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1 Introduction

Let X : M → R
n+1 be an n-dimensional hypersurface in the (n+ 1)-dimensional Euclidean

space R
n+1. Let X(t) : M → R

n+1, t ∈ (−ε, ε) with X(0) = X be a variation of X . The

weighted area functional is defined by A : (−ε, ε) → R by

A(t) =

∫

M

e−
|X(t)|2

2 dµt,

where dµt is the area element of M in the metric induced by X(t). In 2014, Cheng and

Wei [17] introduced a definition of the weighted volume of M . The weighted volume function

V : (−ε, ε) → R of M is defined by

V (t) =

∫

M

〈X(t), N〉e−
|X|2

2 dµ.

Cheng and Wei [17] studied a new type of mean curvature flow

∂X(t)

∂t
= (−α(t)N(t) +H(t))

with special function α(t) and introduced the λ-hypersurface, where N(t), H(t) and H(t) are

the unit normal vector, mean curvature vector and mean curvature of X(t), respectively.

Definition 1.1 An n-dimensional hypersurface X : M → R
n+1 in the (n+ 1)-dimensional

Euclidean space R
n+1 is called a λ-hypersurface if it satisfies

〈X,N〉+H = λ, (1.1)
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where N , H denote the unit normal vector and mean curvature of X, respectively. λ is a

constant.

On the other hand, a variation X(t) of X is called a weighted volume-preserving normal

variation if V (t) = V (0) for all t and ∂X(t)
∂t

|t=0 = fN . Cheng and Wei [17] proved that

X : M → R
n+1 is a critical point of the weighted area functional A(t) for all weighted volume

preserving variations if and only if X : M → R
n+1 satisfies 〈X,N〉 + H = λ, that is, λ-

hypersurface. Moreover, λ-hypersurface X : M → R
n+1 is equivalent to a hypersurface with

constant weighted mean curvature Hw = e−
|X|2

2n H = λ in R
n+1 equipped with the metric

gAB = e−
|X|2

n δAB.

Remark 1.1 The equation (1.1) also arises in the Gaussian isoperimetric problem. Borell

[7] proved that the half space minimizes the weighted boundary area (see also [55]).

Remark 1.2 In the probability theory, the equation (1.1) is natural in the study of sets

minimizing Gaussian surface area since the equation (1.1) holds if and only if M is a critical

point of the Gaussian surface area (see [41]).

Remark 1.3 If λ = 0, 〈X,N〉+H = λ = 0, then X : M → R
n+1 is a self-shrinkers. Hence,

one can consider that the notation of λ-hypersurfaces is a natural generalization of self-shrinkers

of mean curvature flow, which plays an important role for study on singularities of the mean

curvature flow.

2 Preliminaries

Let X : Mn → R
n+1 be an n-dimensional connected hypersurface of the (n+1)-dimensional

Euclidean space R
n+1. We choose a local orthonormal frame field {eA}n+1

A=1 in R
n+1 with dual

coframe field {ωA}n+1
A=1, such that, restricted toMn, e1, · · · , en are tangent toMn. The following

conventions on the ranges of indices are used in this paper 1 ≤ i, j, k, l ≤ n. Then we have

dX =
∑

i

ωiei, dei =
∑

j

ωijej + ωin+1en+1

and

den+1 =
∑

i

ωn+1iei.

When these forms are restricted to Mn, we have

ωn+1 = 0 (2.1)

and the induced Riemannian metric of Mn is written as ds2M =
∑

i

ω2
i . From (2.1), we get

ωin+1 =
∑

j

hijωj , hij = hji.
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The induced structure equations of Mn are given by

dωi =
∑

j

ωij ∧ ωj, ωij = −ωji,

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl,

where

Rijkl = hikhjl − hilhjk (2.2)

denotes components of the curvature tensor of Mn. The second fundamental form and the

mean curvature vector field of Mn are given by

A =
∑

i,j

hijωi ⊗ ωj ⊗ en+1

and

H = Hen+1 =
∑

i

hiien+1,

respectively. Let S =
∑

i,j

(hij)
2 be the squared norm of the second fundamental form and

H = |H| denotes the mean curvature of Mn. From (2.2), components of the Ricci curvature of

