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1 Introduction

Let Ω be an open set in R
n. A minimal graph u = (u1, · · · , um) in R

n+m over Ω satisfies a

minimal surface system of m quasilinear elliptic equations, where m is the codimension. More

precisely, we have

gij∂2iju
α = 0 on Ω, (1.1)

where (gij) is the inverse matrix of gij = δij +
∑
α

∂iu
α∂ju

α (see [15] for more details). One of

the classical problems in the field is the Dirichlet problem, that is, to find solutions to (1.1)

with

uα = ψα on ∂Ω (1.2)

for some given ψ = (ψ1, · · · , ψm). As it turns out, in order to obtain the existence and regularity

of solutions, some conditions on the geometry of the boundary of Ω and on the boundary data

are needed.

For m = 1, the problem is quite well understood in the classical paper [5] of Jenkins and

Serrin. For higher codimension, that is, for m > 1, the situation is more difficult and less

well studied. Compared with Theorem 13.7 in [4], one of main difficulties is that gij contains

Du1, · · · , Dum, and the moduli of continuity of gij is unknown. A counterexample due to

Lawson and Osserman [10] tells us that the situation is fundamentally different from the case

m = 1.

It now turns out that a crucial analytical step in the solution of the boundary value problems

for C2 data consists in deriving a global C1,γ-estimate (for some γ ∈ (0, 1)). An important
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step was taken by Thorpe [1] who showed (Lemma 5.2 in [1] which is formulated for maximal

spacelike graphs in Minkowski space, but also works for minimal graphs in Euclidean space) that

for C3-boundary data on a bounded smooth domain, a solution with small C1-norm satisfies

a C1,γ-estimate. It is more natural, however, to assume only a bound on the C2-norm of the

boundary data.

In this paper, using a different approach we therefore derive a uniform global C1,γ-estimate

for any solution u to the minimal surface system as follows (see Theorem 2.1 below).

Theorem 1.1 Let Ω be a bounded open set in R
n with C2-boundary, and ψ ∈ C2(Ω,Rm).

For each γ ∈ (0, 1), let u = (u1, · · · , um) ∈ C1,γ(Ω,Rm) be a smooth solution to (1.1) on Ω with

uα = ψα on ∂Ω for each α = 1, · · · ,m. If the 2-dilation of u satisfies sup
Ω

|Λ2du| ≤
√
2, then

|u|1+γ,Ω is bounded by a constant depending only on n,m, γ, |Du|Ω, |ψ|2,Ω and κΩ (see (2.11)

for its definition).

In fact, the above C1,γ-estimate still holds (depending on p) if ψ ∈ C2(Ω,Rm) is replaced

by ψ ∈W 2,p(Ω,Rm) with γ < 1− n
p
. But, the condition on the 2-dilation cannot be removed in

view of the counterexample of Lawson and Osserman [10]. The proof of Theorem 2.1 relies on

Bernstein type theorems for minimal graphs over half-spaces and whole spaces, and a blow-up

argument that would lead to a contradiction if we have a sequence of solutions with unbounded

Hölder norms for their derivatives. Here, the Bernstein type theorem over half-spaces holds

only under bounded gradient and linear boundary assumptions (see Lemma 2.2).

2 A Priori Hölder Gradient Estimates for Minimal Graphs

Let R
n be the standard n-dimensional Euclidean space. For an open set Ω ⊂ R

n, let

u = (u1, · · · , um) be a C2 (vector-valued) function on Ω. The graph of u: {(x, u(x)) ∈ R
n×R

m |
x ∈ Ω} is said to be minimal if and only if





n∑

i=1

∂

∂xi
(
√
detgklg

ij) = 0 for j = 1, · · · , n,
n∑

i,j=1

∂

∂xi

(√
detgklg

ij ∂u
α

∂xj

)
= 0 for α = 1, · · · ,m,

(2.1)

where gij = δij +
m∑

α=1
∂xiu

α∂xju
α, and (gij) is the inverse matrix of (gij). Writing U(x) =

(x, u(x)), then (2.1) is equivalent to

n∑

i,j=1

∂

∂xi

(√
detgklg

ij ∂U
a

∂xj

)
= 0 for a = 1, · · · , n+m,

and hence (see [10, 15]), (2.1) is also equivalent to

n∑

i,j=1

gij
∂2uα

∂xi∂xj
= 0 for α = 1, · · · ,m. (2.2)

