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Abstract In this paper, the authors apply ∂ steepest descent method to study the Cauchy
problem for the derivative nonlinear Schrödinger equation with finite density type initial
data

iqt + qxx + i(|q|2q)x = 0,

q(x, 0) = q0(x),

where lim
x→±∞

q0(x) = q± and |q±| = 1. Based on the spectral analysis of the Lax pair,

they express the solution of the derivative Schrödinger equation in terms of solutions of
a Riemann-Hilbert problem. They compute the long time asymptotic expansion of the
solution q(x, t) in different space-time regions. For the region ξ = x

t
with |ξ + 2| < 1, the

long time asymptotic is given by

q(x, t) = T (∞)−2
q
r
Λ(x, t) +O(t−

3
4 ),

in which the leading term is N(I) solitons, the second term is a residual error from a ∂

equation. For the region |ξ + 2| > 1, the long time asymptotic is given by

q(x, t) = T (∞)−2
q
r
Λ(x, t)− t

−
1
2 if11 +O(t−

3
4 ),

in which the leading term is N(I) solitons, the second t−
1
2 order term is soliton-radiation

interactions and the third term is a residual error from a ∂ equation. These results are
verification of the soliton resolution conjecture for the derivative Schrödinger equation. In
their case of finite density type initial data, the phase function θ(z) is more complicated
that in finite mass initial data. Moreover, two triangular decompositions of the jump
matrix are used to open jump lines on the whole real axis and imaginary axis, respectively.
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1 Introduction

The study on the long-time behavior of nonlinear wave equations which is solvable by the

inverse scattering method was first carried out by Manakov in 1974 (see [1]). By using this
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method, Zakharov and Manakov gave the first result for large-time asymptotic of solutions for

the NLS equation with decaying initial data (see [2]). The inverse scattering method also worked

for long-time behavior of integrable systems such as KdV, Landau-Lifshitz and the reduced

Maxwell-Bloch system (see [3–5]). In 1993, Deift and Zhou developed a nonlinear steepest

descent method to rigorously analyze the long-time asymptotic behavior of the solution for the

mKdV equation by deforming the original Riemann-Hilbert (RH for short) problem to a model

one whose solution is calculated in terms of parabolic cylinder functions (see [6]). Since then this

method has been widely applied to the focusing NLS equation, KdV equation, Fokas-Lenells

equation, short-pulse equation and Camassa-Holm equation etc. (see [7–12]).

In recent years, McLaughlin and Miller further presented a ∂ steepest descent method

which combines steepest descent with ∂-problem rather than the asymptotic analysis of singular

integrals on contours to analyze asymptotic of orthogonal polynomials with non-analytic weights

(see [13–14]). When it was applied to integrable systems, the ∂ steepest descent method also

has displayed some advantages, such as avoiding delicate estimates involving Lp estimates of

the Cauchy projection operators, and leading the non-analyticity in the RH problem reductions

to a ∂-problem in some sectors of the complex plane which can be solved by being recast into

an integral equation and by using Neumann series. Dieng and McLaughin used it to study

the defocusing NLS equation under essentially minimal regularity assumptions on finite mass

initial data (see [15]). This ∂ steepest descent method was also successfully applied to prove

asymptotic stability of N -soliton solutions to focusing NLS equation (see [16]). Jenkins et al.

studied soliton resolution for the derivative NLS equation for generic initial data in a weighted

Sobolev space (see [17]). Their work provided the soliton resolution property for derivative

NLS equation, which decomposes the solution into the sum of a finite number of separated

solitons and a radiative parts when t → ∞. Its dispersive part contains two components,

one coming from the continuous spectrum and another from the interaction of the discrete

and continuous spectrum. For finite density initial data, Cuccagna and Jenkins studied the

defocusing NLS equation (see [18]). Recently, we further extended this method to obtain the

long-time asymptotics and the soliton resolution conjecture for some integrable systems (see

[19–23]).

In this paper, we study the long time asymptotic behavior for the derivative nonlinear

Schrödinger (DNLS for short) equation with finite density initial data

iqt + qxx + iσ(|q|2q)x = 0, (1.1)

q(x, 0) = q0(x), (1.2)

where lim
x→±∞

q0(x) = q±, |q±| = 1. Since the solution space of (1.1) with σ = 1 and σ = −1 is

equivalently by the simple mapping q(x, t) → q(−x, t), we only need to consider the case σ = −1

in our paper. The DNLS equation as a completely integrable system was first proposed by Kaup

and Newell [24]. The DNLS equation is often used to describe various nonlinear waves. For

instance, DNLS equation governs the evolution of small but finite amplitude nonlinear Alfvén

waves which propagates quasi-parallel to the magnetic field in space plasma physics (see [25–

29]), sub-picosecond pulses in single mode optical fibers (see [30–32]). Moreover, DNLS equation

also describe weak nonlinear electromagnetic waves in ferromagnetic (see [33]), dielectric (see

[34]) and anti-ferromagnetic systems under external magnetic fields (see [35]). Either zero
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boundary conditions or nonzero boundary conditions for the DNLS equation have well physical

significance. For problems of nonlinear Alfvén waves, weak nonlinear electromagnetic waves

in magnetic and dielectric media, waves propagating strictly parallel to the ambient magnetic

fields are modeled by zero boundary conditions, while those oblique waves are modeled by

the nonzero boundary conditions. In optical fibers, pulses under bright background waves are

modeled by the zero boundary conditions.

Much work was done on the N -soliton solutions for the DNLS equation with zero/nonzero

boundary conditions on discrete spectrum by using inverse scattering transform (see [36–41]).

Tsutsumi and Fukuda established the local existence of the DNLS equation for initial value

q0 ∈ Hs(R), s > 3 by using a parabolic regularization (see [42]). Later, they used the first

five conserved quantities of the DNLS equation to establish the global existence of solutions

for q0 ∈ H2(R) with small initial data in H1(R) (see [43]). Hayashi proved local and global

existence of solutions to the DNLS equation for q0 ∈ H1(R) with small initial data in L2(R)

(see [44]). For Schwartz initial value q0(x) ∈ S(R), we first used Deift-Zhou steepest descent

method to derive the long-time asymptotic for the DNLS equation (1.1) in soliton-free region

(see [45])

q(x, t) = t−
1
2α(λ0)e

ix2

4t −iν(λ0) log t +O(t−1 log t). (1.3)

Later we further investigated the long-time asymptotic for the DNLS equation (1.1) with step-

like initial data (see [46]). Pelinovsky and Shimabukuro studied the existence of global solutions

to the DNLS equation with the inverse scattering transform method (see [47]). Recently, generic

initial data in a weighted Sobolev space defined by

H2,2(R) = {f(x) ∈ L2(R) | (1 + |x|2)∂jf(x) ∈ L2(R) for j = 1, · · · , 2},

applying ∂ steepest descent method, Jenkins et al. obtained the following asymptotics for the

DNLS equation

q(x, t) = qsol(x, t;DI) + t−
1
2 f(x, t) +O(t−

3
4 ), (1.4)

where qsol(x, t;DI) is the soliton solutions of (1.1) with modulating reflectionless scattering data

(1.1) (see [17, 48]).

In our present paper, for finite density initial data q0(x)−q± ∈ H2,2(R), we apply ∂ steepest

descent method to obtain the following long-time asymptotic of the DNLS equation (1.1).

For ξ = x
t
with |ξ + 2| < 1:

q(x, t) = T (∞)−2qrΛ(x, t) +O(t−
3
4 ). (1.5)

For |ξ + 2| > 1:

q(x, t) = T (∞)−2qrΛ(x, t)− t−
1
2 if11 +O(t−

3
4 ), (1.6)

where meanings of the notations qrΛ(x, t), T (z) and f11 are shown in Proposition 3.1, Corollary

6.2 and (8.14), respectively. Our work is different from those [17, 45] in the following three

aspects. Firstly, for our case with finite density initial data, the corresponding phase function

and its phase points are more complicated. On the jump contour iR and R, there does not
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always exist phase point. And in the case that phase point absences on iR (or R), unlike usual

steepest descent method to open jump contour at phase points, we open the jump contour iR

(or R) at z = 0. And under this method, jump contour will decay to zero, and its non-analytical

component is transformed into a ∂ equation. So we do not need to consider usual parabolic-

cylinder model. Secondly, from characteristics of two triangular decompositions of jump matrix

in the case of non-zero boundary conditions, one decomposition is used to open jump line on

the whole real axis, another is used to open jump line on the whole imaginary axis. Thirdly,

in the case of non-vanishing initial data, to avoid multi-valued function, we need to introduce

uniformization variables. This also results in extra singularities on two branch cut points ±i,

which leads to some adjustments in the structure of standard matrix factorizations.

