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Abstract The Darboux transformation for the two dimensional AéiLl Toda equations
is constructed so that it preserves all the symmetries of the corresponding Lax pair. The
expression of exact solutions of the equation is obtained by using Darboux transformation.
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1 Introduction

For any finite dimensional simple Lie algebra or any affine Kac-Moody algebra, there is a
two dimensional Toda equation (see [14]). All of them are integrable systems. These equations
have been studied by various methods such as inverse scattering, Hirota method, Darboux
transformation etc. (see [1-3, 6, 11-12, 15-16]). They have also important applications in
Toda field theory (see [4, 7]) and in both Riemannian and affine geometry (see [8-9, 13, 20—
22]).

For any affine Kac-Moody algebra g, the two dimensional Toda equation is of form (see [13])

n n
Wj gt = €XP (Zcﬁwi) — v; exp (Z cOiwi), j=1,---,n, (1.1)
i=1 i=1

where C' = (c¢i5)0<i,j<n is the generalized Cartan matrix of the Kac-Moody algebra g and
v = (vo,v1, - ,vn)T satisfies Cv = 0.
When g = Agi)_l (n > 3), the generalized Cartan matrix is

2 0 —1 0 0
0 2 —1 0 0
-1 -1 2 —1 0
0 0 —1 2 —1
C = (cij)o<ij<n = . ) . (1.2)
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and the corresponding two dimensional affine Toda equation is

211)1 — w2 — w2

W12t = € —€ 3
Wj,zt = e_wj71+2wj_wj+1 - 2€_w27 .7 = 27 e, N = 17 (13)

Wy pp = € 2Wn=1F20n _ 9= w2,

By setting w; = —(u1 +ug +---+wu;) (j =1,---,n), it becomes

Ut gt = el2tur _ euz—ul7 U2 gt = elztul RPN eu?,—uz7
wj—uj— Ujp1—Uj .
uj-,It:e] ITh— ettt ) ]:3,"',TL—1, (14)
Up.at = eun_unfl _ e_2un
)

It was known that all the equations in (1.1) are integrable (see [13]). For g = AV its

Lax pair has a unitary symmetry and a cyclic symmetry of order n. There is a Darboux
transformation of degree one which keeps its symmetries and has many geometric applications
(see [9, 11-12]).

There are also some work for the two dimensional Toda equations with other Kac-Moody
algebras (see [2-3, 10, 17]), although the symmetries are more complicated. Each of these
equations has a unitary symmetry, a reality symmetry and a cyclic symmetry.

In the above systems, the number of independent functions is greatly less than the entries in
the coefficient matrices of the Lax pair. This leads to the difficulty in getting explicit solutions.
For the two dimensional Toda equations with g = A, Agi) and Agi)_l, the Darboux trans-
formation for complex solutions was presented in [18-19]. For the two dimensional (real) affine
Toda equations with g = Agi), ¢ and Dl(i)l, the binary Darboux transformation (in integral
form) was given by [17] and the Darboux transformation (in differential form) was given by
[24-25].

In this paper, we present the construction of Darboux transformation V' — V for the two
dimensional Agi)_l Toda equation and obtain its explicit real solutions. Here the diagonal
matrix V' contains the potentials. The degree of Darboux transformation must be high enough
to keep all the symmetries of the Lax pair. For the two dimensional Toda equations with
g = Aéi), ctM and D,(i)_l, the order of the cyclic symmetry is the same as the order of the
matrices. The symmetries guarantee that V s still diagonal. However, for the two dimensional
Aéi)_l Toda equation, the order of the cyclic symmetry is strictly less than the order of the
matrices. This leads to the fact that the form of the coefficients of the Lax pair cannot be
fully determined by the above mentioned symmetries. In fact, the symmetries only guarantee
that V is block-diagonal. Therefore, an extra constant matrix should be multiplied before the
standard Darboux matrix so that V is diagonal and is in the same form as V.

In Section 2, the symmetries for the Lax pair of Toda equations are discussed. In Section
3, the general construction of Darboux transformation is reviewed. In Section 4, the Darboux
transformation for the two dimensional Agi)_l Toda equation is constructed. Explicit expression
for the new solutions is given.