Mn are given by

Rik = Hhik −
∑

j

hijhjk. (2.3)

Defining the covariant derivative of hij by

∑

k

hijkωk = dhij +
∑

k

hikωkj +
∑

k

hkjωki, (2.4)

we obtain the Codazzi equations

hijk = hikj . (2.5)

By taking exterior differentiation of (2.4), and defining

∑

l

hijklωl = dhijk +
∑

l

hljkωli +
∑

l

hilkωlj +
∑

l

hijlωlk, (2.6)

we have the following Ricci identities

hijkl − hijlk =
∑

m

hmjRmikl +
∑

m

himRmjkl. (2.7)

Let f be a smooth function on Mn, we define the covariant derivatives fi, fij , and the

Laplacian of f as follows

df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji, ∆f =
∑

i

fii.
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The following elliptic operator L introduced by Colding and Minicozzi in [26] will play a very

important role for studying complete λ-hypersurfaces,

Lf = ∆f − 〈X,∇f〉, (2.8)

where ∆ and ∇ denote the Laplacian and the gradient operator on the λ-hypersurface, respec-

tively and 〈·, ·〉 denotes the standard inner product of Rn+1. By a direct computation, we have

the following equations for λ-hypersurfaces in R
n+1,

1

2
L|X |2 = n− |X |2 + λ〈X,N〉, (2.9)

LH = H + S(λ−H), (2.10)

1

2
LS =

∑

i,j,k,α

(hα
ijk)

2 + S(1− S) + λf3, (2.11)

where f3 =
∑

i,j,k

hijhjkhki.

3 Examples of λ-Hypersurfaces

Besides the standard examples of λ-hypersurfaces in R
n+1: The n-dimensional Euclidean

space R
n, the n-dimensional sphere Sn(r) with λ = n

r
− r and the n-dimensional cylinder

Sk(r) × R
n−k with λ = k

r
− r, we give some non-standard examples.

3.1 0-hypersurfaces

0-hypersurfaces are just self-shrinkers. In 1989, by using the shooting method for geodesics,

Angenent [5] constructs compact embedded rotational 0-hypersurface, called “Angenent torus”,

whose profile curve intersects symmetry axis perpendicularly. In 1994, Chopp [24] finds several

new 0-hypersurfaces. Later, Drugan, Lee and Nguyen [31], Drugan and Kleene [32] construct an

infinite number of complete, immersed and non-embedded rotational 0-hypersurfaces for each

of the topological types: The sphere, the plane, the cylinder and the torus. These examples

whose profile curves also intersect symmetry axis perpendicularly. Recently, Cheng and Wei [20]

numerically compute and find many interesting compact immersed rotational 0-hypersurfaces

whose profile curves do not intersect symmetry axis perpendicularly (see Figure 1).

In addition, Kapouleas, Kleene and Møller [47] (also see [48, 56]) and Nguyen [57–59] con-

struct complete embedded 0-hypersurfaces with higher genus in R
3.

3.2 λ-hypersurfaces with λ 6= 0

Some of them are embedded, some of them are immersed.

3.2.1 λ-curves

There are no closed embedded 0-curves of mean curvature flow except circle with radius 1.

But for λ-curves, their behaviors are different. For some λ < 0, we can prove that there exist

closed embedded λ-curves Γλ in R
2, which is not circle (also see [11]). Hence, for any positive
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Figure 1 The graph of profile curve of compact 0-hypersurface,

0-hypersurface and half of 0-hypersurface, here n = 2.

integer n, there exist complete embedded λ-hypersurfaces, which are given by Γλ × R
n−1 in

R
n+1.

3.2.2 λ-torus

In 2015, Cheng and Wei [20] proved the following theorem.

Theorem 3.1 For n ≥ 2 and λ ≥ 0, there exists embedding revolution λ-hypersurface

X : S1 × Sn−1 → R
n+1 in R

n+1.