This paper is arranged as follows. In Section 2, we recall some main results on the con-

struction process of the RH problem with respect to the initial problem of the DNLS equation

(1.1) obtained in [38, 41], which will be used to analyze long-time asymptotics of the DNLS

equation in our paper. In Section 3, we introduce a function T (z) to define a new RH problem

forM (1)(z), which admits a regular discrete spectrum and two triangular decompositions of the

jump matrix. In Section 4, by introducing a matrix-valued function R(z), we obtain a mixed

∂-RH problem for M (2)(z) by continuous extension of M (1)(z). In Section 5, we decompose

M (2)(z) into a model RH problem for MR(z) and a pure ∂-problem for M (3)(z). The MR(z)

can be obtained via a modified reflectionless RH problem M (r) (see Section 6), local RH prob-

lemM lo(z) (see Section 7) and error function E(z) (see Section 8). In Section 9, we analyze the

∂-problem for M (3)(z). Finally, in Section 10, based on the result obtained above, a relation

formula is found

M(z) = T (∞)σ3M (3)(z)MR(z)R(2)(z)−1T (z)−σ3 ,

from which we then obtain the long-time asymptotic behavior for the DNLS equation (1.1) via

a reconstruction formula.

2 The Spectral Analysis and a RH Problem

The DNLS equation (1.1) admits the Lax pair (see [24])

Φx = XΦ, Φt = TΦ, (2.1)

where

X = ik2σ3 + kQ,

T = −(2k2 +Q2)X − ikQxσ3

with k ∈ C being a spectral parameter and

Q =

(
0 q
−q 0

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

By using the boundary condition (1.1), Lax pair (2.1) becomes

Φ±,x ∼ X±Φ±, Φ±,t ∼ T±Φ±, x→ ±∞, (2.2)
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where

X± = ik2σ3 + kQ±, T± = −(2k2 − 1)X± (2.3)

and

Q± =

(
0 q±

−q± 0

)
.

The eigenvalues of the matrix X± are ±ikλ, which admit

λ2 = k2 + 1. (2.4)

To avoid multi-valued case of eigenvalue λ, we introduce a uniformization variable

z = k + λ, (2.5)

and obtain two single-valued functions

k(z) =
1

2

(
z − 1

z

)
, λ(z) =

1

2

(
z +

1

z

)
. (2.6)

Define two domains D+, D− and their boundary Σ on z-plane by

D− = {z : Re z Im z < 0}, D+ = {z : Re z Im z > 0},
Σ = {z : Re z Im z = 0} = R ∪ iR\{0},

which are shown in Figure 1.

Figure 1 The domains D−, D+ and boundary Σ = R ∪ iR\{0}.

We derive the solution of the asymptotic spectral problem (2.2),

Φ± ∼ Y±e
ik(z)λ(z)xσ3 , (2.7)

where

Y± =

(
1 iq±

z
iq±
z

1

)
.
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By making transformation

µ± = Φ±e
−ikλxσ3 , (2.8)

we further have

µ± ∼ Y±, x→ ±∞,

det[Φ±] = det[µ±] = det[Y±] = 1 + z−2.

µ± satisfy the Volterra integral equations

µ±(z) = Y± +

∫ x

±∞

Y±e
ikλ(x−y)σ̂3 [Y −1

± ∆X±µ±(z)]dy, z 6= ±i, (2.9)

µ±(z) = Y± +

∫ x

±∞

[I + (x − y)X±(z)]∆X±µ±(z)dy, z = ±i, (2.10)

where ∆X± = k(Q−Q±). It can be shown that the eigenfunctions µ± admit symmetries (see

[41]).

Proposition 2.1 Jost functions admit two reduction conditions on the z-plane:

The first symmetry reduction:

µ±(z) = σ2µ±(z)σ2 = σ1µ±(−z)σ1. (2.11)

The second symmetry reduction:

µ±(z) =
i

z
µ±(−z−1)σ3Q±. (2.12)

For z ∈ Σ0 = Σ \ {±i}, there exists scattering matrix which is a linear relation between Φ+

and Φ−,

Φ+(x, t, z) = Φ−(x, t, z)S(z), (2.13)

where

S(z) =

(
a(z) −b(z)
b(z) a(z)

)
, det[S(z)] = 1 (2.14)

with symmetry reduction:

S(z) = σ1S(−z)σ1 = (σ3Q−)
−1S(−z−1)σ3Q+. (2.15)

And the reflection coefficients are defined by

ρ(z) =
b(z)

a(z)
, ρ̃(z) = −ρ(z) (2.16)

with symmetry reduction:

ρ(z) = ρ̃(−z) = q−
q−
ρ̃(−z−1). (2.17)
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(2.13) also gives

a(z) =
Wr(Φ1

+,Φ
2
−)

1 + z−2
, b(z) =

Wr(Φ1
−,Φ

1
+)

1 + z−2
. (2.18)

Although a(z) and b(z) has singularities at points ±i, |ρ(±i)| = 1. The uniqueness and exis-

tences of Lax pair come from [41].

Proposition 2.2 If q(x) − q± ∈ H2,2(R±), the fundamental eigenfunctions µ± defined by

(2.9)–(2.10) exist uniquely. Define µ± = (µ1
±, µ

2
±) with µ

1
± and µ2

± denoting the first and second

column of µ±, respectively. Then µ1
+and µ

2
− are analytic on the D+, and continuous in D+; µ1

−

and µ2
+ are analytic on the D−, and continuous in D−. Moreover, from (2.18), a(z) is analytic

on the D+, and continuous in D+ \{±i}. Further, λa(z) is analytic on the D+, and continuous

in D+. b(z) and λb(z) are continuous in Σ0 and Σ, respectively.

Proof We give the detail of the first column of Y −1
+ µ+. The other case can be proved in

the same way. The analyticity and continuity of a(z) and b(z) come from (2.18). For brevity,

we denote it as w(z;x, t). It satisfies the Volterra integral equation:

w(z;x, t) =

(
1
0

)
+
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y, t)w(z; y, t)dy. (2.19)

Here

G(z;x, y, t) =

(
G1(z; y, t) G2(z; y, t)

−e2ikλ(x−y)G2(z; y, t) −e2ikλ(x−y)G1(z; y, t)

)
, (2.20)

G1(z; y, t) =
i

z
(q+q(y, t) + q(y, t)q+ − 2), (2.21)

G2(z; y, t) = q(y, t)− q+ − 1

z2
q2+q(y, t)− q+. (2.22)

We define a series of recursive functions for n = 0, 1, · · · , by

w(0) =

(
1
0

)
, w(n+1)(z;x, t) =

z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y, t)w(n)(z; y, t)dy. (2.23)

By using (2.23), we construct a Neumann series

w(z;x, t) =

+∞∑

n=0

w(n)(z;x, t), (2.24)

and show that w(z;x, t) is a uniquely vector-type analytical solution of (2.9) in D+. It is simply

obtained by q − q± ∈ L1(R) that w(z;x, t) exists for any z ∈ D+. Then we complete the proof

from two aspects. Firstly, we prove that for any compact subset D0 of D+,
N∑
n=0

w(n)(z;x, t)

converges uniformly to w(z;x, t). For compact subset D0,
∣∣ z(z2−1)
2(z2+1)

∣∣ is bounded with a constant

C1. For any z in D0,

‖w(n+1)(z;x, t)‖ ≤
∣∣∣z(z

2 − 1)

2(z2 + 1)

∣∣∣
∫ x

+∞

‖G(z;x, y, t)‖‖w(n)(z; y, t)‖dy. (2.25)
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In the above inequality, |e2ikλ(x−y)| < 1 for z ∈ D+, so there also has

‖G(z;x, y, t)‖ ≤ C2|q(y, t)− q+|.

Thus,

‖w(n+1)(z;x, t)‖ ≤ C1C2

∫ x

+∞

|q(y, t)− q+|‖w(n)(z; y, t)‖dy. (2.26)

Through mathematical induction we deduce that,

‖w(n+1)(z;x, t)‖ ≤
(
Cz0C0

∫ x
+∞

|q(y, t)− q+|dy
)n

n!
, (2.27)

which means the integral in (2.23) converges and is finite, then from analyticity of w(0) and

G(z;x, y, t), we obtain w(n), n ≥ 1 are analytic by mathematical induction. Noting that for all

x ∈ R
+ and z ∈ D0, we have

‖w(n)‖ ≤
(
C1C2

∫ 0

+∞ |q(y, t)− q+|dy
)n

n!
. (2.28)

Therefore w(z;x, t) defined by (2.24) absolutely and uniformly converges with respect to x ∈ R+

for z ∈ D0. So w(z;x, t) is holomorphic in D+. Next we prove that the solution of the Volterra

integral equation is unique. By using (2.23)–(2.24), we have

w(z;x, t) = w(0) +

+∞∑

n=1

w(n) = w(0) +
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y, t)

+∞∑

n=0

w(n)(z; y, t)dy

= w(0) +
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y, t)w(z; y, t)dy, (2.29)

which means w(z;x, t) defined by (2.24) is a solution of (2.25). In addition, w(z;x, t) is analytical

in D+. Next we give the uniqueness of w(z;x, t). If there has an another solution h(z;x, t) of

(2.25), let H(z;x, t) = w(z;x, t)− h(z;x, t). Then it admits

H(z;x, t) =
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y, t)H(z; y, t)dy. (2.30)

In a similar way, we deduce that

‖H(z;x, t)‖ ≤ C1C2

∫ x

+∞

|q(y, t)− q+|‖H(z; y, t)‖dy. (2.31)

Then by Bellmann inequality we have H ≡ 0, which means w(z;x, t) defined by (2.24) is the

unique solution of (2.25).

