U0∩{ϕ<−(t0+1)}

( ∞∑

k=1

|ek|
2
)
e−ϕdλn ≤ C2.

Proof Thanks to the strong openness, replacing B, t0, ϕ, ψ by ε, εt0, (1+ε)ϕ, εϕ respectively

for small enough ε > 0 (shrinking D if necessary) in Lemma 2.2, it follows that, for any

1 ≤ k ≤ k0, there exists a holomorphic function Fk ∈ O(D) such that
∫

D

|Fk − b(εϕ)ek|
2e−ϕdλn ≤ (1− e−ε(t0+1))C1. (3.1)

By Minkowski’s inequality, we obtain

( k0∑

k=1

∫

D

|Fk|
2dλn

) 1
2

≤
( k0∑

k=1

∫

D

|Fk − b(εϕ)ek|
2e−ϕdλn

) 1
2

+
( k0∑

k=1

∫

D

|b(εϕ)ek|
2dλn

) 1
2

. (3.2)

It follows from (3.1) and 0 ≤ b(εϕ) ≤ 1{ϕ<−t0} that

( k0∑

k=1

∫

D

|Fk|
2dλn

) 1
2

≤ (k0(1 − e−ε(t0+1))C1)
1
2 +

( k0∑

k=1

∫

D

1{ϕ<−t0}|ek|
2dλn

) 1
2

. (3.3)

By Lemma 2.2, we know that (Fk − ek, o) ∈ I ((1 + ε)ϕ)o ⊂ I (ϕ)o ⊂ I and (Fk, o) ∈ I.

Hence, we have

Fk =

∞∑

j=1

a
j
kej , a

j
k ∈ C, 1 ≤ k ≤ k0
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and ∫

D

|Fk|
2dλn =

∞∑

j=1

|ajk|
2, 1 ≤ k ≤ k0.

Thus, we deduce from Lemma 2.1 that, on U0,

( k0∑

k=1

|Fk − ek|
2
) 1

2

≥
( k0∑

k=1

|ek|
2
) 1

2

−
( k0∑

k=1

|Fk|
2
) 1

2

≥
( 1

C0

) 1
2
( ∞∑

k=1

|ek|
2
) 1

2

−
( k0∑

k=1

∞∑

j=1

|ajk|
2
) 1

2
( ∞∑

k=1

|ek|
2
) 1

2

=
(( 1

C0

) 1
2

−
( k0∑

k=1

∫

D

|Fk|
2dλn

) 1
2
)( ∞∑

k=1

|ek|
2
) 1

2

≥
(( 1

C0

) 1
2

− (k0(1− e−ε(t0+1))C1)
1
2

−
( k0∑

k=1

∫

D

1{ϕ<−t0}|ek|
2dλn

) 1
2
)( ∞∑

k=1

|ek|
2
) 1

2

. (3.4)

Denote by

A :=
( 1

C0

) 1
2

− (k0(1− e−ε(t0+1))C1)
1
2 −

( k0∑

k=1

∫

D

1{ϕ<−t0}|ek|
2dλn

) 1
2

.

Since Cε(ϕ) > 0 and

A·Cε(ϕ) = (k0(1− e−ε(t0+1))C1)
1
2 > 0,

it follows that A > 0.

Then from (3.4) we obtain

A2 ·
(∫

{ϕ<−(t0+1)}∩U0

( ∞∑

k=1

|ek|
2
)
e−ϕdλn

)

≤

∫

{ϕ<−(t0+1)}∩U0

( k0∑

k=1

|Fk − ek|
2
)
e−ϕdλn

=

k0∑

k=1

∫

{ϕ<−(t0+1)}∩U0

|Fk − ek|
2e−ϕdλn. (3.5)

Note that
k0∑

k=1

|Fk − b(εϕ)ek|
2
∣∣
{ϕ<−(t0+1)}∩U0

=

k0∑

k=1

|Fk − ek|
2.