Let (x(s), r(s)), s ∈ (a, b) be a curve in the xr-plane with r > 0 and Sn−1(1) denote the

standard unit sphere of dimension n− 1. Then we consider

X : (a, b)× Sn−1(1) → R
n+1

defined by X(s, α) = (x(s), r(s)α), s ∈ (a, b), α ∈ Sn−1(1). Namely, X is obtained by rotating

the plane curve (x(s), r(s)) around x axis, where the plane curve (x(s), r(s)) is called the profile

curves (see Figure 2).

Figure 2 The profile curves of λ-hypersurfaces, here n = 2, λ = 0.1.
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Lemma 3.1 X : (a, b)× Sn−1(1) → R
n+1 is a λ-hypersurface if and only if (x, r) satisfies







(x′)2 + (r′)2 = 1,

−x′′

r′
= xr′ +

(n− 1

r
− r

)

x′ + λ.

Figure 3 The graph of profile curve of λ-torus, λ-torus and half of λ-torus,

here n = 2, λ = 0.1 and r0 ≈ 0.343.

In the same paper, Cheng and Wei [20] also proved the following theorem.

Theorem 3.2 For n ≥ 2 and small λ, there are many compact immersed λ-hypersurfaces

in R
n+1.

Additional details on the behavior of the profile curves needed to be discussed and estab-

lished. Here are some numerical approximation of profile curves and λ-hypersurfaces. The

horizontal axis is the axis of rotation. For small λ, compact immersed λ-hypersurfaces can be

given by rotating a closed curve in the upper half plane around the horizontal axis; see Figure

4.

Figure 4 The graph of profile curve of compact λ-hypersurface, λ-hypersurface

and half of λ-hypersurface, here n = 2, λ = 0.1 and r0 ≈ 0.811.
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Moreover, we also found many compact immersed rotational λ-hypersurfaces whose profile

curves do not intersect r-axis perpendicularly; see Figure 5.

Figure 5 The graph of profile curve of compact λ-hypersurface, λ-hypersurface

and half of λ-hypersurface, here n = 2, λ = 0.1 and r0 ≈ 0.811.

3.2.3 Some other λ-hypersurfaces

In 2017, Ross [60] constructed closed, embedded λ-hypersurfaces by using a “shooting

method”. He proved the following theorem.

Theorem 3.3 Let n > 1 and λ < 0, then there exists a λ-hypersurface X : M2n+1 → R
2n+2

which is diffeomorphic to Sn × Sn × S1 and exhibits a O(n)×O(n) rotational symmetry.

In 2018, Li and Wei [54] proved the following theorem.

Theorem 3.4 Let n > 1 and small λ < 0, then there exists an immersed, non-embedded

Sn λ-hypersurface X : Mn → R
n+1.

4 Rigidity Results of λ-Hypersurfaces

4.1 Rigidity results of 0-hypersurfaces

For complete 0-curves, Abresch and Langer [1] gave a complete classification about closed

0-curves and showed that the round circle is the only embedded 0-hypersurfaces.

For complete 0-hypersurfaces with dimension n ≥ 2, the classification of smooth embedded

0-hypersurfaces X : M → R
n+1 in R

n+1 with mean curvature H ≥ 0 began with [44], where

Huisken proved that round spheres are only compact ones. In [45], Huisken showed that the

generalized cylinders Sm(
√
m) × R

n−m are only open ones with polynomial volume growth if

the squared norm S of the second fundamental form is bounded. Colding and Minicozzi [26]

completed the classification by removing the condition that S is bounded, they proved the

following theorem.
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Theorem 4.1 If X : M → R
n+1 is an n-dimensional complete embedded 0-hypersurface in

R
n+1 with mean curvature H ≥ 0 and with polynomial volume growth, then X : M → R

n+1 is

the generalized cylinder Sm(
√
m)× R

n−m, 0 ≤ m ≤ n.

Remark 4.1 From (2.10) and maximum principle, we know that H ≡ 0 or H > 0 in M .