Let Rn
+ be the half space defined by {(x1, · · · , xn) ∈ R

n | xn > 0}. Let Br(y) denote the ball

in R
n with radius r > 0 and centered at y ∈ R

n. We define

Pρ,r = {(x′, xn) ∈ R
n−1 × R | |x′| < r, 0 < xn < ρr},
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Sρ,r = {(x′, xn) ∈ R
n−1 × R | |x′| < r, ρr < xn < 2ρr}

for all positive constants ρ, r.

Lemma 2.1 Let ϕ be a positive function in C2(Pρ,3r) and

∆aϕ ,
1√

det akl
∂xi(

√
det akla

ij∂xjϕ) = 0 on Pρ,3r,

where (aij) is the inverse matrix of (aij) with the coefficients aij satisfying

aij = aji ≤ Λ, inf
ξ=(ξ1,··· ,ξn)

aijξiξj ≥ λ|ξ|2

on Pρ,3r for some constants 0 < λ ≤ Λ < ∞. Then, for any fixed ρ > 0 there is a constant

Cρ,λ,Λ > 0 depending only on n, ρ, λ,Λ such that

sup
Sρ,r

ϕ ≤ Cρ,λ,Λ inf
Sρ,r

ϕ for each r > 0. (2.3)

Proof Let Σ be a Riemannian manifold with the metric aij(x)dxidxj for each x ∈ Pρ,3r .

Then ϕ is a harmonic function on Σ, and the metric of Σ is bi-Lipschitz to the standard

Euclidean metric on Pρ,3r. By the famous De Giorgi-Nash-Moser iteration, we have Harnack’s

inequality for the harmonic function ϕ on Σ (see the proof of Theorem 4.3 in [2] for instance).

Namely, for any ball B2s(x) ⊂ Pρ,3r , there is a constant Cλ,Λ > 0 depending only on n, λ,Λ

such that

sup
Bs(x)

ϕ ≤ Cλ,Λ inf
Bs/2(x)

ϕ.

By finitely covering Sρ,r, we complete the proof.

Now let us state a Bernstein type theorem for minimal graphs over half-spaces.

Lemma 2.2 Let lα be an affine linear function in R
n−1 for α = 1, · · · ,m. Assume that

u = (u1, · · · , um) ∈ C1(Rn
+,R

m) ∩ C∞(Rn
+,R

m) is a solution of the minimal surface system

{
gij∂2iju

α = 0 on R
n
+

uα = lα on ∂Rn
+

for α = 1, · · · ,m, (2.4)

where (gij) is the inverse matrix of gij = δij +
∑
α

∂iu
α∂ju

α. If |Du| is uniformly bounded in

R
n
+, then u is affine linear.

Proof The proof uses the idea of the proof of Lemma 7.47 in [12] by Lieberman. From

[13–14], u is smooth in R
n
+. From the assumption, there is a constant λ ∈ (0, 1) such that

In ≤ (gij) ≤ λ−1In, where In is the unit (n × n)-matrix. Then λIn ≤ (gij) ≤ In. For any

vector ξ = (ξ1, · · · , ξn), η = (η1, · · · , ηn) ∈ R
n, from the Cauchy-Schwarz inequality

|gijξiηj | ≤ |ξ| · |η|,

which implies |gij | ≤ 1 for any i, j = 1, · · · , n. Denote ρ∗ = λ
9
√
n−1

. For any fixed α ∈
{1, · · · ,m}, let

mr = inf
(x′,xn)∈Pρ∗,r

x−1
n (uα(x′, xn)− lα(x

′)), Mr = sup
(x′,xn)∈Pρ∗,r

x−1
n (uα(x′, xn)− lα(x

′)).
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From Lemma 2.1, there is a general constant C depending only on n,m and |Du| on R
n
+ such

that

sup
(x′,xn)∈Sρ∗,2r

(uα(x′, xn)− lα(x
′)−m6rxn)