2 Two Dimensional Aéi)_l Toda Equation and Its Lax Pair

Each two dimensional affine Toda equation has the Lax pair

D, = (A +P)d, & = %ch, (2.1)
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where
P=v,vt, Q=vJiv (2.2)

J is a constant L x L diagonal matrix, V(x,t) is an L x L matrix-function containing potentials.
The integrability condition of (2.1) is

P +[J.Ql =0, (2.3)
or equivalently,
V.V Y + [, vJTVvT =o. (2.4)

With specific symmetries on J and V', (2.4) contains all two dimensional affine Toda equations.

For the two dimensional Agi)_l Toda equation, L = 2n. Moreover, each 2n x 2n matrix
M is written as an (2n — 1) x (2n — 1) block matrix (M;x)1<jk<2n—1 so that My is a 2 x 2
matrix. The matrices corresponding to the two dimensional Agi)_l Toda equation are J =

(Jjk)i<jk<on—1 with non-zero entries Jio = <1), Jop—11 = (1 1) and Jjj41 = 1 for

w1
j=2,---,2n—2;V = (Vig)i<jk<2n—1 with non-zero entries Vi; = © e‘“l)’ Vij =e%
and Vopt1—jont1—j = e~ for j =2,--- ,n. Written explicitly, they are
0 01 00 0 0
0 01 00 0 0
0 0 010 0 0
J=1 0 0 0 0 1 0 0 (2.5)
0 0 0 0O 0 1
110 0 0 0 0
V = diag (e",e ", e"2,e"3 .- Jetn e e e 2. (2.6)

For any (2n — 1) x (2n — 1) block matrix A or any (2n — 1) x 1 block vector v divided as
above, and for any integers j and k, define Aj; = Ay and v; = vy when j = 7' mod (2n — 1),
k= k' mod (2n — 1). Especially, d;; equals 1 if j = k mod (2n — 1) and equals 0 otherwise.

Let w = exp (;ffl)a Q= diag( (1 1) swh ,w_Q") where “diag” refers to block-

diagonal matrix. Clearly, Q2! = 1.

1 1) and Kj72n+1_j = 1 for

Let K = (Kjk)1<jk<2n—1 with non-zero entries K1 = (
7=2,---,2n—1. Then

K*=1, QKQ=K (2.7)
and
QIO =wJ, KJK=J', Qva'l=vVv, V'KV =K. (2.8)

By direct computation, we have the following lemma.
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Lemma 2.1 If V(z,t) satisfies
V=V, Qv l=Vv, VIKV =K, (2.9)

then P=V,V~! and Q = VJTV ! satisfy
P=P QPQ'=P, KPK=-PT,

2.10
Q=0Q, 20 '=uwQ, KQK=Q" (240

The symmetries of the Lax pair lead to the symmetries of its solutions. This fact is shown

in the following lemma and will be used in constructing Darboux transformations.

Lemma 2.2 Suppose V satisfies (2.9), ® is a solution of the Lax pair (2.1) with A = A,
then

(1) Q@ is a solution of (2.1) with A = wo.

(ii) @ is a solution of (2.1) with A = Ao.

(ili) ¥ = K® is a solution of the adjoint Lax pair

U, =-\T+ PO, ¥, = —%QT\IJ (2.11)

with A = —Xo.
(iv) For any solution F of (2.1) and any solution ¥ of (2.11), (VT F), =0, (VT F), = 0.

3 General Construction of Darboux Matrix

A matrix
Gz, t,\) = Gy, )\, (3.1)
j=0
where Gy, --- , G, are L x L matrices, is called a Darboux matrix of degree r for the Lax pair

(2.1) if there exists a diagonal matrix V (z,t) satisfying
V=V, Qv l=V, VIKV =K, (3.2)
such that for any solution ® of (2.1), ® = G® satisfies
By = (M + P)D, By = %@5 (3.3)
with
P=V,v7t Q=vJIV-L (3.4)

If a Darboux matrix is constructed, new solutions of the two dimensional affine Toda equa-
tions can be obtained from a known one.