In order to prove the theorem, one needs to compute L S
H2 , that is,

1

2
L S

H2
=

1

H4

∑

i,j,k

(hij∇kH − hijkH)2 − 1

H

〈

∇H,∇ S

H2

〉

.

Furthermore, one wants to use Stokes formula. But in the case that X : M → R
n+1 is complete

and non-compact, Stokes formula does not hold in general. If X : M → R
n+1 has polynomial

volume growth, for functions S, logH and S
1
2 , namely, the following formulas

−
∫

M

〈∇S,∇ logH〉e−
|X|2

2 dv =

∫

M

SL logHe−
|X|2

2 dv

and

−
∫

M

〈∇S
1
2 ,∇S

1
2 〉e−

|X|2

2 dv =

∫

M

S
1
2LS 1

2 e−
|X|2

2 dv

are true. By making use of the above formulas, one can prove the theorem.

For 0-hypersurfaces, the gap phenomenon for the squared norm of the second fundamental

form is interesting.

Le and Sesum [50] got the first gap theorem and proved that if X : M → R
n+1 is an n-

dimensional complete embedded 0-hypersurface in R
n+1 with polynomial volume growth and

with S < 1, then X : M → R
n+1 is Rn.

Cao and Li [10] proved the following theorem.

Theorem 4.2 Let X : M → R
n+1 be an n-dimensional complete 0-hypersurface with poly-

nomial volume growth in Euclidean space R
n+1. If the squared norm S of the second funda-

mental form satisfies S ≤ 1, then X : M → R
n+1 is one of the followings:

(1) S = 0 and X : M → R
n+1 is a hyperplane in R

n+1,

(2) S = 1 and X : M → R
n+1 is either a round sphere Sn(

√
n) in R

n+1 or a cylinder

Sm(
√
m)× R

n−m, 1 ≤ m ≤ n− 1 in R
n+1.

About the second pinching theorem, Ding and Xin [30] proved the following theorem.

Theorem 4.3 Let X : M → R
n+1 be an n-dimensional complete 0-hypersurface with poly-

nomial volume growth in Euclidean space R
n+1, there exists a positive number δ = 0.022 such

that if 1 ≤ S ≤ 1 + 0.022, then S = 1.

Recently, Lei, Xu and Xu [52] proved the following theorem.

Theorem 4.4 Let X : M → R
n+1 be an n-dimensional complete 0-hypersurface with poly-

nomial volume growth in Euclidean space R
n+1, there exists a positive number δ = 0.022 such

that if 1 ≤ S ≤ 1 + 1
18 , then S = 1.

Cheng and Wei [16] considered the second gap for the squared norm of the second funda-

mental form and proved the following gap theorem for 0-hypersurfaces.
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Theorem 4.5 Let X : M → R
n+1 be an n-dimensional complete 0-hypersurface with poly-

nomial volume growth in R
n+1. If the squared norm S of the second fundamental form is

constant and satisfies S ≤ 1 + 3
7 , then X : M → R

n+1 is one of the followings:

(1) The n-dimensional hyperplane R
n,

(2) the cylinder R
n−m × Sm(

√
m) for 1 ≤ m ≤ n− 1,

(3) the round sphere Sn(
√
n).

Since the subject of 0-hypersurfaces in the Euclidean space are closely related with the

theory of minimal hypersurfaces in the sphere. For minimal hypersurfaces in a unit sphere,

there is the following famous Chern conjecture.

Chern conjecture Let M be a compact minimal hypersurface in the unit sphere Sn+1(1).

If M has constant squared norm of the second fundamental form, then the possible values of

squared norm of the second fundamental form of M form a discrete set.

Hence, it is nature to consider the similar problems for 0-hypersurfaces.

Conjecture 1 Let X : M → R
n+1 be an n-dimensional complete 0-hypersurface in R

n+1.

If the squared norm S of the second fundamental form is constant, then X : M → R
n+1 is one

of the followings:

(1) the n-dimensional hyperplane R
n,

(2) the cylinder Rn−m × Sm(
√
m) for 1 ≤ m ≤ n− 1,

(3) the round sphere Sn(
√
n).

