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1 Introduction

For any finite dimensional simple Lie algebra or any affine Kac-Moody algebra, there is a

two dimensional Toda equation (see [14]). All of them are integrable systems. These equations

have been studied by various methods such as inverse scattering, Hirota method, Darboux

transformation etc. (see [1–3, 6, 11–12, 15–16]). They have also important applications in

Toda field theory (see [4, 7]) and in both Riemannian and affine geometry (see [8–9, 13, 20–

22]).

For any affine Kac-Moody algebra g, the two dimensional Toda equation is of form (see [13])

wj,xt = exp
( n∑

i=1

cjiwi

)
− vj exp

( n∑

i=1

c0iwi

)
, j = 1, · · · , n, (1.1)

where C = (cij)0≤i,j≤n is the generalized Cartan matrix of the Kac-Moody algebra g and

v = (v0, v1, · · · , vn)T satisfies Cv = 0.

When g = A
(2)
2n−1 (n ≥ 3), the generalized Cartan matrix is

C = (cij)0≤i,j≤n =



























2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 0
0 0 −1 2 −1

. . .
. . .

. . .

−1 2 −1 0
0 −1 2 −1
0 0 −2 2



























(1.2)
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and the corresponding two dimensional affine Toda equation is

w1,xt = e2w1−w2 − e−w2 ,

wj,xt = e−wj−1+2wj−wj+1 − 2e−w2 , j = 2, · · · , n− 1, (1.3)

wn,xt = e−2wn−1+2wn − 2e−w2 .

By setting wj = −(u1 + u2 + · · ·+ uj) (j = 1, · · · , n), it becomes

u1,xt = eu2+u1 − eu2−u1 , u2,xt = eu2+u1 + eu2−u1 − eu3−u2 ,

uj,xt = euj−uj−1 − euj+1−uj , j = 3, · · · , n− 1, (1.4)

un,xt = eun−un−1 − e−2un .

It was known that all the equations in (1.1) are integrable (see [13]). For g = A
(1)
n , its

Lax pair has a unitary symmetry and a cyclic symmetry of order n. There is a Darboux

transformation of degree one which keeps its symmetries and has many geometric applications

(see [9, 11–12]).

There are also some work for the two dimensional Toda equations with other Kac-Moody

algebras (see [2–3, 10, 17]), although the symmetries are more complicated. Each of these

equations has a unitary symmetry, a reality symmetry and a cyclic symmetry.

In the above systems, the number of independent functions is greatly less than the entries in

the coefficient matrices of the Lax pair.This leads to the difficulty in getting explicit solutions.

For the two dimensional Toda equations with g = A
(1)
n , A

(2)
2n and A

(2)
2n−1, the Darboux trans-

formation for complex solutions was presented in [18–19]. For the two dimensional (real) affine

Toda equations with g = A
(2)
2n , C

(1)
n and D

(2)
l+1, the binary Darboux transformation (in integral

form) was given by [17] and the Darboux transformation (in differential form) was given by

[24–25].

In this paper, we present the construction of Darboux transformation V → Ṽ for the two

dimensional A
(2)
2n−1 Toda equation and obtain its explicit real solutions. Here the diagonal

matrix V contains the potentials. The degree of Darboux transformation must be high enough

to keep all the symmetries of the Lax pair. For the two dimensional Toda equations with

g = A
(2)
2n , C

(1)
n and D

(2)
n+1, the order of the cyclic symmetry is the same as the order of the

matrices. The symmetries guarantee that Ṽ is still diagonal. However, for the two dimensional

A
(2)
2n−1 Toda equation, the order of the cyclic symmetry is strictly less than the order of the

matrices. This leads to the fact that the form of the coefficients of the Lax pair cannot be

fully determined by the above mentioned symmetries. In fact, the symmetries only guarantee

that Ṽ is block-diagonal. Therefore, an extra constant matrix should be multiplied before the

standard Darboux matrix so that Ṽ is diagonal and is in the same form as V .

In Section 2, the symmetries for the Lax pair of Toda equations are discussed. In Section

3, the general construction of Darboux transformation is reviewed. In Section 4, the Darboux

transformation for the two dimensional A
(2)
2n−1 Toda equation is constructed. Explicit expression

for the new solutions is given.