It follows from Lemma 2.2 that

k0∑

k=1

∫

{ϕ<−(t0+1)}∩U0

|Fk − ek|
2e−ϕdλn

≤

k0∑

k=1

∫

D

|Fk − b(εϕ)ek|
2e−ϕdλn
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≤ k0(1− e−ε(t0+1))C1. (3.6)

Combining inequalities (3.5) and (3.6), we have

∫

{ϕ<−(t0+1)}∩U0

( ∞∑

k=1

|ek|
2
)
e−ϕdλn ≤

k0(1 − e−ε(t0+1))C1

A2

=
[
(k0(1− e−ε(t0+1))C0C1)

− 1
2 − 1−

(
k0∑
k=1

∫
D
1{ϕ<−t0}|ek|

2dλn

k0(1− e−ε(t0+1))C1

) 1
2
]−2

= C2
ε (ϕ). (3.7)

For our proof of Theorem 1.1, it is necessary to prove the following result.

If I = I (ϕ)o for some negative plurisubharmonic function ϕ on D, then any orthonormal

basis of the L2 space H2(D,ϕ), which consists of holomorphic functions f on D such that

|f |2e−ϕ is integrable on D, is contained in HI .

Since I (ϕ) is generated by any orthonormal basis of H2(D,ϕ) (see [5, Proposition 5.7]),

we may assume that ek(1 ≤ k ≤ k0) are the generators of I = I (ϕ)o and bounded on D in

Lemma 2.1 (shrinking D and B0 if necessary).

Lemma 3.1 Let ek (1 ≤ k ≤ k0) be generators of I = I (ϕ)o with bounded
k0∑
k=1

|ek| on D,

which is in the unit ball B(o; 1) and

k0∑

k=1

∫

D

|ek|
2e−(1+ε0)ϕdλn <∞.

Then, for any M > 0, there exists t0 ≫ 0 such that for any negative plurisubharmonic function

ψ on D with I (ψ)o ⊂ I (ϕ)o and

k0∑

k=1

∫

D

1{ψ̃<−t0}|ek|
2dλn ≤ 2

k0∑

k=1

∫

D

1{ϕ̃<−t0}|ek|
2dλn, (3.8)

we have ∫

U0∩{|z|<e
−

(1+ε0)(1+
ε0
2

)(t0+1)
ε0
2 }

( ∞∑

k=1

|ek|
2
)
e−ψ̃dλn < M,

where

ϕ̃ = ϕ+
ε0
2

(1 + ε0)
(
1 + ε0

2

) log |z|
2

, ψ̃ = ψ +
ε0
2

(1 + ε0)
(
1 + ε0

2

) log |z|
2

.

Proof By Hölder inequality, we have

∫

U

|F |2e−(1+
ε0
2 )ϕ̃dλn

≤
( ∫

U

|F |2e−(1+ε0)ϕdλn

) 1+
ε0
2

1+ε0
(∫

U

|F |2e−
log |z|

2 dλn

) ε0
2

1+ε0
,
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which implies I ((1 + ε0)ϕ)o ⊂ I
((
1 + ε0

2

)
ϕ̃
)
o
⊂ I (ϕ̃)o ⊂ I (ϕ)o, i.e.,

I

((
1 +

ε0

2

)
ϕ̃
)
o
= I (ϕ̃)o = I (ϕ)o.

As
k0∑

k=1

∫

D

|ek|
2e−(1+ε0)ϕdλn <∞,

there exists t0≫0 such that 0<C ε0
2
(ϕ̃)<

√
M
2 , and 0 < C ε0

2
(ψ̃) ≤ 2 · C ε0

2
(ϕ̃) by (3.8).

Since ψ̃ ≤
ε0
2

(1+ε0)(1+
ε0
2 )

log |z| on D, we have

{|z| < e
− (1+ε0)(1+

ε0
2

)(t0+1)
ε0
2 } ⊂ {ψ̃ < −(t0 + 1)}.