For n = 2, Ding and Xin [30] studied 2-dimensional complete 0-hypersurfaces with polynomial

volume growth and with constant squared norm S of the second fundamental form. They

proved the following theorem.

Theorem 4.6 A 2-dimensional complete 0-hypersurface X : M → R
3 with polynomial

volume growth and S constant is one of the followings: (1) R2, (2) S1(1)× R, (3) S2(
√
2).

On the other hand, Halldorsson in [39] proved that there exist complete 0-curves Γ in R
2,

which are contained in an annulus around the origin and whose images are dense in the annulus.

Furthermore, Ding and Xin [29], Cheng and Zhou [23] proved the following theorem.

Theorem 4.7 A complete 0-hypersurface X : M → R
n+1 has polynomial volume growth if

and only if it is proper.

Thus, the condition on polynomial volume growth in [45] and [26] is essential since these

complete 0-curves Γ of Halldorsson [39] are not proper and for any integer n ≥ 1, Γ× R
n−1 is

a complete 0-hypersurface without polynomial volume growth in R
n+1.

In order to study complete 0-hypersurfaces with polynomial volume growth, one often uses

an elliptic operator L introduced by Colding and Minicozzi in [26],

Lf = ∆f − 〈X,∇f〉 = e
|X|2

2 div(e−
|X|2

2 ∇f) (4.1)

and the following integral formula.
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Corollary 4.1 Let X : M → R
n+p be a complete hypersurface. If u, v are C2 functions

satisfying

∫

M

(|u∇v|+ |∇u||∇v|+ |uLv|)e−
|X|2

2 dµ < +∞, (4.2)

then
∫

M

u(Lv)e−
|X|2

2 dµ = −
∫

M

〈∇u,∇v〉e−
|X|2

2 dµ (4.3)

holds, where ∆ and ∇ denote the Laplacian and the gradient operator, respectively.

If one does not assume the condition polynomial volume growth for complete 0-hypersurfaces,

the following generalized maximum principle for L-operator on 0-hypersurfaces which were

proven by Cheng and Peng in [15] plays a very important role.

Lemma 4.1 (Generalized maximum principle for L-operator) Let X : Mn → R
n+1 be

a complete 0-hypersurface with Ricci curvature bounded from below. Let f be any C2-function

bounded from above on this 0-hypersurface. Then, there exists a sequence of points {pm} ⊂ Mn,

such that

lim
m→∞

f(X(pm)) = sup f, lim
m→∞

|∇f |(X(pm)) = 0, lim sup
m→∞

Lf(X(pm)) ≤ 0.

In [15], without the assumption of polynomial volume growth about 0-hypersurfaces, Cheng

and Peng proved the following theorem.

Theorem 4.8 For an n-dimensional complete 0-hypersurface X : Mn → R
n+1 with infH2 >

0, if the squared norm S of the second fundamental form is constant, then Mn is one of the

followings: (1) Sn(
√
n), (2) Sm(

√
m)× R

n−m ⊂ R
n+1.

Cheng and Ogata [13] removed both the assumption on polynomial volume growth in the

above theorem of Ding and Xin [30] and the assumption infH2 > 0 in the theorem of Cheng

and Peng [15] for n = 2. Cheng and Ogata [13] got the following theorem.

Theorem 4.9 Let X : M → R
3 be a 2-dimensional complete 0-hypersurface in Euclidean

space R
3. If the squared norm S of the second fundamental form is constant, then X : M → R

3

is one of the followings: (1) R2, (2) the round sphere S2(
√
2), (3) the cylinder S1(1)× R.

Remark 4.2 According to the results of Cheng and Ogata [13], one knows that the con-

jecture 1 was solved affirmatively for n = 2.

Recently, Cheng, Li and Wei [12], under the assumption f4 constant, we solved this conjec-

ture 1 for n = 3.

Theorem 4.10 Let X : M3 → R
4 be a 3-dimensional complete 0-hypersurface in R

4. If the

squared norm S of the second fundamental form and f4 =
∑

i

λ4
i are constant, then X : M3 → R

4

is isometric to one of the followings:

(1) R3,

(2) S1(1)× R
2,
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(3) S2(
√
2)× R

1,

(4) S3(
√
3).