2 Two Dimensional A
(2)
2n−1 Toda Equation and Its Lax Pair

Each two dimensional affine Toda equation has the Lax pair

Φx = (λJ + P )Φ, Φt =
1

λ
QΦ, (2.1)
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where

P = VxV
−1, Q = V JTV −1, (2.2)

J is a constant L×L diagonal matrix, V (x, t) is an L×Lmatrix-function containing potentials.

The integrability condition of (2.1) is

Pt + [J,Q] = 0, (2.3)

or equivalently,

(VxV
−1)t + [J, V JTV −1] = 0. (2.4)

With specific symmetries on J and V , (2.4) contains all two dimensional affine Toda equations.

For the two dimensional A
(2)
2n−1 Toda equation, L = 2n. Moreover, each 2n × 2n matrix

M is written as an (2n − 1) × (2n − 1) block matrix (Mjk)1≤j,k≤2n−1 so that M11 is a 2 × 2

matrix. The matrices corresponding to the two dimensional A
(2)
2n−1 Toda equation are J =

(Jjk)1≤j,k≤2n−1 with non-zero entries J12 =

(
1
1

)
, J2n−1,1 =

(
1 1

)
and Jj,j+1 = 1 for

j = 2, · · · , 2n − 2; V = (Vjk)1≤j,k≤2n−1 with non-zero entries V11 =

(
eu1

e−u1

)
, Vjj = euj

and V2n+1−j,2n+1−j = e−uj for j = 2, · · · , n. Written explicitly, they are

J =




0 0 1 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 1
1 1 0 0 0 · · · 0 0




, (2.5)

V = diag (eu1 , e−u1 , eu2 , eu3 , · · · , eun , e−un , · · · , e−u2). (2.6)

For any (2n − 1) × (2n − 1) block matrix A or any (2n − 1) × 1 block vector v divided as

above, and for any integers j and k, define Ajk = Aj′k′ and vj = vk′ when j ≡ j′ mod (2n− 1),

k ≡ k′ mod (2n− 1). Especially, δjk equals 1 if j ≡ k mod (2n− 1) and equals 0 otherwise.

Let ω = exp
(

2πi
2n−1

)
, Ω = diag

(( 1
1

)
, ω−1, · · · , ω−2n

)
where “ diag ” refers to block-

diagonal matrix. Clearly, Ω2n−1 = I.

Let K = (Kjk)1≤j,k≤2n−1 with non-zero entries K11 =

(
1

1

)
and Kj,2n+1−j = 1 for

j = 2, · · · , 2n− 1. Then

K2 = I, ΩKΩ = K (2.7)

and

ΩJΩ−1 = ωJ, KJK = JT , ΩV Ω−1 = V, V TKV = K. (2.8)

By direct computation, we have the following lemma.
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Lemma 2.1 If V (x, t) satisfies

V = V, ΩVΩ−1 = V, V TKV = K, (2.9)

then P = VxV
−1 and Q = V JTV −1 satisfy

P = P, ΩPΩ−1 = P, KPK = −PT ,

Q = Q, ΩQΩ−1 = ω−1Q, KQK = QT .
(2.10)

The symmetries of the Lax pair lead to the symmetries of its solutions. This fact is shown

in the following lemma and will be used in constructing Darboux transformations.

Lemma 2.2 Suppose V satisfies (2.9), Φ is a solution of the Lax pair (2.1) with λ = λ0,

then

(i) ΩΦ is a solution of (2.1) with λ = ωλ0.

(ii) Φ is a solution of (2.1) with λ = λ0.

(iii) Ψ = KΦ is a solution of the adjoint Lax pair

Ψx = −(λJT + PT )Ψ, Ψt = − 1

λ
QTΨ (2.11)

with λ = −λ0.

(iv) For any solution F of (2.1) and any solution Ψ of (2.11), (ΨTF )x = 0, (ΨTF )t = 0.

3 General Construction of Darboux Matrix

A matrix

G(x, t, λ) =

r∑

j=0

Gj(x, t)λ
r−j , (3.1)

where G0, · · · , Gr are L× L matrices, is called a Darboux matrix of degree r for the Lax pair

(2.1) if there exists a diagonal matrix Ṽ (x, t) satisfying

Ṽ = Ṽ , ΩṼΩ−1 = Ṽ , Ṽ TKṼ = K, (3.2)

such that for any solution Φ of (2.1), Φ̃ = GΦ satisfies

Φ̃x = (λJ + P̃ )Φ̃, Φ̃t =
1

λ
Q̃Φ̃ (3.3)

with

P̃ = ṼxṼ
−1, Q̃ = Ṽ JT Ṽ −1. (3.4)

If a Darboux matrix is constructed, new solutions of the two dimensional affine Toda equa-

tions can be obtained from a known one.