Then, by Proposition 3.1, we obtain that

∫

U0∩{|z|<e
−

(1+ε0)(1+
ε0
2

)(t0+1)
ε0
2 }

( ∞∑

k=1

|ek|
2
)
e−ψ̃dλn

≤

∫

U0∩{ψ̃<−(t0+1)}

( ∞∑

k=1

|ek|
2
)
e−ψ̃dλn ≤ C2

ε0
2
(ψ̃) < M.

Proof of Theorem 1.1 As every sequence which is convergent in Lebesgue measure has

a subsequence which is convergent almost everywhere, it is sufficient to prove the result for the

case that ϕj is convergent to ϕ almost everywhere.

By the truth of SOC, there exists ε0 > 0 such that I (ϕ) = I ((1+ε0)ϕ) on a neighborhood

D of o. Without loss of generality, we may assume that the unit ball B(o; 1) ⊃ D.

Since Fj is compactly convergent to a holomorphic function F , by shrinking D, we can

assume that
∫
D
|Fj |

2dλn is bounded with respect to j.

Let ek, 1 ≤ k ≤ k0, be as in Lemma 3.1. Then, we infer from (Fj , o) ∈ I (ϕ)o and Lemma

2.1 that there exist complex numbers akj such that Fj =
∞∑
k=1

akj ek, and
∞∑
k=1

|akj |
2 =

∫
D
|Fj |

2dλn

is bounded with respect to j.

Since ϕj is convergent to ϕ almost everywhere, it follows from the dominated convergence

theorem that
k0∑

k=1

∫

D

1{ϕ̃j<−t0}|ek|
2dλn ≤ 2

k0∑

k=1

∫

D

1{ϕ̃<−t0}|ek|
2dλn,

where ϕ̃j = ϕj +
ε0
2

(1+ε0)(1+
ε0
2 )

log |z|
2 .

By Lemma 3.1, there exists a neighborhood V0⊂⊂D of o and M > 0 such that

∫

V0

∞∑

k=1

|ek|
2e−ϕjdλn < M.

Let ε ∈ (0, ε0). By replacing ϕ with
(
1 + ε

2

)
ϕ and ϕj with

(
1 + ε

2

)
ϕj , we have

∫

Ṽ0

∞∑

k=1

|ek|
2e−(1+ ε

2 )ϕjdλn < M̃
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for some neighborhood Ṽ0 ⊃ o and some constant M̃ which are independent of ϕj .

As
∞∑
k=1

|akj |
2 is bounded with respect to j, by Schwarz inequality, it follows that

∫

Ṽ0

|Fj |
2e−(1+ ε

2 )ϕjdλn ≤

∫

Ṽ0

( ∞∑

k=1

|akj |
2
)
·
( ∞∑

k=1

|ek|
2
)
e−(1+ ε

2 )ϕjdλn

is bounded with respect to j.

Then, by Lemma 2.3, we obtain that Fje
−ϕj converges to F e−ϕ in the L1

loc norm on Ṽ0, as

j goes to infinity.

By replacing ϕj with (1 + ε0)ϕj , we obtain the second assertion from the first one.

4 Appendix

For the sake of completeness, this section is devoted to the proof of Lemma 2.2.

4.1 L2 estimates for some ∂ equations

For the sake of convenience, we will recall some known facts on L2 estimates for some ∂

equations. Here, ∂
∗
means the Hilbert adjoint operator of ∂.