In the proof of the above theorem, we need to compute∇m∇lf3, ∇m∇l∇kf4 and∇n∇m∇l∇kf4,

where f3 and f4 are defined by f3 =
∑

i,j,k

hijhjkhki and f4 =
∑

i,j,k,l

hijhjkhklhli.

4.2 Rigidity results of λ-hypersurfaces with λ 6= 0

In 2014, for λ-curve, Guang [35] proved the following theorem.

Theorem 4.11 Any smooth complete embedded λ-curve in R
2 with λ ≥ 0 must either be a

line or a round circle.

For entire graph, Guang [35] proved the following theorem.

Theorem 4.12 If a λ-hypersurface X : M → R
n+1 is an entire graph with polynomial

volume growth, then X : M → R
n+1 is a hyperplane.

In the paper [36], Guang expected that one may remove the condition of polynomial volume

growth (see Remark 1.6). In 2015, Cheng and Wei [18] solved Guang’s problem and proved the

following theorem.

Theorem 4.13 Let X : M → R
n+1 be an n-dimensional entire graphic λ-hypersurface in

the Euclidean space R
n+1. Then X : M → R

n+1 is a hyperplane R
n.

Remark 4.3 In the case of 0-hypersurfaces, Ecker and Huisken [33] proved that X : M →
R

n+1 is a hyperplane if it is an entire graphic 0-hypersurface with polynomial volume growth

in R
n+1. Recently, Wang [63] removed the assumption of polynomial volume growth (see also

Ding and Wang [28]).

In [35], Guang also proved some rigidity theorems for complete embedded λ-hypersurfaces

in terms of the norm of the second fundamental form.

In 2014, for complete λ-hypersurfaces, Cheng and Wei [17] proved the following theorem.

Theorem 4.14 Let X : M → R
n+1 be an n-dimensional complete embedded λ-hypersurface

with polynomial area growth in R
n+1. If H − λ ≥ 0 and

λ(f3(H − λ)− S) ≥ 0,

then X : M → R
n+1 is isometric to one of the followings:

(1) Sn(r) with λ = n
r
− r,

(2) Rn,

(3) Sk(r) × R
n−k, 0 < k < n,

where S =
∑

i,j

h2
ij is the squared norm of the second fundamental form and f3 =

∑

i,j,k

hijhjkhki.

Remark 4.4 The condition

λ(f3(H − λ)− S) ≥ 0

is essential. In fact, for any positive integer n, complete embedded λ-hypersurfaces Γλ × R
n−1

in R
n+1 do not satisfy this condition, where Γλ is a closed embedded λ-curve in R

2.
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Later, Peng and Wei [64] proved the following rigidity result.

Theorem 4.15 If X : M → R
n+1 is an n-dimensional complete λ-hypersurface with poly-

nomial area growth and bounded S satisfies

H(H − λ)S ≤ H2, (4.4)

then M is one of the followings:

(1) a round sphere Sn(r),

(2) a cylinder Sk(r) × R
n−k, 1 ≤ k ≤ n− 1,

(3) a hyperplane R
n,

where H is the mean curvature of M , S is the norm square of the second fundamental form of

M .

Remark 4.5 The theorem is a general generalization of Cao and Li [10] and Le and Sesum

[50].

In [62], Wang, Xu and Zhao proved that if the Ln-norm of the second fundamental form of

the λ-hypersurface X : M → R
n+1 with n ≥ 3 is less than an explicit positive constant, then

M is a hyperplane.

In [67], Zhu, Fang and Chen considered the volume comparison theorem of complete bounded

λ-hypersurfaces with bounded S and got some applications of the volume comparison theorem.

They also got some estimates for the intrinsic diameter and the extrinsic radius.

In particular, for λ-surfaces, Guang [34] obtained the following theorem.

Theorem 4.16 Let X : M2 → R
3 be a 2-dimensional compact λ-surface in R

3 with λ ≥ 0.