≤ C inf
(x′,xn)∈Sρ∗,2r

(uα(x′, xn)− lα(x
′)−m6rxn)

≤ Cr inf
(x′,xn)∈Sρ∗,2r

uα(x′, xn)− lα(x
′)−m6rxn

xn
.

Combining this and Lemma 3.1 in the appendix, one has

sup
(x′,xn)∈Sρ∗,2r

(uα(x′, xn)− lα(x
′)−m6rxn)

≤ Cr inf
(x′,xn)∈Pρ∗,r

uα(x′, xn)− lα(x
′)−m6rxn

xn
≤ Cr(mr −m6r). (2.5)

Similarly,

sup
(x′,xn)∈Sρ∗,2r

(M6rxn − uα(x′, xn) + lα(x
′))

≤ C inf
(x′,xn)∈Sρ∗,2r

(M6rxn − uα(x′, xn) + lα(x
′))

≤ Cr inf
(x′,xn)∈Sρ∗,2r

M6rxn − uα(x′, xn) + lα(x
′)

xn

≤ Cr inf
(x′,xn)∈Pρ∗,r

M6rxn − uα(x′, xn) + lα(x
′)

xn
≤ Cr(M6r −Mr). (2.6)

Combining (2.5)–(2.6), we have

M6r −m6r ≤ C(M6r −m6r −Mr +mr), (2.7)

which implies

Mr −mr ≤ C − 1

C
(M6r −m6r). (2.8)

By iteration, there is a constant θ ∈ (0, 1) depending only on n,m and |Du| on R
n
+ such that

Mr −mr ≤ C
( r
R

)θ

(MR −mR) (2.9)

for all 0 < r < R < ∞. Since |Du| is uniformly bounded in R
n
+, from the Newton-Leibniz

formula, MR,mR are uniformly bounded independent of R > 0. Letting R → ∞ in (2.9)

implies

Mr −mr = 0 for all r > 0. (2.10)

This means that x−1
n (uα(x′, xn)− lα(x

′)) is a constant on R
n
+, which completes the proof.

Let Ω be a bounded open set in R
n with C2-boundary, and let κ1,Ω(x), · · · , κn−1,Ω(x) be

the principal curvatures of ∂Ω at each x ∈ ∂Ω. Denote

κΩ = max
1≤i≤n,x∈∂Ω

|κi,Ω(x)|. (2.11)

Let us recall the local W 2,p-estimates for elliptic differential equations (see Theorem 9.4.1 and

Theorem 11.3.2 in [9] for instance).
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Lemma 2.3 Let L = aij∂2xixj
+ bi∂xi + c. Assume L is uniformly elliptic with λIn ≤

(aij) ≤ ΛIn for some constants Λ > λ > 0, and there is a continuous function ω on R
+ such

that |aij(x) − aij(y)| ≤ ω(|x − y|). Assume |ω| ≤ cΩ on R
+, |bi| + |c| ≤ µΩ on Ω for some

constant µΩ > 0. Then for each f ∈ Lp(Ω) with 1 < p < ∞, there is a unique solution

w ∈ W
2,p
0 (Ω) to Lw = f a.e. on Ω. Moreover, there is a constant c0 > 0 depending only on

n, p, λ,Λ, R, κΩ and µΩ such that for any x ∈ ∂Ω

‖w‖W 2,p(Ω∩BR(x)) ≤ c0(‖w‖Lp(Ω∩B2R(x)) + ‖f‖Lp(Ω∩B2R(x))). (2.12)