Lemma 4.1 (see [20], see also [1]) Let Ω ⊂⊂ Cn be a domain with C∞ boundary bΩ,

Φ ∈ C∞(Ω), Let ρ be a C∞ defining function for Ω such that |dρ| = 1 on bΩ. Let η be a smooth

function on Ω. For any (0, 1)-form α =
n∑
j=1

αjdz
j ∈ DomΩ(∂

∗
) ∩ C∞

(0,1)(Ω),

∫

Ω

η|∂
∗
Φα|

2e−Φdλn +

∫

Ω

η|∂α|2e−Φdλn

=
n∑

i,j=1

∫

Ω

η|∂jαj |
2dλn +

n∑

i,j=1

∫

bΩ

η(∂i∂jρ)αiαje
−ΦdS

+
n∑

i,j=1

∫

Ω

η(∂i∂jΦ)αiαje
−Φdλn +

n∑

i,j=1

∫

Ω

−(∂i∂jη)αiαje
−Φdλn

+ 2Re(∂
∗
Φα, αx(∂η)

♯)Ω,Φ, (4.1)

where dλn is the Lebesgue measure on Cn, and αx(∂η)♯ =
∑
j

αj∂jη.

The symbols and notations can be referred to [26] (also [20–21, 25]).

Lemma 4.2 (see [1], see also [26]) Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with

C∞ boundary bΩ and Φ ∈ C∞(Ω). Let λ be a ∂ closed smooth form of bidgree (n, 1) on Ω.

Assume the inequality

|(λ, α)Ω,Φ|
2 ≤ C

∫

Ω

|∂
∗
Φα|

2 e
−Φ

µ
dλn <∞,

where 1
µ
is an integrable positive function on Ω and C is a constant, holds for all (n, 1)-form

α ∈ DomΩ(∂
∗
) ∩ Ker(∂) ∩ C∞

(n,1)(Ω). Then there is a solution u to the equation ∂u = λ such

that ∫

Ω

|u|2µe−Φdλn ≤ C.



828 Q. A. Guan, Z. Q. Li and X. Y. Zhou

4.2 Proof of Lemma 2.2

For the sake of completeness, let us recall some steps in our proof in [11] (see also [10, 12])

with some slight modifications for a proof of Lemma 2.2.

It suffices to consider the case that D is strongly pseudoconvex domain, ϕ, ψ are plurisub-

harmonic functions on an open set U containing D and F is a bounded holomorphic function

on U ∩ {ψ < −t0}. Then it follows from inequality (2.1) that
∫

{ψ<−t0}∩D
|F |2 ≤

∫

{ψ<−t0−B
2 }∩D

|F |2 +

∫

{−t0−B<ψ<−t0}∩D
|F |2 < +∞. (4.2)

Then it follows from method of convolution (see e.g. [3]) that there exist smooth plurisub-

harmonic functions ψm and ϕm on an open set U ⊂ D decreasing convergent to ψ and ϕ

respectively, such that

sup
m

sup
D

ψm < 0 and sup
m

sup
D

ϕm < +∞.

Let ε ∈ (0, 18B) and {vε}ε∈(0, 18B) be a family of smooth increasing convex functions on R,

which are continuous functions on R ∪ {−∞} such that

(1) vε(t) = t for t ≥ −t0 − ε, vε(t) = constant for t < −t0 −B + ε;

(2) v′′ε (t) are pointwise convergent to 1
B
1{−t0−B,−t0}, when ε→ 0 and

0 ≤ v′′ε (t) ≤
2

B
1{−t0−B+ε,−t0−ε}

for any t ∈ R;

(3) v′ε(t) are pointwise convergent to 1− b(t), which is a continuous function on R∪{−∞}),

when ε→ 0 and 0 ≤ v′ε(t) ≤ 1 for any t ∈ R.

One can construct the family {vε}ε∈(0, 18B) by setting

vε(t) : =

∫ t

−∞

(∫ t1

−∞

( 1

B − 4ε
1{−t0−B+2ε,−t0−2ε} ∗ ρ 1

4 ε

)
(s)ds

)
dt1

−

∫ 0

−∞

(∫ t1

−∞

( 1

B − 4ε
1{−t0−B+2ε,−t0−2ε} ∗ ρ 1

4 ε

)
(s)ds

)
dt1, (4.3)

where ρ 1
4 ε

is the kernel of convolution satisfying Supp(ρ 1
4 ε
) ⊂

(
− 1

4ε,
1
4ε
)
. Then it follows that

v′′ε (t) =
1

B − 4ε
1{−t0−B+2ε,−t0−2ε} ∗ ρ 1

4 ε
(t)

and

v′ε(t) =

∫ t

−∞

( 1

B − 4ε
1{−t0−B+2ε,−t0−2ε} ∗ ρ 1

4 ε

)
(s)ds.