When the symmetries in (3.2) are not considered, the Darboux transformation can be con-

structed by generalizing the method in [23] (see also [5, 8]) as follows.
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Let λ1, · · · , λr , λ̂1, · · · , λ̂r be distinct complex constants. Let Hj be a column solution of

the Lax pair (2.1) with λ = λj , Ĥj be a column solution of the adjoint Lax pair (2.11) with

λ = λ̂j . Let E be an L× L real constant invertible matrix satisfying

EJ = JE, EΩ = ΩE, ETKE = K. (3.5)

Let

Γjk =
ĤT

j Hk

λk − λ̂j

, j, k = 1, · · · , r, Γ = (Γjk)1≤j,k≤r, Γ̌ = Γ−1. (3.6)

Then

G(λ) =

r∏

l=1

(λ− λ̂l)E
(
I −

r∑

j,k=1

HjΓ̌jkĤ
T
k

λ− λ̂k

)
(3.7)

is a Darboux matrix without considering symmetries. In fact we have G(λj)Hj = 0, G(λ̂j)Ψj =

0 for any solution Ψj of (2.1) with λ = λ̂j satisfying ĤT
j Ψj = 0. ((iv) of Lemma 2.2 guarantees

that ĤT
j Ψj = 0 holds identically if it holds at one point.) It can be checked directly that

G(λ)−1 =

r∏

l=1

(λ− λ̂l)
−1

(
I +

r∑

j,k=1

HjΓ̌jkĤ
T
k

λ− λj

)
E−1. (3.8)

Since G(λ) is a polynomial of λ of degree r, we can write

G(λ) = λrE + λr−1G1 + · · ·+ λGr−1 +Gr. (3.9)

From (3.7),

G1 = −
( r∑

l=1

λ̂l

)
E −

r∑

j,k=1

EHjΓ̌jkĤ
T
k ,

Gr = (−1)r
( r∏

l=1

λ̂l

)
E
(
I +

r∑

j,k=1

HjΓ̌jkĤ
T
k

λ̂k

)
.

(3.10)

Lemma 3.1 Suppose G(λ) is given by (3.7), then (3.3) holds where

P̃ = EPE−1 − [J,G1]E
−1, Q̃ = GrQG−1

r . (3.11)

Moreover, if Ṽ satisfies

Ṽ = GrV, (3.12)

then P̃ = ṼxṼ
−1 and Q̃ = Ṽ JT Ṽ −1 satisfy (3.11).

Proof (3.6) leads to

Γjk,x = ĤT
j JHk, Γjk,t = − 1

λ̂jλk

ĤT
j QHk. (3.13)
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By the definition (3.11), it can be verified by direct computation that

(λJ + P̃ )G−G(λJ + P )−Gx = 0,

λ−1Q̃G− λ−1GQ −Gt = 0
(3.14)

hold for all λ, which are equivalent to (3.3).

Clearly, Ṽ JT Ṽ −1 = GrQG−1
r is true. It is only necessary to prove that ṼxṼ

−1 = EPE−1−
[J,G1]E

−1 holds. Taking λ = 0 in

Gx +G(λJ + P ) = (λJ + EPE−1 − [J,G1]E
−1)G, (3.15)

which is the first equation of (3.14), we get

Gr,x +GrP = (EPE−1 − [J,G1]E
−1)Gr. (3.16)

On the other hand,

Gr,x +GrP = ṼxṼ
−1Gr (3.17)

holds by differentiating (3.12). Hence ṼxṼ
−1 = EPE−1 − [J,G1]E

−1.

4 Darboux Matrix for Two Dimensional A
(2)
2n−1 Toda Equation

Instead of the Darboux transformation with all complex spectral parameters, here we use

one real spectral parameter, which reduces the degree of Darboux transformation from 4n− 2

to 2n− 1.

Let r = 2n−1. Let µ ∈ R\{0},H be a real column solution of the Lax pair (2.1) with λ = µ.