We recall the standard Hölder norms. For any γ ∈ (0, 1], and any (vector-valued) function

f defined on Ω, we set

[f ]γ,Ω(x) = sup
y∈Ω\{x}

|f(y)− f(x)|
|y − x|γ for any x ∈ Ω,

and [f ]γ,Ω = sup
x∈Ω

[f ]γ,Ω(x). Denote |f |Ω = sup
x∈Ω

|f(x)|. For each nonnegative integer k, each

constant γ ∈ (0, 1] and each point x ∈ Ω, we set

|f |k+γ,Ω(x) =
∑

0≤i≤k

|Dif |(x) + [Dkf ]γ,Ω(x), (2.13)

and |f |k+γ,Ω = sup
x∈Ω

|f |k+γ,Ω(x).

For any vector-valued function f = (f1, · · · , fm) ∈ C1(Ω,Rm), we define the 2-dilation of

f on Ω by

sup
Ω

∣∣Λ2df
∣∣ = sup

x∈Ω

∣∣Λ2df(x)
∣∣ = sup

x∈Ω,1≤i<j≤n

µi(x)µj(x),

where {µk(x)}nk=1 are the singular values of df(x) (see [3] for more results). Now we derive a

priori C1,γ-estimates for minimal graphs with arbitrary codimension.

Theorem 2.1 Let Ω be a bounded open set in R
n with C2-boundary, and ψ ∈ C2(Ω,Rm).

For each γ ∈ (0, 1), let u = (u1, · · · , um) ∈ C1,γ(Ω,Rm) be a smooth solution of the minimal

surface system

{
gij∂2iju

α = 0 on Ω

uα = ψα on ∂Ω
for α = 1, · · · ,m (2.14)

with gij = δij +
∑
α

∂iu
α∂ju

α. If sup
Ω

|Λ2du| ≤
√
2, then |u|1+γ,Ω is bounded by a constant

depending only on n,m, γ, |Du|Ω, |ψ|2,Ω and κΩ.

Proof Without loss of generality, we assume Ω is connected. Let us prove it by contra-

diction. Assume there are a sequence of domains Ωk with lim sup
k

κΩk
< ∞ and a sequence of

solutions uk ∈ C1,γ(Ωk,R
m) to (2.14) with boundary data ψk satisfying lim sup

k

|ψk|2,Ωk
< ∞

so that sup
Ωk

|Duk| ≤ c, sup
Ωk

|Λ2duk| ≤
√
2 for some c > 0, and |uk|1+γ,Ωk

→ ∞ as k → ∞. Thus

[Duk]γ,Ωk
= sup

x,y∈Ωk

|x− y|−γ |Duk(x)−Duk(y)| = λ
γ
k

for some sequence of numbers λk converging to ∞. There are points zk ∈ Ωk such that

[Duk]γ,Ωk
(zk) ≥ (1− k−1)γλγk .
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Set

ũk(x) = λk

(
uk

( x

λk
+ zk

)
− uk(zk)

)
, ψ̃k(x) = λk

(
ψk

( x

λk
+ zk

)
− ψk(zk)

)
,

and Ω̃k = λk(Ωk−zk). For any δ > 0, there are points yk ∈ Ωk such that |Duk(yk)−Duk(zk)| ≥
(1− (1 + δ)k−1)γλγk |yk − zk|γ . So we have

|Dũk(λk(yk − zk))−Dũk(0)| = |Duk(yk)−Duk(zk)|
≥ (1− (1 + ε)k−1)γλγk |yk − zk|γ = |(1 − (1 + ε)k−1)λk(yk − zk)|γ . (2.15)

For any ξk, ηk ∈ Ω̃k,

|Dũk(ξk)−Dũk(ηk)| =
∣∣∣Duk

( ξk
λk

+ zk

)
−Duk

( ηk
λk

+ zk

)∣∣∣

≤ λ
γ
k

∣∣∣ ξk
λk

− ηk

λk

∣∣∣
γ

= |ξk − ηk|γ . (2.16)

Hence we have

[Dũk]γ,Ω̃k
(0) ≥ (1− k−1)γ

and

[Dũk]γ,Ω̃k
(x) ≤ 1

for each x ∈ Ω̃k. In particular, ũk satisfies the minimal surface system with ũk = ψ̃k on ∂Ω̃k.