It suffices to consider the case that
∫

D

1

B
1{−t0−B<ψ<−t0}|F |

2e−ψ−ϕdλn < +∞. (4.4)

Let η = s(−vε(ψm)) and φ = u(−vε(ψm)), where 0 ≤ s ∈ C∞((0,+∞)) and u ∈ C∞((0,

+∞)) with lim
t→+∞

u(t) = 0 satisfy u′′s− s′′ > 0 and s′ − u′s = 1. It follows from sup
m

∑
D

ψm < 0
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that φ = u(−vε(ψm)) are uniformly bounded on D with respect to m and ε, and u(−vε(ψ)) are

uniformly bounded on D with respect to ε.

Now, put Φ = φ + ϕm′ and let α =
n∑
j=1

αjdz
j ∈ DomD(∂

∗
) ∩ Ker(∂) ∩ C∞

(0,1)(D). By

Cauchy-Schwarz inequality, it follows that

2Re(∂
∗
Φα, αx(∂η)

♯)D,Φ ≥ −

∫

D

g−1|∂
∗
Φα|

2e−Φdλn

+

n∑

j,k=1

∫

D

(−g(∂jη)∂kη)αjαke
−Φdλn. (4.5)

Using Lemma 4.1 and inequality (4.5), since s ≥ 0 and ψm is a plurisubharmonic function

on Dv, we get

∫

D

(η + g−1)|∂
∗
Φα|

2e−Φdλn ≥

n∑

j,k=1

∫

D

(−∂j∂kη + η∂j∂kΦ− g(∂jη)∂kη)αjαke
−Φdλn

≥

n∑

j,k=1

∫

D

(−∂j∂kη + η∂j∂kφ− g(∂jη)∂kη)αjαke
−Φdλn, (4.6)

where g is a positive continuous function on D. Next, we need some calculations to determine

g.

Since

∂j∂kη = −s′(−vε(ψm))∂j∂k(vε(ψm)) + s′′(−vε(ψm))∂jvε(ψm)∂kvε(ψm) (4.7)

and

∂j∂kφ = −u′(−vε(ψm))∂j∂kvε(ψm) + u′′(−vε(ψm))∂jvε(ψm)∂kvε(ψm) (4.8)

for any 1 ≤ j, k ≤ n, we have

∑

1≤j,k≤n
(−∂j∂kη + η∂j∂kφ− g(∂jη)∂kη)αjαk

= (s′ − su′)
∑

1≤j,k≤n
∂j∂kvε(ψm)αjαk

+ ((u′′s− s′′)− gs′2)
∑

1≤j,k≤n
∂j(−vε(ψm))∂k(−vε(ψm))αjαk

= (s′ − su′)
∑

1≤j,k≤n
(v′ε(ψm)∂j∂kψm + v′′ε (ψm)∂j(ψm)∂k(ψm))αjαk

+ ((u′′s− s′′)− gs′2)
∑

1≤j,k≤n
∂j(−vε(ψm))∂k(−vε(ψm))αjαk. (4.9)

We omit composite item −vε(ψm) after s′ − su′ and (u′′s− s′′)− gs′2 in the above equalities.