The zeros of a(z) on Σ are known to occur and they correspond to spectral singularities.

They are excluded from our analysis in this paper. Let ZN be a subset of H2,2(R) such that

a(z) has N simple zeros in the first quadrant. Zeros of a(z) are assumed to be simple in order

to simplify our presentation. This is not a restricted assumption because the union
∞⋃
N=0

ZN is

dense in space H2,2(R) thanks to the classical results of Beals and Coifman [49]. Therefore to
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deal with our following work and make ρ(z) have smoothness and decaying property, we assume

our initial data satisfy this assumption.

Assumption 2.1 The initial data q(x)− q± ∈ H2,2(R) and it generates generic scattering

data satisfying that

(1) a(z) has no zero in Σ.

(2) a(z) only has finite number of simple zeros.

Suppose that a(z) has N1 simple zeros z1, · · · , zN1 on D+ ∩ {z ∈ C : Im z > 0, |z| > 1}, and
N2 simple zeros w1, · · · , wN2 on the circle

{
z = eiϕ : 0 < ϕ < π

2

}
. The symmetry (2.15) implies

that

a(±zn) = 0 ⇔ a(±zn) = 0 ⇔ a(±z−1
n ) = 0

⇔ a(±z−1
n ) = 0, n = 1, · · · , N1,

and on the circle

a(±wm) = 0 ⇔ a(±wm) = 0, m = 1, · · · , N2.

So the zeros of a(z) come in pairs. It is convenient to define ζn = zn, ζn+N1 = −zn, ζn+2N1 =

z−1
n and ζn+3N1 = −z−1

n for n = 1, · · · , N1; ζm+4N1 = wm and ζm+4N1+N2 = −wm for m =

1, · · · , N2. Therefore, the discrete spectrum is

Z = {ζn, ζn}4N1+2N2
n=1 (2.32)

Figure 2 Distribution of the discrete spectrum Z. The red curve is unit circle.

with ζn ∈ D+ and ζn ∈ D−. The distribution of Z on the z-plane is shown in Figure 2.

As shown in [41], the zero zn gives the breather solution of the DNLS equation with nonzero

boundary conditions (NZBCs), while the zero wm gives the soliton solution. As shown in [38],

there exists a constant bn such that

µ1
+(zn) = bne

−2ik(zn)λ(zn)xµ2
−(zn). (2.33)
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Denote norming constant cn = bn
a′(zn)

. Then we have residue conditions as

Res
z=±zn

[µ1
+(z)

a(z)

]
= cne

−2ik(±zn)λ(±zn)xµ2
−(±zn), (2.34)

Res
z=±z−1

n

[µ1
+(z)

a(z)

]
= ±q−

q−
z−2
n cne

−2ik(±z−1
n )λ(±z−1

n )xµ2
−(±z−1

n ), (2.35)

Res
z=±zn

[µ2
+(z)

a(z)

]
= −cne2ik(±zn)λ(±zn)xµ1

−(±zn), (2.36)

Res
z=±z−1

n

[µ2
+(z)

a(z)

]
= ± q−

q−
z−2
n cne

−2ik(±z−1
n )λ(±z−1

n )xµ2
−(±z−1

n ). (2.37)

For m = 1, · · · , N2, we also have cN1+m =
bN1+m

a′(wm) and

Res
z=±wm

[µ1
+(z)

a(z)

]
= cN1+me−2ik(±wm)λ(±wm)xµ2

−(±wm), (2.38)

Res
z=±wm

[µ2
+(z)

a(z)

]
= −cN1+me2ik(±wm)λ(±wm)xµ1

−(±wm). (2.39)

For brevity, we introduce a new constant Cn as: For n = 1, · · · , N1, Cn = Cn+N1 = cn,

Cn+2N1 = −Cn+3N1 =
q−
q−
z−2
n cn; for m = 1, · · · , N2, Cm+4N1 = Cm+4N1+N2 = cm+N1 , and the

collection σd = {ζn, Cn}4N1+2N2
n=1 is called the scattering data.

Now we are going to take into account the time evolution of scattering data. If q also

depends on t (i.e., q = q(x, t)), we can obtain the functions a and b as above for all times t ∈ R.

Taking account of the t-part in (2.1) and (2.33), the t-derivative of a, b and bn come into

at(z; t) = 0, bt(z; t) = −(2k2 − 1)kλb(z; t), (2.40)

bn(t) = −(2k2 − 1)kλbn(0). (2.41)

Then we can obtain time dependence of scattering data which can be expressed as the following

replacement

C(ζn) → C(t, ζn) = c(0, ζn)e
−(2k(ζn)

2−1)k(ζn)λ(ζn)t, (2.42)

ρ(z) → ρ(t, z) = ρ(0, z)e−(2k2−1)kλt. (2.43)

In particular, if at time t = 0 the initial function q(x, 0) produces 4N1 + 2N2 simple zeros

ζ1, · · · , ζ4N1+2N2 of a(z; 0) and if q evolves accordingly to (1.1), then q(x, t) will produce exactly

the same 4N1 + 2N2 simple zeros at any other time t ∈ R. The scattering data with time t is

given by

{e−(2k2−1)kλtρ(z), {ζn, e−(2k(ζn)
2−1)k(ζn)λ(ζn)tCn}4N1+2N2

n=1 },

where {ρ(z), {ζn, Cn}4N1+2N2
n=1 } are obtained from the initial data q(x, 0) = q0(x). Denote the

phase function

θ(z) = k(z)λ(z)
[x
t
− (2k(z)2 − 1)

]
=
z2 − 1

z2

4

[x
t
+ 1−

(
z − 1

z

)2

2

]
(2.44)
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and for convenience we denote θn = θ(ζn).

To solve the matrix RH problem in the following inverse problem, we finally give the asymp-

totic behaviors of the modified Jost solutions and scattering matrix as z → ∞ and z → 0 in

[41].

Proposition 2.3 The Jost solutions possess the following asymptotic behaviors

µ±(z) = eiν±(x,t;q)σ3 +O(z−1), z → ∞, (2.45)

µ±(z) =
i

z
eiν±(x,t;q)σ3σ3Q± +O(1), z → 0, (2.46)

where

ν±(x, t; q) =
1

2

∫ x

±∞

(|q|2 − 1)dy. (2.47)

The scattering matrices admit asymptotic behaviors

S(z) = e−iν0(t;q)σ3 +O(z−1), z → ∞, (2.48)

S(z) = diag
(q−
q+
,
q+
q−

)
eiν0(t;q)σ3 + O(z), z → 0, (2.49)

where

ν0(t; q) =
1

2

∫ +∞

−∞

(|q|2 − 1)dy. (2.50)

Further we have ρ(0) = ρ̃(0) = 0.

Moreover, the trace formula gives that

a(z) = e−iν0(t;q)
4N1+2N2∏

j=1

z − ζj

z − ζj
exp

{
− 1

2πi

∫

Σ

log(1− ρ(s)ρ̃(s))

s− z
ds
}
. (2.51)

Proposition 2.4 If the initial valve q0 − q± ∈ H2,2(R±), then the reflection coefficients

ρ(z) and ρ̃(z) belong in H1(R ∪ iR).

Proof We take ρ(z) ∈ H1(R) as an example. The proof of ρ̃(z) and on iR is similar. To

prove this, we just need to prove a(z), b(z), a′(z) and b′(z) are bounded on R, and b(z) and

b′(z) are in L2,1(R). In fact, although points z = ±i are a singularity of a(z) and b(z) as shown

in (2.18), they are not the singularity of ρ(z) and ρ̃(z). So when considering at z = ±i, on their

neighborhood we just need to calculate

ρ(z) =
Wr(Φ1

−,Φ
1
+)

Wr(Φ1
+,Φ

2
−)
.