It is clear that Ω̃k converges to a domain Ω∞, which is Rn or

R
n
ω,τ , {x ∈ R

n | 〈x, ω〉 < τ}

for some (ω, τ) ∈ S
n−1×R ⊂ R

n×R. Here, Rn
ω,τ is a half space perpendicular to the ω direction.

Denote Mk = graphũk
= {(x, ũk(x)) ∈ R

n × R
m | x ∈ Ω̃k}. We use |Mk| to denote the

multiplicity one varifold associated with Mk, i.e., the n-rectfiable varifold with the support Mk

and the multiplicity one on Mk. By the compactness of varifolds (see [11] for instance), there is

a subsequence |Mik | of |Mk| converging to a stationary varifold T∞ in the varifold sense, whose

support can be represented as a graph over Ω∞ with the C1,γ graphic function u∞ such that

|Du∞|Ω∞
≤ c, [Du∞]γ,Ω∞

≤ 1, sup
Ω∞

|Λ2du∞| ≤
√
2 and u∞ = (u1∞, · · · , um∞) is linear on ∂Ω∞.

By the Schauder estimates (see [4] for instance), u∞ is smooth on Ω∞. If Ω∞ = R
n
ω,τ for some

(ω, τ) ∈ S
n−1 ×R, then u∞ is a linear vector-valued function according to Lemma 2.2, and ũik

converge to u∞ in the sense of C1-norm. From (2.7) in [7], det(δij + ∂iu
α
∞∂ju

α
∞) is a strictly

subharmonic function on graphu∞
. If Ω∞ = R

n, then u∞ is also a linear vector-valued function

from Theorem 7.1 in [3].

Let us deduce the contradiction for the case of Ω∞ = R
n
ω,τ first. For any R ≥ 4max{c, τ},

sup
Ω̃k

|Dũk| ≤ sup
Ωk

|Duk| ≤ c implies

[Dũk]γ,Ω̃k∩BR(0)
(0) = [Dũk]γ,Ω̃k

(0) ≥ (1− k−1)γ .

Since [Dũk]γ,Ω̃k
≤ 1, |ψ̃k|2,Ω̃k

are uniformly bounded and the maximal principal curvature

κ
Ω̃k

→ 0, by Lemma 2.3 and the uniqueness theorem (see Theorem 8.1 in [4] for instance),

ũk ∈W 2,p(Ω̃k) with p =
2n
1−γ

, and |ũk|W 2,p(Ω̃k∩B2R(0)) is bounded independent of k from (2.12).
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Then the Sobolev imbedding theorem implies that there is a constant 0 < εγ,R < 1 independent

of k such that

[ũk] 1+γ
2

,Ω̃k∩BR(0)
≤ 1

εγ,R
.

Up to a choice of εγ,R , there is a sequence of points ξk ∈ Ω̃k ∩BR(0) \Bεγ,R(0) such that

|Dũk(ξk)−Dũk(0)| ≥ (1− k−1)|ξk|γ . (2.17)

However, (2.17) contradicts to that ũik converges to a linear function in the sense of C1-norm.

Hence Ω∞ 6= R
n
ω,τ .

For the case of Ω∞ = R
n, we can also get the contradiction from the above argument. This

suffices to complete the proof.

For any vector-valued function f = (f1, · · · , fm) ∈ C2(Ω,Rm), set vf deonte the slope

function of f defined by
√
det

(
δij +

∑
α

∂ifα∂jfα
)
. With the Bernstein theorem in higher

codimension (see [6–8]), from the argument of the proof of Theorem 2.1, we immediately have

the following result.