Let λj = ωj−1µ, λ̂j = −λj (j = 1, · · · , 2n− 1), then Lemma 2.2 implies that Hj = Ωj−1H is a

solution of the Lax pair (2.1) with λ = λj , and Ĥj = KHj is a solution of the adjoint Lax pair

(2.11) with λ = −λj .

By (3.6)–(3.7),

Γjk =
H∗

jKHk

λk + λj

, j, k = 1, · · · , 2n− 1, (4.1)

G(λ) =

2n−1∏

l=1

(λ+ λl)E
(
I −

2n−1∑

j,k=1

HjΓ̌jkH
∗
kK

λ+ λk

)
. (4.2)

Lemma 4.1 G(λ) satisfies

G(λ) = G(λ), (4.3)

ΩG(λ)Ω−1 = G(ωλ), (4.4)

G(−λ)∗KG(λ) = (µ4n−2 − λ4n−2)K. (4.5)

Therefore, Ṽ = −µ−2n+1G(0)V satisfies

Ṽ = Ṽ , ΩṼΩ−1 = Ṽ , Ṽ TKṼ = K. (4.6)
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Proof From λk = λ2−k, Hk = H2−k, we have Γjk = Γ2−j,2−k. Let C1 = (δj,2−k)1≤j,k≤2n−1,

then Γ = C1ΓC
−1
1 , which leads to Γ̌ = C1Γ̌C

−1
1 , i.e., Γ̌jk = Γ̌2−j,2−k. Then (4.3) is derived by

direct computation.

Likewise, ωλk = λk+1 and ΩHk = Hk+1 lead to Γj+1,k−1 = ωΓjk, which is equivalent to

C2ΓC2 = ωΓ where C2 = (δj,k−1)1≤j,k≤2n−1. Hence C2Γ̌C2 = ωΓ̌, i.e., Γ̌j+1,k−1 = ωΓ̌jk. This

leads to (4.4) by using (3.5).

From Γ∗ = Γ we have Γ̌∗ = Γ̌, which gives (4.5).

Finally, (4.3)–(4.5) lead to

G(0) = G(0), ΩG(0)Ω−1 = G(0), G(0)∗KG(0) = µ4n−2K. (4.7)

Hence Ṽ satisfies the symmetries (4.6) as V does.

Remark 4.1 The symmetries (4.6) guarantee that Ṽ is of form

Ṽ = diag (Ṽ11, Ṽ22, · · · , Ṽ2n−1,2n−1) (4.8)

such that Ṽjj = eũj , Ṽ2n+1−j,2n+1−j = e−ũj (j = 2, · · · , n). However, it only implies that Ṽ11 is

a 2×2 matrix. In order to get a solution of the Toda equation (1.4), we need Ṽ11 =

(
eũ1

e−ũ1

)

for some function ũ1 as in (2.6). The following theorem will show that this will be realized if

E is chosen appropriately.

Theorem 4.1 Suppose (u1, · · · , un) is a solution of the two dimensional A
(2)
2n−1 Toda equa-

tion (1.4). Let E = diag (E1, 1, 1, · · · , 1) with E1 =

(
0 1
1 0

)
. Let µ be a positive constant,

and H be a real column solution of the Lax pair (2.1) with λ = µ. Write H =




h1

...

h2n−1


,

h1 =

(
h11

h12

)
, where h11, h12, h2, h3, · · · , h2n−1 are real scalar functions. Then G(λ) given by

(3.7) is a Darboux transformation for the Lax pair (2.1) so that Ṽ = GrV is of form (4.8).

Moreover, let

αk =

k∑

a=1

(−1)k+aΞa −
2n−1∑

a=k+1

(−1)k+aΞa, k = 1, 2, · · · , 2n− 1, (4.9)

where Ξ1 = 2h11h12, Ξk = hkh2−k (k = 2, · · · , 2n− 1). Then (ũ1, · · · , ũn) where

ũ1 = u1 + ln
h12

h11
,

ũk = uk + ln
α2n−k

α2n+1−k

, k = 2, · · · , n
(4.10)

is a new solution of (1.4) when all αk’s (k = 1, · · · , n) are positive.