Thus the analysis on iR is similar as it on R. The symmetry reduction ρ(z) =
q−
q−
ρ̃(−z−1)

implies us to divide R to two part: (−∞,−1] ∪ [1,∞) and (−1, 1). Then we only need to

compute on (−∞,−1]∪ [1,∞). For convenience, denote I0 = (−∞,−1]∪ [1,∞). (2.18) inspires

us to analyze in the same way as Proposition 2.2. Recall the Volterra integral equation of the

first column of Y −1
+ µ+ with t = 0 and denote h(x, z) = (h1(x, z), h2(x, z))

T = w(z;x) − e1:

h(z;x) = [Te1](z;x) + [Th](z;x), (2.52)
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∂

∂z
h(z;x) = [Tze1](z;x) + [Tzh](z;x) +

[
T
∂

∂z
h
]
(z;x), (2.53)

where T , Tz are integral operators with

[Tf ](z;x) =
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

G(z;x, y)f(z; y)dy, (2.54)

[Tzf ](z;x) =
z4 − 1 + 4z2

2(z2 + 1)2

∫ x

+∞

G(z;x, y)f(z; y)dy

+
z(z2 − 1)

2(z2 + 1)

∫ x

+∞

∂

∂z
G(z;x, y)f(z; y)dy, (2.55)

and G(z;x, y) is defined in (2.20). Then h and ∂
∂z
h can be written as the Neumann series:

h(z;x) =

+∞∑

n=0

h(n)(z;x),
∂

∂z
h(z;x) =

+∞∑

n=0

h(n)z (z;x) (2.56)

with

h(0)(z;x) = [Te1](z;x), h(n+1)(z;x) = Th(n)(z;x), (2.57)

h(0)z (z;x) = [Tze1](z;x) + [Tzh](z;x), h(n+1)
z (z;x) = Th(n)z (z;x). (2.58)

By integration by parts we obtain:

[h(0)]2(z;x) =
i(z2 − 1)

z(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2
∂

∂y
q0(y)− q+dy

− z2 − 1

2z3(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q0(y)− q+dy

+
z2 − 1

2z5(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q2+(q0(y)− q+)dy

− (z2 − 1)i

2z3(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q2+
∂

∂y
(q0(y)− q+)dy

=
2(z2 − 1)

z3(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2
∂2

∂y2
q0(y)− q+dy

+
i(z2 − 1)

z5(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2
∂

∂y
q0(y)− q+dy

− z2 − 1

2z3(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q0(y)− q+dy

+
z2 − 1

2z5(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q2+(q0(y)− q+)dy

− (z2 − 1)i

2z3(z2 + 1)

∫ x

+∞

ei
(z2−z−2)(x−y)

2 q2+
∂

∂y
(q0(y)− q+)dy. (2.59)

Thus, [h(0)]2(z;x) ∈ C0(R+
x , L

2,1(I0))∩L∞(I0×R+
x ) when q0(x)−q+ ∈ H2,2(R+). Simple calcu-

lations give that [h(0)]1(z;x) ∈ L∞(I0×R+
x ). In fact, similarly through mathematical induction

as in Proposition 2.2, we further have that for any n ≥ 1, fn(x) ∈ {q0(x)− q+, q0(x)− q+},
∥∥∥f1(y1)

∫ y1

+∞

f2(y2) · · ·
∫ y1

+∞

fn(yn)dyn · · ·dy2
∥∥∥
W 1,2(R+)

.
‖q0(x)− q+‖nW 1,2(R+)

n!
,
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which implies that

|T ne1| .
‖q0(x) − q+‖nW 1,2(R+)

n!
,

‖[T ne1]2‖C0(R+
x ,L2,1(I0))

.
‖q0(x)− q+‖nW 1,2(R+)

n!
.

So h1(z;x) ∈ L∞(I0×R+
x ) and h2(z;x) ∈ C0(R+

x , L
2,1(I0))∩L∞(I0 ×R+

x ) for x ≥ 0. Similarly,

note that

∂

∂z
G(z;x, y) =

(
∂
∂z
G1(z; y)

∂
∂z
G2(z; y)

G3(z; y) G4(z; y)

)
,

∂

∂z
G1(z; y) = − i

z2
(q+q0(y) + q0(y)q+ − 2),

∂

∂z
G2(z; y) =

2

z3
q2+q0(y)− q+,

G3(z; y) = −e2ikλ(x−y)
2

z3
q2+(q0(y)− q+)− i

(
z +

1

z3

)
(x − y)e2ikλ(x−y)G2(z; y),

G4(z; y) = −e2ikλ(x−y)
∂

∂z
G1(z; y)− i

(
z +

1

z3

)
(x− y)e2ikλ(x−y)G1(z; y).

Therefore, there also have [Tze1]1(z;x) + [Tzh]1(z;x) ∈ L∞(I0 × R+
x ) and [Tze1]2(z;x) +

[Tzh]2(z;x) ∈ C0(R+
x , L

2,1(I0)) ∩ L∞(I0 × R
+
x ) for x ≥ 0. It also gives that ∂

∂z
h(z;x) ∈

L∞(I0 ×R+
x )× (C0(R+

x , L
2,1(I0))∩L∞(I0 ×R+

x )). Substitute these results and the asymptotic

behaviors as z → ∞ in Proposition 2.3 into (2.18), we obtain our result.

To obtain a model Riemann-Hilbert problem, we define a sectionally meromorphic matrix

eiν−(x,t;q)σ3M(z;x, t) =





(a(z)−1µ1
+, µ

2
−) as z ∈ D+,

(µ1
−, a(z)

−1
µ2
+) as z ∈ D−,

(2.60)

which solves the following RH problem.

RHP 0 Find a matrix-valued function M(z) which satisfies:

◮ Analyticity: M(z) is meromorphic in C \ Σ and has single poles Z.
◮ Symmetry: M(z) = σ2M(z)σ2=σ1M(−z)σ1 = i

z
M
(
− 1

z

)
σ3Q−.

◮ Jump condition: M(z) has continuous boundary values M±(z) on Σ and

M+(z) =M−(z)V (z), z ∈ Σ, (2.61)

where

V (z) =

(
1− ρ̃(z)ρ(z) −e2itθρ̃(z)
e−2itθρ(z) 1

)
. (2.62)

◮ Asymptotic behaviors:

M(z) = I +O(z−1), z → ∞, (2.63)

M(z) =
i

z
σ3Q− +O(1), z → 0. (2.64)

◮ Residue conditions: M has simple poles at each point in Z ∪ Z with:

Res
z=ζn

M(z) = lim
z→ζn

M(z)

(
0 0

Cne
−2itθn 0

)
, (2.65)
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Res
z=ζn

M(z) = lim
z→ζn

M(z)

(
0 −Cne2itθn
0 0

)
. (2.66)

From the asymptotic behavior in Proposition 2.2, the reconstruction formula of q(x, t) is

given by

q(x, t) = −i lim
z→∞

[zM ]12. (2.67)

3 Deformation to a Mixed ∂-RH Problem

The long-time asymptotic of RHP 0 is affected by the growth and decay of the exponential

function e±2itθ appearing in both the jump relation and the residue conditions. Therefore, in

this section, we introduce a new transform M(z) → M (1)(z), which make that the M (1)(z) is

well behaved as t→ ∞ along any characteristic line.

Let ξ = x
t
. Consider the derivative of θ(z) defined in (2.44),

dθ

dz
=
ξ + 2

2

(
z +

1

z3

)
− 1

2

(
z3 +

1

z5

)
.

Then dθ
dz = 0 ⇔ z8 − (ξ + 2)z6 − (ξ + 2)z2 + 1 = 0. Obviously, z = 0 is not the solution of this

equation. It is naturally to consider the range of real function s4+1
s3+s . Simple calculation gives

that
∣∣ s4+1
s3+s

∣∣ ∈ (1,+∞) for s ∈ R. So we deduce that dθ
dz = 0 has solution on R ∪ iR if and only

if |ξ + 2| ≥ 1. In fact, when the stationary phase point is not on jump line, as t → ∞, these

stationary phase points have no effect. In addition, consider the quartic equation:

s4 − (ξ + 2)s3 − (ξ + 2)s+ 1 = 0.

By simple calculation and the symmetry of the solution of above equation, we can easily deduce

that when ξ+2 < −1, this equation has two negative solution, and when ξ+2 > 1, this equation

has two positive solution. Namely, in the case ξ+2 < −1, there are four stationary phase points

ξj = ξ̃j i, j = 1, 2, 3, 4, on iR (see Figure 3(a)) with ξ̃1 > 1, ξ̃1 = 1

ξ̃2
= − 1

ξ̃3
= −ξ̃4. In the case

ξ + 2 > 1, there are four stationary phase points ξj , j = 1, 2, 3, 4, on R (see Figure 3(f)) with

ξ1 > 1, ξ1 = 1
ξ2

= − 1
ξ3

= −ξ4. For brevity, we denote

n(ξ) =

{
0 as |ξ + 2| < 1,

4 as |ξ + 2| > 1
(3.1)

as the number of stationary phase points. To obtain asymptotic behavior of e2itθ as t→ ∞, we

consider the real part of 2itθ:

Re(2itθ) = −tIm zRe z[(ξ + 2)(1 + |z|−4)− (Re2z − Im2z)(1 + |z|−8)]. (3.2)

The signature of Im θ is shown in Figure 3.