Corollary 2.1 Let Ω be a bounded open set in R
n with C2-boundary, and ψ ∈ C2(Ω,Rm).

For each γ ∈ (0, 1), let u = (u1, · · · , um) ∈ C1,γ(Ω,Rm) be a smooth solution of the minimal

surface system on Ω with u = ψ on ∂Ω. If sup
Ω
vu ≤ 3, then |u|1+γ,Ω is bounded by a constant

depending only on n, m, γ, |Du|Ω, |ψ|2,Ω and κΩ.

3 Appendix

Let

Pρ,r = {(x′, xn) ∈ R
n−1 × R | |x′| < r, 0 < xn < ρr},

Sρ,r = {(x′, xn) ∈ R
n−1 × R | |x′| < r, ρr < xn < 2ρr}

for all positive constants ρ, r. The following lemma is essentially the same as the elliptic version

of Lemma 7.46 in [12].

Lemma 3.1 Let Lb be an elliptic operator of the second order defined by

Lbϕ = bij∂
2
ijϕ on R

n
+

for any ϕ ∈ C2(Rn
+) with the coefficients bij satisfying

bij ≤ Λ, inf
ξ=(ξ1,··· ,ξn)

bijξiξj ≥ λ|ξ|2

on R
n
+ for some constants 0 < λ ≤ Λ < ∞. Suppose Lbϕ ≤ 0 with ϕ ≥ 0 on Pρ∗,4r with

ρ∗ = 1
9
√
n−1

λ
Λ . Then

inf
(x′,xn)∈Sρ∗,2r

x−1
n ϕ(x′, xn) ≤ 4 inf

(x′,xn)∈Pρ∗,r

x−1
n ϕ(x′, xn). (3.1)

Proof For any fixed r > 0, let φ(x′, xn) = xn
(
1 + |x′|2

r2
− xn

2ρ∗r

)
with x′ = (x1, · · · , xn−1) ∈

R
n−1 and xn ≥ 0. Then φ ≥ 0 on {xn = 0} or {xn = 2ρr}, and φ ≥ 4xn on {|x′| = 2r}. Let

t∗ = inf
(x′,xn)∈Sρ∗,2r

x−1
n ϕ(x′, xn). Then

ϕ− t∗xn +
1

4
t∗φ ≥ 0 on ∂Pρ∗,2r. (3.2)
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From the assumption, bnn ≥ λ. Then on Pρ∗,2r,

Lbφ = r−2bij∂
2
ij(|x′|2xn)− ρ−1

∗ r−1bnn

= 2r−2
n−1∑

i=1

biixn + 2r−2
n−1∑

i=1

(bin + bni)xi − ρ−1
∗ r−1bnn

≤ 4(n− 1)r−1Λρ∗ + 4r−2Λ
n−1∑

i=1

|xi| − ρ−1
∗ r−1λ

≤ 4(n− 1)r−1Λρ∗ + 8
√
n− 1r−1Λ− ρ−1

∗ r−1λ ≤ 0, (3.3)

where we have used ρ∗ = 1
9
√
n−1

λ
Λ in the last inequality. Since Lb(ϕ − t∗xn) ≤ 0, we get

Lb

(
ϕ− t∗xn + 1

4 t∗φ
)
≤ 0 on Pρ∗,2r. Utilizing (3.2) we have

ϕ− t∗xn +
1

4
t∗φ ≥ 0 on Pρ∗,2r (3.4)

from the maximum principle. With φ ≤ 3xn on Pρ∗,r, it follows that

0 ≤ ϕ− t∗xn +
1

4
t∗φ ≤ ϕ− t∗xn +

3

4
t∗xn = ϕ− 1

4
t∗xn (3.5)

on Pρ∗,r, which finishes the proof.
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