When the symmetries in (3.2) are not considered, the Darboux transformation can be con-
structed by generalizing the method in [23] (see also [5, 8]) as follows.
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Let A\q,--- ,/\T,Xl, e ,XT be distinct complex constants. Let H; be a column solution of
the Lax pair (2.1) with A = A;, ﬁj be a column solution of the adjoint Lax pair (2.11) with

A= Xj. Let E be an L x L real constant invertible matrix satisfying

EJ=JE, EQ=QF, ETKFE=K. (3.5)
Let
HTH, B
ij = — = j,kz 1,-~- , T FZ (ij)lfj,kgra FZF . (36)
Me — A
Then
- ~ " H.T..HT
an = I - /\l)E(I -3 “7’1’“) (3.7)
=1 gk AT

~

is a Darboux matrix without considering symmetries. In fact we have G(\;)H; = 0, G(A\;)¥; =
0 for any solution U, of (2.1) with A = \; satisfying ﬁJT\IJJ = 0. ((iv) of Lemma 2.2 guarantees
that H JT U, = 0 holds identically if it holds at one point.) It can be checked directly that

r N r A OT
G = ll;[l(A -7 (I + P Lir_ﬂ’“jjk )E—l (3.8)
Since G()) is a polynomial of A of degree r, we can write
G\)=XNE+ NG+ + A\Gr—1 + G, (3.9)
From (3.7),
Gy = —(i&l)E - Z BEH,T;, AT,
L b AT (3.10)
= (=1)" 2 bl Lt
G, =(-1) (llr[lxl)E(IJrj;l £ )
Lemma 3.1 Suppose G()\) is given by (3.7), then (3.3) holds where
P=EPE'—[J,G]E™', Q=G,QG:". (3.11)
Moreover, zf\~/ satisfies
V=a,V, (3.12)
then P =V,V=1 and Q = VJTV =L satisfy (3.11).
Proof (3.6) leads to
Djew=H! JHy, Tjey= —ﬁﬁf@]ﬂc. (3.13)
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By the definition (3.11), it can be verified by direct computation that

(A + P)G — G\ + P) — G, = 0,

N (3.14)
AT'QG - AT'GQ -G =0

hold for all A\, which are equivalent to (3.3).
Clearly, VJTV =1 = G, QG is true. It is only necessary to prove that V, V1 = EPE~1 —
[J,G1]E~! holds. Taking A = 0 in

Gy +G\J + P)= (A +EPE™" — [J,G4]E "G, (3.15)
which is the first equation of (3.14), we get
Grw+G.P=(EPE™" —[J,G{]E"1G,. (3.16)
On the other hand,
Grw+G.P=V, VG, (3.17)

holds by differentiating (3.12). Hence V,V~! = EPE~! — [J,G1]E~L.

4 Darboux Matrix for Two Dimensional Agi)_l Toda Equation

Instead of the Darboux transformation with all complex spectral parameters, here we use
one real spectral parameter, which reduces the degree of Darboux transformation from 4n — 2
to 2n — 1.

Let r = 2n—1. Let u € R\{0}, H be a real column solution of the Lax pair (2.1) with A = p.
Let \j = w1y, Xj =-X\; (j=1,---,2n—1), then Lemma 2.2 implies that H; = %’"'H is a
solution of the Lax pair (2.1) with A = )A;, and ﬁj = K H; is a solution of the adjoint Lax pair
(2.11) with A = —);.

By (3.6)—(3.7),

T (4.1)
= —, , =1,---,2n—1, .
Jk A]f + )\j J
2n—1 2n—1 kaH*K
G = [ +XE(1- > =), (4.2)
=1 ( G k=1 A+ Ak )
Lemma 4.1 G(\) satisfies
GOV = GO,
QGO = G(w)), (4.4)
G(-\)'KG(\\) = (p'"2 = X" K. (4.5)

Therefore, V = —p~2"T1G(0)V satisfies

V=V, avol=Vv, VIKV=K. (4.6)
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Proof From A\, = \o_x, Hy, = Ho_j,, we have fjk =T9_jo i Let C1r = (0j,2-k)1<j k<2n—1,
then T = Cll"Cl_l, which leads to T’ = le‘Cl_l, ie., fjk = f‘g_jg_k. Then (4.3) is derived by
direct computation.

Likewise, wAr = Ap41 and QHy = Hyiq lead to I'j4q x—1 = wl'jx, which is equivalent to
CoI'Cy = wI' where Co = (5. x-1)1<j,k<2n—1. Hence CoI'Cy = Wi, e, f‘j+1,k_1 = wf‘jk. This
leads to (4.4) by using (3.5).

From I'* =T we have I'* = T, which gives (4.5).

Finally, (4.3)—(4.5) lead to

G(0) = G(0), QG0 =G(0), GO)*KG(0)=pu*"%K. (4.7)

Hence V satisfies the symmetries (4.6) as V' does.