Let g = u′′s−s′′
s′2

(−vε(ψm)). It follows that η+g−1 =
(
s+ s′2

u′′s−s′′
)
(−vε(ψm)). By inequalities

(4.6), we infer from v′ε ≥ 0 and s′ − su′ = 1 that
∫

D

(η + g−1)|∂
∗
Φα|

2e−Φdλn ≥

∫

D

(v′′ε ◦ ψm)|αx(∂ψm)♯|2e−Φdλn. (4.10)
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As F is holomorphic on {ψ < −t0} ⊃⊃ Supp(v′ε(ψm)), then λ := ∂[(1 − v′ε(ψm))F ] is

well-defined and smooth on D. Combining the definition of contraction with Cauchy-Schwarz

inequality and inequality (4.10), it follows that

|(λ, α)D,Φ|
2 = |(v′′ε (ψm)∂ψmF, α)D,Φ|

2

= |(v′′ε (ψm)F, αx(∂ψm)♯
)
D,Φ

|2

≤

∫

D

v′′ε (ψm)|F |2e−Φdλn

∫

D

v′′ε (ψm)|αx(∂ψm)♯|2e−Φdλn

≤
( ∫

D

v′′ε (ψm)|F |2e−Φdλn

)( ∫

D

(η + g−1)|∂
∗
Φα|

2e−Φdλn

)
. (4.11)

Let µ := (η + g−1)−1. Using Lemma 4.2, we have locally L1 functions um,m′,ε on D such

that ∂um,m′,ε = λ and

∫

D

|um,m′,ε|
2(η + g−1)−1e−Φdλn ≤

∫

D

(v′′ε (ψm))|F |2e−Φdλn. (4.12)

Assume that we can choose η and φ such that evε◦ψmeφ = (η + g−1)−1. Then inequality

(4.12) becomes

∫

D

|um,m′,ε|
2evε(ψm)−ϕm′dλn ≤

∫

D

v′′ε (ψm)|F |2e−φ−ϕm′dλn. (4.13)

Let Fm,m′,ε := −um,m′,ε + (1− v′ε(ψm))F . Then inequality (4.13) becomes

∫

D

|Fm,m′,ε − (1− v′ε(ψm))F |2evε(ψm)−ϕm′dλn

≤

∫

D

(v′′ε (ψm))|F |2e−φ−ϕm′dλn. (4.14)

Considering a compactly convergent subsequence of Fm,m′,ε (also denoted by Fm,m′,ε), and

taking limits

lim
m′→+∞

lim
ε→0+0

lim
m→+∞

Fm,m′,ε

(denoted by F̃ ), one can obtain

∫

D

|F̃ − b(ψ)F |2ev(ψ)−ϕdλn ≤
(
sup
D

e−u(−v(ψ))
)
C1. (4.15)

4.3 ODE system

It suffices to find η and φ such that (η + g−1) = e−ψme−φ on D. As η = s(−vε(ψm)) and

φ = u(−vε(ψm)), we have (η + g−1)evε(ψm)eφ = (s+ s′2

u′′s−s′′ )e
−teu ◦ (−vε(ψm)).

Summarizing the above discussion about s and u, we are naturally led to a system of ODEs

(see [9–12]):

(
s+

s′2

u′′s− s′′

)
eu−t = 1,

s′ − su′ = 1,

(4.16)
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where t ∈ [0,+∞) and C = 1.

It is not hard to solve the ODE system (4.16) and get u = − log(1− e−t) and s = t
1−e−t − 1.

It follows that s ∈ C∞((0,+∞)) satisfies s ≥ 0, lim
t→+∞

u(t) = 0 and u ∈ C∞((0,+∞)) satisfies

u′′s− s′′ > 0.

As u = − log(1 − e−t) is decreasing with respect to t, then it follows from 0 ≥ v(t) ≥

max{t,−t0 −B0} ≥ −t0 −B0 for any t ≤ 0 that

sup
D

e−u(−v(ψ)) ≤ sup
t∈(0,t0+B]

e−u(t) = sup
t∈(0,t0+B]

(1− e−t) = 1− e−(t0+B). (4.17)

Thus, we conclude the proof of Lemma 2.2.
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