We introduce some notations with respect to subscripts

N , {1, · · · , 4N1 + 2N2}, ∇ = {n ∈ N : Im θn < 0},
∆ = {n ∈ N : Im θn > 0}. (3.3)



Long-time Asymptotic Behavior for DNLS Equation 907

Figure 3 In these figure we take ξ = −4,−3,−2.6,−1.5,−1, 0, respectively to show all type of Im θ.

The green curve is unit circle. In the red region, Im θ > 0 while Im θ = 0 on the red curve. And

Im θ < 0 in the white region.

For n ∈ ∆, the residue of M(z) at ζn in (2.65) are unbounded as t→ ∞. Similarly, for n ∈ ∇,

the residue at ζn approaches to be zero as t → ∞. To distinguish different type of zeros, we

further give

∇1 = {j ∈ {1, · · · , N1} : Im θ(zj) < 0}, ∆1 = {j ∈ {1, · · · , N1} : Im θ(zj) > 0},
∇2 = {i ∈ {1, · · · , N2} : Im θ(wi) < 0}, ∆2 = {i ∈ {1, · · · , N2} : Im θ(wi) > 0},

For the poles ζn with n ∈ ∆∪∇, we want to trap them for jumps along small closed circles

enclosing themselves respectively. The jump matrix in (2.62) also needs to be restricted. Recall

the well known factorizations of V (z):

V (z) =

(
1 −ρ̃(z)e2itθ
0 1

)(
1 0

ρ(z)e−2itθ 1

)

=

(
1 0

ρ(z)e−2itθ

1−ρ(z)ρ̃(z) 1

)
(1− ρ(z)ρ̃(z))σ3

(
1 − ρ̃(z)e2itθ

1−ρ(z)ρ̃(z)

0 1

)
. (3.4)

We will use these factorizations to deform the jump contours so that exponentials e±2itθ are

decaying in corresponding regions respectively. Define

I(ξ) =





(−∞i, 0i) ∪ (+∞i, 0i) ∪ (−∞, ξ4) ∪ (ξ3, 0) ∪ (ξ2, ξ1) as − 1 < ξ,

(ξ̃4i, ξ̃3i) ∪ (ξ̃2i, 0) ∪ (+∞i, ξ̃1i) as ξ < −3,

(−∞i, 0i) ∪ (+∞i, 0i) as − 3 < ξ < −1

(3.5)

as integral curve of functions:

ν(z) =
1

2π
log(1− ρ(z)ρ̃(z)); (3.6)
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δ(z) = exp
(
i

∫

I(ξ)

( 1

s− z
− 1

2s

)
ν(s)ds

)
; (3.7)

T (z) = T (z, ξ) =
∏

n∈∆

z − ζn

ζ
−1

n z − 1
δ(z)

=
∏

j∈∆1

z2 − z2j

z−2
j z2 − 1

z2 − z−2
j

z2j z
2 − 1

∏

i∈∆2

z2 − w2
i

w2
i z

2 − 1
δ(z). (3.8)

In the above formulae, we choose the principal branch (0,−∞) of power and logarithm functions.

Additionally, introduce a positive constant ˜̺ = 1
6 min
j 6=i∈N

|ζi − ζj | and a set of characteristic

functions X (z; ξ, j) on the interval η(ξ, j)ξj − ˜̺< η(ξ, j)z < η(ξ, j)ξj when −1 < ξ and on the

interval η(ξ, j)ξ̃j − ˜̺ < η(ξ, j) z
i
< η(ξ, j)ξ̃j when −3 > ξ for j = 1, · · · , 4, respectively. And

η(ξ, j) is a constant depend on ξ and j:

η(ξ, j) =

{
(−1)j+1 as − 1 < ξ;

(−1)j as ξ < −3.
(3.9)

Proposition 3.1 The function defined by (3.8) has the following properties:

(a) T is meromorphic in C \ iR, and for each n ∈ ∆, T (z) has simple zeros ζn and simple

poles ζn;

(b) T (z) = T−1(z) = T−1(z−1);

(c) for z ∈ iR, as z approaching the I(ξ), T has boundary values T±, which satisfy:

T+(z) = T−(z)(1− ρ(z)ρ̃(z)), z ∈ I(ξ); (3.10)

(d) lim
z→∞

T (z) , T (∞), where

T (∞) =
∏

j∈∆1

z2jz
−2
j

∏

i∈∆2

w2
i exp

( 1

4πi

∫

I(ξ)

s−1 log(1− ρ(s)ρ̃(s))ds
)

(3.11)

with |T (∞)| = 1;

(e) as |z| → ∞ with |arg(z)| ≤ c < π,

T (z) = T (∞)
(
1 + z−1 1

2πi

∫

I(ξ)

log(1− ρ(s)ρ̃(s))ds +O(z−2)
)
; (3.12)

(f) T (z) is continuous at z = 0, and

lim
z→0

T (z) = T (0) = T (∞)−1; (3.13)

(g) a(z)
T (z) is holomorphic in D+. And its absolute value is bounded in D+∩{z ∈ C | Re z > 0}.

Additionally, the ratio extends as a continuous function on iR;

(h) when |ξ + 2| > 1, as z → ξj along any ray ξj + eiφR+ with |φ| < π,

|T (z, ξ)− Tj(ξ)[η(ξ, j)(z − ξj)]
−iη(ξ,j)ν(ξj)| . ‖r‖H1,1(R)|z − ξj |

1
2 , (3.14)

where Tj(ξ) is the complex unit

Tj(ξ) =
∏

n∈∆

ζj − ζn

ζ
−1

n ζj − 1
e−iβ(ξj,ξ) (3.15)
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for j = 1, · · · , 4. In above function, when ξ > −1,

βj(z, ξ) =

∫

I(ξ)

ν(s)−X (z; ξ, j)ν(ξj)

s− z
ds− η(ξ, j)ν(ξj) log(η(ξ, j)(z − ξj + ˜̺)), (3.16)

and when ξ < −3,

βj(z, ξ) =

∫

I(ξ)

ν(s)−X (z; ξ, j)ν(ξj)

s− z
ds− η(ξ, j)ν(ξj) log(η(ξ, j)(z − ξj + ˜̺i)). (3.17)

Proof Properties (a), (b), (d) and (f) can be obtained by simple calculation. Specially, to

prove T (z) = T−1(z) in (b), it is imperative to change variable of the integral in δ(z) as s = iη,

and noting that ρ(−iη)ρ̃(−iη) = ρ(iη)ρ̃(iη), then

δ(z) = exp
( 1

2π

(∫ +∞

0

+

∫ −∞

0

)( 1

−iη − z
− 1

−2iη

)
log(1− ρ(iη)ρ̃(iη))dη

)

= exp
(
− 1

2π

( ∫ +∞

0

+

∫ −∞

0

)( 1

iη − z
− 1

2iη

)
log(1 − ρ(iη)ρ̃(iη))dη

)

= δ(z)−1. (3.18)

(c) follows from the Plemelj formula. By the Laurent expansion (e) immediately. For brevity,

we omit calculation. For (g), for brief we only give the details for the |ξ + 2| < 1 case, from

(2.51) we have

a(z)

T (z)
= T (∞)−1

∏

j∈∇1

z2 − z2j

z−2
j z2 − 1

z2 − z−2
j

z2j z
2 − 1

∏

i∈∇2

z2 − w2
i

w2
i z

2 − 1
exp

{
− 1

2πi

∫

R

log(1− ρ(s)ρ̃(s))

s− z

}
.

So a(z)
T (z) is holomorphic inD+. In above expression, all factors except the last integral is bounded

for z ∈ D+. From (2.16)–(2.17), 1 − ρ(s)ρ̃(s) = 1 + |ρ(s)|2. Let z = x + yi, then the real part

of the exponential is − y
2π

∫
R

log(1+|ρ(s)|2)
|s−z|2 ds which can be bounded as follows:

∣∣∣ y
2π

∫

R

log(1 + |ρ(s)|2)
|s− z|2 ds

∣∣∣ ≤ 1

2π
‖ log(1 + |ρ(s)|2)‖L∞(R)

∥∥∥ y

(s− x)2 + y2

∥∥∥
L1(R)

. ‖ρ(s)‖L∞(R).

And the proof of (h) is same as [16, Proposition 3.1].