Proof First, E satisfies (3.5). Let ξm = ((ξm)1, · · · , (ξm)2n−1)
T (m = 1, · · · , 2n− 1) with

(ξm)k = (2n− 1)−
1
2ω−(k−1)(m−1), (4.11)
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then (ξ1, · · · , ξ2n−1) is an orthonormal basis of C2n−1 since

2n−1∑

j=1

ωjk =

{
0, if k 6≡ 0 mod(2n− 1),
2n− 1, if k ≡ 0 mod(2n− 1).

(4.12)

From (4.1),

Γjk =
HTΩ−j+1KΩk−1H

ω−j+1µ+ ωk−1µ
= ωj−1H

TKΩj+k−2H

(1 + ωj+k−2)µ
. (4.13)

Write H = (h1, · · · , h2n−1)
T where h2, · · · , h2n−1 are scalars and h1 is a 2× 1 column, then

Γξm =
2n− 1

2µ
αmξ1−m, (4.14)

where

αm =
2µ

2n− 1

2n−1∑

j=1

HTKΩjH

(1 + ωj)µ
ω−(m−1)j =

2µ

2n− 1

2n−1∑

j,a=1

ω−j(m+a−2)

(1 + ωj)µ
hT
2−aK2−a,aha. (4.15)

Hence

Γ−1ξm =
2µ

2n− 1
α−1
1−mξ1−m, (4.16)

i.e.,

Γ̌jkω
−(k−1)(m−1) =

2µ

2n− 1
α−1
1−mωm(j−1). (4.17)

Moreover, for m = 1, 2, · · · , 2n− 1,

α1−m =
2µ

2n− 1

2n−1∑

j,a=1

ω−j(a−m−1)

(1 + ωj)µ
hT
2−aK2−a,aha

j→−j, a→2−a
===========

2µ

2n− 1

2n−1∑

j,a=1

ω−j(m+a−2)

(1 + ωj)µ
hT
aKa,2−ah2−a = αm. (4.18)

Here the fact hT
aKa,2−ah2−a = hT

2−aK2−a,aha is used since K is symmetric.

With Ξa = hT
aKa,2−ah2−a, (4.15) leads to

αk =
2µ

2n− 1
lim

ε→1−0

2n−1∑

j,a=1

ω−j(k−a)

(1 + εωj)µ
hT
aKa,2−ah2−a

=
2

2n− 1
lim

ε→1−0

2n−1∑

j,a=1

∞∑

p=0

Ξa(−ε)pω(p−k+a)j . (4.19)

For a given p, owing to (4.12), the summation on j in the last expression is nonzero only when

p ≡ a− kmod(2n− 1). Hence, let p = (2n− 1)s+ k − a and use (4.12),

αk = 2 lim
ε→1−0

2n−1∑

a=1

∑

(2n−1)s≥a−k

Ξa(−ε)(2n−1)s+k−a
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= 2 lim
ε→1−0

( k∑

a=1

Ξa

∞∑

s=0

(−ε)(2n−1)s+k−a +

2n−1∑

a=k+1

Ξa

∞∑

s=1

(−ε)(2n−1)s+k−a
)

= 2 lim
ε→1−0

( k∑

a=1

Ξa

(−ε)k−a

1 + ε2n−1
+

2n−1∑

a=k+1

Ξa

(−ε)k−a+2n−1

1 + ε2n−1

)

=
k∑

a=1

(−1)k+aΞa −
2n−1∑

a=k+1

(−1)k+aΞa, k = 1, · · · , 2n− 1. (4.20)

Especially, when k = 1, we have

2n−1∑

a=2

(−1)1+aΞa =
2n−1∑

a=2

(−1)1+ahah2−a
a→2n+3−a
========= −

2n−1∑

a=2

(−1)1+ah2−aha, (4.21)

which means
2n−1∑
a=2

(−1)1+aΞa = 0. Hence

α1 = Ξ1 = 2h11h12. (4.22)

By using (4.17) and the fact
2n−1∏
l=1

ωl−1 = ω(n−1)(2n−1) = 1, (3.7) gives

µ−2n+1(E−1G2n−1)ab = δab −
2n−1∑

j,k=1

ω−(a−1)(j−1)haΓ̌jkh
T
2−bK2−b,bω

−(b−1)(k−1)

ω−k+1µ

= δab −
2

2n− 1

2n−1∑

j=1

ω−(a−1)(j−1)α−1
2−bω

−(1−b)(j−1)hah
T
2−bK2−b,b

= δab −
2

2n− 1

2n−1∑

j=1

α−1
2−bω

(j−1)(−a+b)hah
T
2−bK2−b,b

= δab − 2α−1
2−ahah

T
2−aK2−b,bδab. (4.23)

This implies that E−1G2n−1 is a block-diagonal matrix:

µ−2n+1E−1G2n−1 = diag (g1, g2, · · · , g2n−1), (4.24)

where

ga = 1− 2α−1
2−ahah

T
2−aK2−a,a. (4.25)

Note that g2, · · · , g2n−1 are scalars and g1 is a 2 × 2 matrix. We should prove that g1 is

diagonal so that V can be diagonal.