Remark 4.1 The symmetries (4.6) guarantee that V is of form
V = diag (Vi1, Vag, - - - ,‘72n—1,2n—1) (4.8)

such that ‘7jj = ¢, %n+1_j)2n+1_j =e U (j =2,---,n). However, it only implies that ‘711 is
~ Uy

a 2x2 matrix. In order to get a solution of the Toda equation (1.4), we need Vi1 = (e o1

for some function @; as in (2.6). The following theorem will show that this will be realized if

FE is chosen appropriately.

Theorem 4.1 Suppose (u1,--- ,uy) is a solution of the two dimensional Aéi)_l Toda equa-
tion (1.4). Let E = diag(Ey,1,1,---,1) with By = ((1) (1)) Let p be a positive constant,
hy
and H be a real column solution of the Lax pair (2.1) with A\ = p. Write H = : ,
han—1

hi = <le>, where hii, hia, ho, hs, -+  hop_1 are real scalar functions. Then G(\) given by
12

(3.7) is a Darbouz transformation for the Laz pair (2.1) so that V. = G,V is of form (4.8).

Moreover, let

k 2n—1
ap =Y (~)FE, — 3T (-pMteE,, k=12, 201, (4.9)
a=1 a=k+1

where 21 = 2hy1hi2, Zp = hgho—y (k=2,--- ,2n—1). Then (uy,--- ,Uy,) where

h
u, =up +In E,
hi1
(4.10)
2n—k
up = up + 1n k=2,---,n
Aop+1—k
is a new solution of (1.4) when all ay’s (k=1,---,n) are positive.

Proof First, F satisfies (3.5). Let &, = (€)1, 5 (Em)2n—1)T (m=1,--- ,2n — 1) with

(Em)i = (2n — 1)~ 3@~k Dm—1) (4.11)
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then (&1, ,&2,—1) is an orthonormal basis of C?" L gince
= if k % 0 mod(2n — 1)
Jjk __ ) - )
Z v { 2n—1, if k=0mod(2n —1). (4.12)
From (4.1),
HTQ—j-HKQk—lH ) HTKQj+k—2H
ij = 1 =) = wj_lﬁ. (4.13)
w Ity +whlp (1 +witk=2)p
Write H = (hq, - ,hgn_l)T where ho, - -+, ho,_1 are scalars and hi is a 2 X 1 column, then
2n —1
I m — mSl—m» 4.14
3 o amél (4.14)
where
2n—1 ; 2n—1
2p H'KQH (. w—i(m+a=2)
= i m = h oHKog.aha- 4.15
“ 271—1]§1 (l—l—wﬂ),uw 271—1Z (I14+wi)u > (4-15)
Hence
plg, = 2 o1 g (4.16)
m om—1 1—mSl—m> .
ie.,
[ =Dm=1) — 2 1), (4.17)
J n—1 t=m
Moreover, for m =1,2,---,2n — 1,
2n—1
2 w—ila=m—1)
“ 2n—1j§1 1+ w)p 2=
2n—1
o —j a—2—a w—i(m+a=2)
e — h Kll _ah —a = Oyp. 4'18
2n —1 Z (I+wip s 2 @ ( )

Here the fact hI Ky o _oha—o = hI Ko 4 4h, is used since K is symmetric.
With =, = tha)g_ahg_a, (4.15) leads to

2p o R yritea) -
o= 2n — 1 a—li?lo ; mha Ko2-aha_q
Q)n_l oo
T o1 a—lgnojglpzzow g)PwP=kta), (4.19)

For a given p, owing to (4.12), the summation on j in the last expression is nonzero only when
p=a—kmod(2n — 1). Hence, let p = (2n — 1)s + k — a and use (4.12),

2n—1

=2 lm 3 > Sl

a=1 (2n—1)s>a—k
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2n—1

ZQEEEO(ZHGZ JEn-Dsthoa | § Haz 2n—1)s+k—a>

a=k+1 s=1

a 2n—1 (_E)k—a+2n—1
_2511?10(2‘_‘“14_5271 1+ Z =a 1+52n—1 )
a=k+1
k 2n—1
=Y (—phreE, - 3 (—pMeE,, k=1 20— 1 (4.20)
a=1 a=k+1
Especially, when k = 1, we have
2n—1 2n—1 2n—1
S(=DHE, = > (1) hahag azZngsoa > (1) hygha, (4.21)
a=2 a=2 a=2
2n—1
which means > (—1)1*¢Z, = 0. Hence
a=2
a1 = :1 = 2h11h12. (422)