Additionally, define three subsets of N :

Λ = {n ∈ N : |Im θn| = 0}, Λ1 = {j0 ∈ {1, · · · , N1} : |Im θ(zj0 )| = 0}, (3.19)

Λ2 = {i0 ∈ {1, · · · , N2} : |Im θ(wi0 )| = 0}. (3.20)

And let ̺ be a positive constant satisfying

̺ =
1

2
min

{
min
j 6=i∈N

|ζi − ζj |, min
j∈N\Λ,Im θ(z)=0

|ζj − z|
}
. (3.21)

By above definition, for every n ∈ N , we define disks D(ζn, ̺), such that they pairwise disjoint,
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also disjoint with Σ. Introduce a piecewise matrix function

G(z) =





(
1 0

−Cn(z − ζn)
−1e−2itθn 1

)
as z ∈ D(ζn, ̺), n ∈ ∇;

(
1 −C−1

n (z − ζn)e
2itθn

0 1

)
as z ∈ D(ζn, ̺), n ∈ ∆;

(
1 Cn(z − ζn)

−1e2itθn

0 1

)
as z ∈ D(ζn, ̺), n ∈ ∇;

(
1 0

C
−1

n (z − ζn)e
−2itθn 1

)
as z ∈ D(ζn, ̺), n ∈ ∆;

I as z in elsewhere.

(3.22)

Now we use T (z) and G(z) to define a new matrix-valued function M (1)(z):

M (1)(z) = T (∞)−σ3M(z)G(z)T (z)σ3, (3.23)

which is solution the following RH problem.

RHP 1 Find a matrix-valued function M (1)(z) which satisfies:

◮ Analyticity: M (1)(z) is meromorphic in C \ Σ(1), where

Σ(1) = R ∪ iR ∪ [∪n∈N\Λ(∂D(ζn, ̺) ∪ ∂D(ζn, ̺))], (3.24)

is shown in Figure 4.

◮ Symmetry: M (1)(z) = σ2M (1)(z)σ2 = σ1M (1)(−z)σ1 = i
z
M (1)

(
− 1

z

)
σ3Q−.

◮ Jump condition: M (1)(z) has continuous boundary values M
(1)
± on Σ(1) and

M
(1)
+ (z) =M

(1)
− (z)V (1)(z), z ∈ Σ(1), (3.25)

where

V (1)(z) =





(
1 −e2itθ ρ̃(z)T−2(z)
0 1

)(
1 0

e−2itθρ(z)T 2(z) 1

)
as z ∈ Σ \ I(ξ);

(
1 0

e−2itθρ(z)T2
−(z)

1−ρ̃(z)ρ(z)
1

)(
1 −

e2itθ ρ̃(z)T−2
+

(z)

1−ρ̃(z)ρ(z)

0 1

)
as z ∈ I(ξ);

(
1 0

−Cn(z − ζn)−1T 2(z)e−2itθn 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∇;

(
1 −C−1

n (z − ζn)T−2(z)e2itθn

0 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∆;

(
1 Cn(z − ζn)

−1T−2(z)e2itθn

0 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∇;

(
1 0

C
−1
n (z − ζn)e

−2itθnT 2(z) 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∆.

(3.26)

◮ Asymptotic behaviors:

M (1)(z) = I +O(z−1), z → ∞, (3.27)

M (1)(z) =
i

z
σ3Q− +O(1), z → 0. (3.28)
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◮ Residue conditions: M (1)(z) has simple poles at each point ζn and ζn for n ∈ Λ with

Res
z=ζn

M (1)(z) = lim
z→ζn

M (1)(z)

(
0 0

Cne
−2itθnT 2(ζn) 0

)
, (3.29)

Res
z=ζn

M (1)(z) = lim
z→ζn

M (1)(z)

(
0 −CnT−2(ζn)e

2itθn

0 0

)
. (3.30)

Proof Note that the triangular factors (3.22) trap poles ζn and ζn to jumps on the disk

boundaries ∂D(ζn, ̺) and ∂D(ζn, ̺), respectively for n ∈ N \ Λ. Then by simple calculation

we can obtain the residues condition and jump condition from (2.62), (2.65)–(2.66) and (3.22)–

(3.23). The analyticity and symmetry ofM (1)(z) is directly from its definition, Proposition 3.1,

(3.22) and the properties ofM(z). As for asymptotic behaviors, from lim
z→0

G(z) = lim
z→∞

G(z) = I

and Proposition 3.1(f), we obtain that M (1)(z) has same asymptotic behaviors as M(z).

Figure 4 The blue curve, including R, iR and the small circles constitute Σ(1). For ζn ∈ Z \ Λ, we

change it to jump on ∂D(ζn, ̺). In this figure, we take wm as the pole point which satisfies

Im θ(wm) = 0 as an example, while take zn as the pole point which satisfies Im θ(zn) 6= 0 as an

example.

4 Mixed ∂-RH Problem

In this section, we make continuous extension for the jump matrix V (1) to remove the jump

from Σ. Besides, the new problem is hoped to take advantage of the decay/growth of e2itθ(z)

for z /∈ Σ. For this purpose, we introduce some new regions and contours relayed on ξ.

4.1 For the region ξ ∈ (−3,−1)

We define

Ω2n+1 =
{
z ∈ C

∣∣∣ nπ
2

≤ arg z ≤ nπ

2
+ ϕ

}
, (4.1)

Ω2n+2 =
{
z ∈ C

∣∣∣ (n+ 1)
π

2
− ϕ ≤ arg z ≤ (n+ 1)

π

2

}
, (4.2)

where n = 0, 1, 2, 3 and ϕ > 0 is a fixed sufficiently small angle achieving following conditions:

(1) 2|ξ+2|
|ξ+2|+1 < cos 2ϕ < 1;

(2) Each Ωi doesn’t intersect any of D(ζn, ̺) or D(ζn, ̺).
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Define new contours as follow:

Σk = e(k−1)iπ4 +ϕR+, k = 1, 3, 5, 7, (4.3)

Σk = eki
π
4 −ϕR+, k = 2, 4, 6, 8, (4.4)

Σ̃ = Σ1 ∪Σ2 ∪ · · · ∪ Σ8, (4.5)

which is the boundary of Ωk, respectively. In addition, let

Ω = Ω1 ∪ · · · ∪ Ω8, (4.6)

Σ(2) =
⋃

n∈N\Λ

(∂D(ζn, ̺) ∪ ∂D(ζn, ̺)), (4.7)

which are shown in Figure 5.

Figure 5 The yellow and blue region is Ω. The red circles constitute Σ(2) together. Similarly in this

figure we suppose that Im θ(wm) = 0 while Im θ(zn) = 0.

Lemma 4.1 Let ξ = x
t
∈ (−3,−1). F (r) = r2 + 1

r2
is a real-valued function. Then for

z = reiφ, the imaginary part of phase function (3.2) satisfies

Im θ(z) ≤ 1

16
| sin 2φ|(|ξ + 2| − 1)F (r)2 as z ∈ Ω1,Ω3,Ω5,Ω7; (4.8)

Im θ(z) ≥ 1

16
| sin 2φ|(1− |ξ + 2|)F (r)2 as z ∈ Ω2,Ω4,Ω6,Ω8. (4.9)

Proof We only prove the case z ∈ Ω1, and the other regions are similarly. From (3.2) we

have

Im θ(z) =
1

2
Im zRe z[(ξ + 2)(1 + |z|−4)− (Re2z − Im2z)(1 + |z|−8)]

=
1

4
r2 sin 2φ[(ξ + 2)(1 + r−4)− r2 cos 2φ(1 + r−8)]

=
1

4
sin 2φ[(ξ + 2)F (r)− cos 2φ(F (r)2 − 2)]. (4.10)
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F (r) ≥ 2 leads to 2 ≤ F (r)2

2 . For z ∈ Ω1,
2|ξ+2|
|ξ+2|+1 < cos 2ϕ < cos 2φ, then we have

|ξ + 2|
cos 2φ

F (r) ≤ |ξ + 2|+ 1

4
F (r)2. (4.11)

Substitute above inequality into (4.10) we obtain the consequence immediately. Introduce a

small enough constant 1 > ε0 > 0 with (1 − ε0) cosϕ > 1
2 . Let X1 ∈ C∞

0 (R, [0, 1]), which is

support in (1 − ε0, 1 + ε0). X0 has support in (−ε0, ε0) with X0(z) = X1(1 + z). In addition,

we denote following functions:

p1(z) = p5(z) = ρ(z), p2(z) = p6(z) =
ρ̃(z)

1− ρ(z)ρ̃(z)
, (4.12)

p3(z) = p7(z) =
ρ(z)

1− ρ(z)ρ̃(z)
, p4(z) = p8(z) = ρ̃(z). (4.13)

Then the next step is to construct a matrix function R(2)(z). We need to remove jump on R

and iR, and have some mild control on ∂R(2)(z) sufficient to ensure that the ∂-contribution to

the long-time asymptotics of q(x, t) is negligible. So we choose R(2)(z) as

R(2)(z) =





(
1 Rj(z)e

2itθ

0 1

)
, z ∈ Ωj , j = 2, 4, 6, 8;

(
1 0

Rj(z)e
−2itθ 1

)
, z ∈ Ωj , j = 1, 3, 5, 7;

I, elsewhere,

(4.14)

where the functions Rj , j = 1, 2, · · · , 8, is defined in following Proposition.