For k = 2, · · · , 2n− 1, (4.20) gives

α2−k + α1−k =
2n+1−k∑

a=1

(−1)2n+1−k+aΞa −
2n−1∑

a=2n+2−k

(−1)2n+1−k+aΞa

+

2n−k∑

a=1

(−1)2n−k+aΞa −
2n−1∑

a=1

(−1)2n−k+aΞa = 2Ξ2n+1−k = 2Ξk. (4.26)
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When k = 1,

α2−k + α1−k = α1 + α2n−1 = Ξ1 −
2n−1∑

a=2

(−1)1+aΞa +

2n−1∑

a=1

(−1)2n−1+aΞa = 2Ξ1. (4.27)

Hence (4.26) also holds for k = 1.

For k = 2, · · · , 2n−1, hkh
T
2−kK2−k,k = Ξk, hence gk = 1−2Ξkα

−1
2−k = −α1−kα

−1
2−k by using

(4.26). Moreover, (4.22) leads to

g1 = I − 2h1h
T
1 K11α

−1
1 =




0 −h11

h12

−h12

h11
0


 . (4.28)

Hence −µ2n−1G2n−1 is a diagonal matrix,

−µ−2n+1G2n−1 = diag
(h12

h11
,
h11

h12
,
α2n−2

α2n−1
,
α2n−3

α2n−2
, · · · , α1

α2

)
. (4.29)

Note that (g1)11(g1)22 = h12

h11

h11

h12
= 1, and gkg2n+1−k = α1−kαk−1

α2−kαk
= 1 (k = 2, · · · , n)

due to (4.18). Hence Ṽ is of form (2.6) where uj’s are replaced by ũj’s when all αj ’s are

positive. Therefore, the transformation (4.10) gives a solution of the two dimensional A
(2)
2n−1

Toda equation. The theorem is proved.

Remark 4.2 The solutions obtained here are local ones. Locally, the condition that all αk

(k = 1, · · · , n) are positive can be guaranteed by suitable choice of the solution of the Lax pair.

Example 4.1 When n = 3, (u1, u2, u3) =
(
0,− 3

5 ln 2,− 1
5 ln 2

)
is a solution of the equation

(1.4). For this seed solution, the Lax pair (2.1) with λ = µ ∈ R becomes

Hx = µJH, Ht = µ−1V JTV −1H, (4.30)

where

J =




0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0




, V =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 γ−3 0 0 0
0 0 0 γ−1 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ3




(4.31)

and γ = 5
√
2. The general solution of (4.30) is H = (h11, h12, h2, h3, h4, h5)

T with

h11 = Re
( 4∑

j=0

cje
ωjγµx+ω−jγµ−1t + c5

)
,

h12 = Re
( 4∑

j=0

cje
ωjγµx+ω−jγµ−1t − c5

)
,

hk = Re
(
γk−1

4∑

j=0

cjω
j(k−1)eω

jγµx+ω−jγµ−1t
)
, k = 2, 3, 4, 5,

(4.32)
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where ω = exp
(
2πi
5

)
and c0, c1, c2, c3, c4, c5 are complex constants. Then

Ξ1 = 2h11h12, Ξ2 = Ξ5 = h2h5, Ξ3 = Ξ4 = h3h4,

α1 = α5 = Ξ1, α2 = α4 = −Ξ1 + 2Ξ2, α3 = Ξ1 − 2Ξ2 + 2Ξ3.
(4.33)

Hence Theorem 4.1 implies that

ũ1 = ln
h12

h11
, ũ2 = −3

5
ln 2 + ln

h2h5 − h11h12

h11h12
,

ũ3 = −1

5
ln 2 + ln

h3h4 − h2h5 + h11h12

h2h5 − h11h12

(4.34)

is a solution of (1.4).
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