2n—1
By using (4.17) and the fact [ w!'~™' =w®= D=1 =1 (3.7) gives
=1

2n—1 w_(a_l)(j—l)hafjkhQT bKQ—b,bw_(b_l)(k_l)

—2n+1 -1 _ -
1% (E GZn—l)ab - 5ab - Z w—k"’l,u
7,k=1
2n—1
= 0, — _1Zw (a=1)(G-1) oJ(l b) (- 1)hh2 W Ko b
2n—1

B ab‘mza L Y (R
= 5ab — 205, _ hah _ KQ_b b5ab- 4.23
2—a 2—a s

This implies that £~ !'Gs,_1 is a block-diagonal matrix:

p U E1GY, g = diag (g1, 92, G2n—1), (4.24)
where

g =1—2a3" hohd Ko o4 (4.25)

Note that go,--- ,g2n—1 are scalars and ¢; is a 2 X 2 matrix. We should prove that ¢; is

diagonal so that V can be diagonal.
For k =2,---,2n —1, (4.20) gives

2n+1—k 2n—1

§ 2n+1—k+a—= § 2n+1—k+a—
Qo+ aq_p = (_1) n-+ +a:a _ (_1) n+ +a:a
a=1 a=2n+2—k
2n—k 2n—1

+ Y (m1RteE, - N (<) E, = 25,08 = 28k, (4.26)

a=1 a=1
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When k£ =1,
2n—1 2n—1
Qr g+ g =01 +agm1 =21 — Y (-1)E,+ > (-1)TIE, =228, (4.27)
a=2 a=1

Hence (4.26) also holds for k£ = 1.
Fork=2,---,2n—1, hkhQT_ng_k,k = Zg, hence g, = 1 — 2Eka2__1k = —al_kaQ__lk by using
(4.26). Moreover, (4.22) leads to

0 _E
g =T—=2mh{Knay' = | hiz || (4.28)
iz
hi1
Hence —p?"1Gy,_1 is a diagonal matrix,
hia h — e
_M_2n+lG2TL—1 = dlag (£7 ia &2 27 Sonos y Ty ﬂ) (429)
hi1" hia" aop_1’ Qon—2 Q2
Note that (g1)11(g1)22 = 242 = 1, and grgant1-k = St =1 (k=2 ,n)

due to (4.18). Hence V is of form (2.6) where u;’s are replaced by u;’s when all o;’s are
positive. Therefore, the transformation (4.10) gives a solution of the two dimensional Agi)_l

Toda equation. The theorem is proved.

Remark 4.2 The solutions obtained here are local ones. Locally, the condition that all ay
(k=1,---,n) are positive can be guaranteed by suitable choice of the solution of the Lax pair.

Example 4.1 When n = 3, (u1,u2,u3) = (0,—£In2, —1In2) is a solution of the equation
(1.4). For this seed solution, the Lax pair (2.1) with A = 4 € R becomes

H,=pJH, H,=pVJIVIH, (4.30)
where

001000 1 0 0 0 0 0
001000 01 0 0 0 0
~looo 100 oo 42 0 0 0

7=l oooo1o0| V" loo o 10 0 (4.31)
000001 00 0 0 ~ 0
110000 00 0 0 0 ~3

and v = ¥/2. The general solution of (4.30) is H = (h11, hia, ha, hs, ha, hs)T with

4
J —J —1
hi1 = Re( E cje” TpEFw Tyt 05),
Jj=0

4
h12 = Re(che”]W”“’ﬂwﬂt — 05), (432)
§=0
4 . .
hi = Re(vk_l Zcjwj(k_1)eijr+“’ﬂ"“71t), k=23,4,5,

Jj=0
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27i

where w = exp (T) and cg, ¢1, €2, €3, C4, C5 are complex constants. Then

[1]

1 =2hi1h12, ZE2=F5=hohs, Z3=2E4 = hsha,

=2 =, 492 e oo (4.33)
] =a5 =21, Qo =qQq =—21+ 283, a3 =251 — 255+ 2=3.
Hence Theorem 4.1 implies that
m his 3 hahs — hith
ulzlnh—lza U2=—gln2+ln%
, e (4.34)

1 hghy — hahs + hi1h
U3:—gln2+ln 34 — N2ls + Ni1ie

h2h5 - h11h12

is a solution of (1.4).
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