Proposition 4.1 Rj: Ωj → C, j = 1, 2, · · · , 8 have boundary values as follows:

R1(z) =

{
−ρ(z)T (z)2, z ∈ R+,
0, z ∈ Σ1,

R2(z) =




0, z ∈ Σ2,
ρ̃(z), T+(z)

2

1− ρ(z)ρ̃(z)
z ∈ iR+,

(4.15)

R3(z) =





ρ(z)T−(z)
2

1− ρ(z)ρ̃(z)
, z ∈ iR+,

0, z ∈ Σ3,
R4(z) =

{
0, z ∈ Σ4,
−ρ̃(z)T (z)−2, z ∈ R−,

(4.16)

R5(z) =

{
−ρ(z)T (z)2, z ∈ R−,
0, z ∈ Σ5,

R6(z) =





0, z ∈ Σ6,
ρ̃(z)T+(z)

2

1− ρ(z)ρ̃(z)
, z ∈ iR−,

(4.17)

R7(z) =





ρ(z)T−(z)
2

1− ρ(z)ρ̃(z)
, z ∈ iR−,

0, z ∈ Σ7,
R8(z) =

{
0, z ∈ Σ8,
−ρ̃(z)T (z)−2, z ∈ R+.

(4.18)

Rj have the following properties: For j = 1, 5, 4, 8,

|∂Rj(z)| . |p′j(|z|)|+ |z|− 1
2 for all z ∈ Ωj ; (4.19)

and for j = 2, 3, 6, 7,

|∂Rj(z)| . |z ∓ i| for all z ∈ Ωj in a small fixed neighborhood of ±i, (4.20)
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|∂Rj(z)| . |p′j(i|z|)|+ |z|− 1
2 + |∂X1(|z|)| for all z ∈ Ωj . (4.21)

And

∂Rj(z) = 0 if z ∈ elsewhere. (4.22)

Proof Case I z ∈ Ωj , j = 1, 5, 4, 8.

Take R1(z) as an example with extensions

R1(z) = p1(|z|)T 2(z) cos(k0 arg z), k0 =
2π

ϕ
. (4.23)

The other cases are easily inferred. p1(|z|) = ρ(|z|) is bounded. Denote z = reiφ, then we have

∂ = eiφ

2

(
∂r +

i
r
∂φ
)
. So

∂R1(z) =
eiφ

2
T 2(z)

(
p′1(r) cos(k0φ)−

i

r
p1(r)k0 sin(k0φ)

)
. (4.24)

To bound second term we use Cauchy-Schwarz inequality and obtain

|p1(r)| = |ρ(r)| = |ρ(r) − ρ(0)| =
∣∣∣
∫ r

0

ρ′(s)ds
∣∣∣ ≤ ‖ρ′(s)‖L2r

1
2 . (4.25)

Note that T (z) is a bounded function in Ω1. Then the boundedness of (4.19) follows immedi-

ately.

Case II z ∈ Ωj , j = 2, 3, 6, 7.

The details of the proof are only given for R2. Unlike the vanishing boundary condition

case in [16], the determinant of M(z) is 1 + z−2. So to bound the ∂-derivative construct by

R(2) in the following section, the property of R(2) at ±i needs to be control. For this purpose,

we make small adjustments to the extensions of R2 as

R2(z) = R21(z) +R22(z) (4.26)

with a constant δ0 satisfying ϕ > δ0ε0 and

R21(z) = [1−X1(|z|)]p2(i|z|)T−2(z) cos
[
k0

(π
2
− arg z

)]
, (4.27)

R22(z) = f(|z|)g(z) cos
[
k0

(π
2
− arg z

)]

− i|z|
k0
X0

(arg z
δ0

)
f ′(|z|)g(z) sin

[
k0

(π
2
− arg z

)]
. (4.28)

Among above functions,

f(z) = X1(z)
b(z)

a(z)
, g(z) =

( a(z)
T (z)

)2
. (4.29)

Then f(z) ∈ W 2,∞. Obviously, R21(z) ≡ 0 with |z| in the support of X1 and R22(z) ≡ 0 out

the support of X1. Note that

|p2(z)| =
∣∣∣ ρ̃(z)

1− ρ(z)ρ̃(z)

∣∣∣ =
∣∣∣ ρ̃(z)

1− |ρ(z)|2
∣∣∣ . |ρ(z)| for z out of supp(X1). (4.30)
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Similarly in Case I, R21(z) can be bounded as

|∂R21(z)| . (1−X1(|z|))(|p′2(i|z|)|+ |z|− 1
2 ) + |∂X1(|z|)|. (4.31)

As for R22(z), z = reiφ,

∂R22(z) =
eiφ

2
g(z) cos

[
k0

(π
2
− ϕ

)]
f ′(ir)

(
1−X0

( ϕ
δ0

))

+ sin
[
k0

(π
2
− ϕ

)][ ik0
r
f(ir) +

1

δ0k0
X ′

0

( ϕ
δ0

)
f ′(ir)

]

− i

k0
sin
[
k0

(π
2
− ϕ

)]
X0

(arg z
δ0

)
(rf ′(ir))′. (4.32)

So |∂R22(z)| is bounded, and we can write |∂R22(z)| . X1(z)|z|− 1
2 . So (4.20) is obtained. In

addition, for z ∼ i,

|∂R22(z)| .
∣∣∣ sin

[
k0

(π
2
− ϕ

)]∣∣∣+
∣∣∣1−X0

( ϕ
δ0

)∣∣∣ = O(ϕ), (4.33)

from which (4.20) follows immediately.

4.2 For the region |ξ + 2| > 1

We define deformation contours and domains:

For j = 2, 3,

Σjk(ξ) =

{
ξj + ei[−ϕ+

k+1
2π ]l, ξ > −1,

ξj + ei[−ϕ+
k+1
2π ]il, ξ < −3,

k = 1, 3, l ∈
(
0,

|ξ
j+(−1)

k
2
+1 − ξj |

4 cosϕ

)
,

Σjk(ξ) =

{
ξj + ei[(

k
2 )π+ϕ]l, ξ > −1,

ξj + ei[(
k
2 )π+ϕ]il, ξ < −3,

k = 2, 4, l ∈
(
0,

|ξ
j+(−1)

k
2
− ξj |

4 cosϕ

)
.

And for j = 1, 4,

Σjk(ξ) =

{
ξj + e(−1)k−1ϕilj , ξ > −1,

ξj + e(−1)k−1ϕiilj , ξ < −3,
l1 ∈ R

+, l4 ∈
(
0,

|ξ4 − ξ3|
4 cosϕ

)
, k = 1, 2,

Σjk(ξ) =

{
ξj + eπi+(−1)j+1iϕlj, ξ > −1,

ξj + eπi+(−1)j+1iϕilj, ξ < −3,
l4 ∈ R

+, l1 ∈
(
0,

|ξ1 − ξ2|
4 cosϕ

)
, k = 3, 4.

In addition, for j = 1, 2, 3, Σ′
jk is a straight line which connects the end of Σjk and the

intermediate transit point
ξj+ξj+1

2 or
ξj+ξj−1

2 (see Figure 7). And

Σk =

{
iei[π

k−1
2 +ϕ]R+, ξ > −1,

ei[π
k−1
2 +ϕ]

R
+, ξ < −3,

k = 1, 3,

Σk =

{
iei[π(

k
2−1)−ϕ]R+, ξ > −1,

ei[π(
k
2−1)−ϕ]R+, ξ < −3,

k = 2, 4.
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Besides, denote ξ0 = +∞, ξ5 = −∞, and introduce some intervals when j = 1, · · · , 4, for
ξ > −1,

Ij1 = Ij2 =





(ξj + ξj+1

2
, ξj

)
, j is odd number,

(
ξj ,

ξj + ξj−1

2

)
, j is even number,

(4.34)

Ij3 = Ij4 =





(
ξj ,

ξj + ξj−1

2

)
, j is odd number,

(ξj + ξj+1

2
, ξj

)
, j is even number,

(4.35)

and for ξ < −3,

Ij1 = Ij2 =





i
(
ξj ,

ξj + ξj−1

2

)
, j is odd number,

i
(ξj + ξj+1

2
, ξj

)
, j is even number,

(4.36)

Ij3 = Ij4 =





i
(ξj + ξj+1

2
, ξj

)
, j is odd number,

i
(
ξj ,

ξj + ξj−1

2

)
, j is even number.