If the squared norm of the second fundamental form S is constant, then X : M2 → R
3 is a

round sphere.

The proof of his theorem has two ingredients. The first ingredient is to consider the point

where the norm of the position vector |x| achieves its minimum. This will give that the genus

is 0. The second ingredient is an interesting result from [40] that any smooth closed special

W -surface of genus 0 is a round sphere.

In [34], Guang proposed the following conjecture (see [34, Page 74], also see [35]).

Conjecture 2 Any complete λ-surface in R
3 with constant S=constant is either R

2, or

S1(r1)× R, or S2(r2) for some positive constants r1 and r2.

By using of the generalized maximum principle introduced by Cheng-Ogata-Wei [14], Cheng

and Wei [21] confirmed the conjecture of Guang [34]. More precisely, we proved the following.

Theorem 4.17 Let X : M2 → R
3 be a 2-dimensional complete λ-surface in R

3. If the

squared norm S of the second fundamental form is constant, then either S = 0, or S =
2+λ2+λ

√
λ2+4

2 , or S = 4+λ2+λ
√
λ2+8

4 and X : M2 → R
3 is isometric to one of

(1) R2,

(2) S1(−λ+
√
λ2+4

2 )× R,

(3) S2(−λ+
√
λ2+8

2 ).
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Proof In the proof, we should use the following lemma and theorems.

Lemma 4.2 Let X : M2 → R
3 be a 2-dimensional λ-surface in R

3. If S is constant, we

have

1

2
L
∑

i,j,k

(hijk)
2 =

∑

i,j,k,l

(hijkl)
2 + (2− S)

∑

i,j,k

(hijk)
2 + 6

∑

i,j,k,l,p

hijkhilhjphklp

− 3
∑

i,j,k,l,p

hijkhijlhkphlp + 3λ
∑

i,j,k,l

hijkhijlhkl (4.5)

and

1

2
L
∑

i,j,k

(hijk)
2

=
3

2
λH |∇H |2 + 3

4
λH3 +

3

4
λH2S(λ−H)− 3

4
λSH − 3

4
λS2(λ−H). (4.6)

Theorem 4.18 For a 2-dimensional complete λ-surface X : M2 → R
3 with constant

squared norm S of the second fundamental form, we have either

(1) λ2S = (S − 1)2 and supH2 = S, or

(2) λ2S = 2(S − 1)2 and supH2 = 2S, or

(3) λ2S = 2(1+S)2

9 and supH2 = 2S.

Theorem 4.19 Let X : M2 → R
3 be a 2-dimensional λ-surface. If either λ2S = (S − 1)2,

or λ2S = 2(S − 1)2, or 9λ2S = 2(S − 1)2, then the mean curvature H satisfies H 6= 0 on M2.

Theorem 4.20 Let X : M2 → R
3 be a 2-dimensional complete λ-surface with constant

squared norm S of the second fundamental form. Then either λ2S = (S − 1)2 and infH2 = S,

or λ2S = 2(S − 1)2 and infH2 = 2S.

If λ 6= 0, from Theorem 4.20, we know that λ2S = (S− 1)2 or λ2S = 2(S− 1)2. It is easy to

check that λ2S = (S − 1)2 and λ2S = 2(S − 1)2 do not hold simultaneously. If λ2S = (S − 1)2,

we have infH2 = S = supH2 from Theorem 4.18. Hence, H is constant. If λ2S = (S − 1)2,

we have infH2 = 2S = supH2 from Theorem 4.18, H is also constant. Thus, we conclude

that X : M2 → R
3 is an isoparametric surface. By a classification theorem due to Lawson [49],

X : M2 → R
3 is Sk(r) × R

2−k, k = 1, 2. By a direct calculation, we conclude X : M2 → R
3 is

either S1
(

−λ+
√
λ2+4

2

)

× R
1, or S2

(

−λ+
√
λ2+8

2

)

.

There are some other rigidity results about λ-hypersurfaces (see [2–4, 6, 8–9, 19, 22, 25, 27,

37–38, 41–43, 46, 51, 53, 61, 65–66]).
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