(4.37)

Figure 6 Figure (a) and (b) are corresponding to the ξ > −1 and ξ < −3, respectively. There are four

stationary phase points ξ1, · · · , ξ4 with ξ1 = −ξ4 = 1
ξ2

= − 1
ξ3
.

These intervals are shown in Figure 6. Then Σjk, Σ
′
jk and Ijk common constitute the region

Ωjk as boundary. And Σk together with iR constitute the region Ωk as boundary when ξ > −1
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while Σk together with R constitute the region Ωk as boundary when ξ < −3. These contours

separate complex plane C into sectors. In addition, let

Σ̃(ξ) =
( ⋃

k=1,··· ,4,
j=1,··· ,4

Σjk

)
∪
( ⋃

k=1,··· ,4,
j=1,··· ,3

Σ′
jk

)
,

Σ(2)(ξ) = Σ̃(ξ)
⋃

n∈N\Λ

(
∂Dn ∪ ∂Dn

)
,

Ω(ξ) =
⋃

k,j=1,··· ,4

Ωjk ∪
( ⋃

k=1,··· ,4,

Ωk

)
, Ω±(ξ) = D± \ Ω,

which are shown in Figure 7. And π
8 > ϕ > 0 is a fixed sufficiently small angle achieving the

following conditions. Firstly, each Ωi does not intersect {z ∈ C; Im θ(z) = 0} and any of Dn or

Dn. This condition is to guarantee the uniformity of the sign of Im θ(z). For bounded region Ωjk,

obviously, there must exist sufficiently small ϕ does not intersect the curve {z ∈ C; Im θ(z) = 0}.
But for the unbounded region origin from ξ1 or ξ4, the existence of angle ϕmay not be obviously.

To illustrate it, we give the following stronger lemma.

Lemma 4.2 There exists a sufficiently small ϕ and a constant c(ξ) > 0 relied on |ξ+2| > 1

such that the imaginary part of phase function (3.2), Im θ(z) have the following estimation for

i = 1, · · · , 4 :

Im θ(z) ≤ −c(ξ)Im z(Re z − ξi) as z ∈ Ωi1,Ωi3; (4.38)

Im θ(z) ≥ c(ξ)Im z(Re z − ξi) as z ∈ Ωi2,Ωi4. (4.39)

Proof We only give the details of the case ξ > −1, and take z ∈ Ω11 as an example, because

the proof in the other regions are similar. Denote Re z = u, Im z = v with u− ξ1, v ∈ R+, thus,

Im θ(z) ≤ −c(ξ)Im z(Re z − ξi)

⇔ u[(ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4)] ≤ −2c(u− ξ1).

Consider the following real value function:

f(u, v) = (ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4). (4.40)

Obviously, f(u, v) is smooth at the point (ξ1, 0) and

∂f

∂u
(ξ1, 0) =

2

ξ71(ξ
4
1 + 1)

(ξ41 − 1)(−ξ81 − 4ξ41 − 1) < 0, (4.41)

∂f

∂v
(ξ1, 0) = 0. (4.42)

Therefore a constant c(ξ) > 0 and a small neighbourhood D((u, v), δ) ∩ Ω11, δ > 0 of (ξ1, 0)

exist which satisfy

|f(u, v)− f(ξ1, 0)| ≤ −c|u− ξ1|, (u, v) ∈ D((u, v), δ) ∩ Ω11. (4.43)

Therefore, when z is near ξ1, (4.38) is proved. Next we consider the case that |z| is efficient

large, (4.38) is equivalent to

u

(u − ξ1)
[(ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4)] ≤ −2c. (4.44)
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Figure 7 The yellow and blue region is Ω. The red circle around the poles and Σ11 constitute Σ(2)

together.



Long-time Asymptotic Behavior for DNLS Equation 919

Obviously, the left hand of the above inequation is going to −∞. Finally, when z is in the

remaining compact subset of Ω11, let

g(x) =
1 + x8

x2(1 + x4)
. (4.45)

Then

u

(u− ξ1)
[(ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4)]

=
u(1 + |z|4)
(u− ξ1)|z|4

[
g(ξ1)− g(|z|) + 2v2

|z|2 g(|z|)
]

≤ u(1 + |z|4)
(u− ξ1)|z|4

[g(ξ1)− g(|z|) + 2 sin2 ϕg(|z|)]. (4.46)

Because z is not in D(ξ1, δ) and g(u) is monotonic increasing,

g(|z|) ≥ g(ξ1 + δ) > g(ξ1). (4.47)

Therefore, the exists a efficient small positive ϕ, such that

g(ξ1)− g(|z|) + 2 sin2 ϕg(|z|) < 0. (4.48)

When z in the compact subset of Ω11,

u

(u− ξ1)
[(ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4)] < 0,

implies existing positive constant c that satisfies

u

(u − ξ1)
[(ξ + 2)(1 + (u2 + v2)−2)− (u2 − v2)(1 + (u2 + v2)−4)] < −2c.

In fact, for the bounded region Ωjk, the existence of c(ξ) and ϕ only need to discuss near

stationary phase point and in the remaining compact set case. Therefore, we complete the

proof of (4.38).
Thus, we can give the sign of the imaginary part of phase function (3.2) in each sector.

Introduce a new unknown function

R
(2)(z, ξ) =























































































(

1 Rkj(z, ξ)e
2itθ

0 1

)

, z ∈ Ωkj , k = 1, · · · , 4, j = 2, 4;

(

1 0

Rkj(z, ξ)e
−2itθ 1

)

, z ∈ Ωkj , k = 1, · · · , 4, j = 1, 3;

(

1 Rk(z, ξ)e
2itθ

0 1

)

, z ∈ Ωk, k = 1, 3(ξ > −1), k = 2, 4(ξ < −3);

(

1 0

Rk(z, ξ)e
−2itθ 1

)

, z ∈ Ωk, k = 2, 4(ξ > −1), k = 1, 3(ξ < −3);

I, elsewhere;

(4.49)

where the functions Rkj(z, ξ), Rk(z, ξ), k, j = 1, 2, 3, 4 are defined in the following proposition.
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Proposition 4.2 As for |ξ + 2| > 1, the functions Rkj : Ωkj → C, k, j = 1, 2, 3, 4 have

boundary values as follow:

Rk1(z, ξ) =

{
pk1(z, ξ)T (z)

2, z ∈ Ik1,

pk1(ξk, ξ)Tk(ξ)
2(η(ξ, k)(z − ξk))

−2iη(ξ,k)ν(ξk), z ∈ Σk1,
(4.50)

Rk2(z, ξ) =

{
pk2(ξk, ξ)Tk(ξ)

−2(η(ξ, k)(z − ξk))
2iη(ξ,k)ν(ξk), z ∈ Σk2,

pk2(z, ξ)T (z)
−2, z ∈ Ik2,

(4.51)

Rk3(z, ξ) =

{
pk3(z, ξ)T−(z)

2, z ∈ Ik3,

pk3(ξk, ξ)Tk(ξ)
2(η(ξ, k)(z − ξk))

−2iη(ξ,k)ν(ξk), z ∈ Σk3,
(4.52)

Rk4(z, ξ) =

{
pk4(ξk, ξ)Tk(ξ)

−2(η(ξ, k)(z − ξk))
η(ξ,k)2iν(ξk), z ∈ Σk4,

pk4(z, ξ)T+(z)
−2, z ∈ Ik4,

(4.53)

where Ikj are specified in (4.34)–(4.37) and

pj1(z, ξ) = −ρ(z), pj3(z, ξ) =
ρ(z)

1− ρ̃(z)ρ(z)
, (4.54)

pj2(z, ξ) = −ρ̃(z), pj4(z, ξ) =
ρ̃(z)

1− ρ̃(z)ρ(z)
. (4.55)

The functions Rkj have following properties:

|Rkj(z, ξ)| . sin2(k0 arg(z − ξk)) + (1 + Re(z)2)−
1
2 for all z ∈ Ωkj , (4.56)

|∂Rkj(z, ξ)| . |p′kj(Re z)|+ |z − ξk|−
1
2 for all z ∈ Ωkj. (4.57)

|∂Rkj(z)| . |z ∓ i| for all z ∈ Ωkj in a small fixed neighborhood of ±i, (4.58)

∂Rkj(z, ξ) = 0 if z, at elsewhere. (4.59)

The matrix functions Rj : Ωk → C, k = 1, 2, 3, 4 have boundary values as follows:

(1) When ξ > −1,

R1(z) =





0, z ∈ Σ2,
ρ̃(z)T+(z)

2

1− ρ(z)ρ̃(z)
, z ∈ iR+,

R2(z) =





ρ(z)T−(z)
2

1− ρ(z)ρ̃(z)
, z ∈ iR+,

0, z ∈ Σ2,

R3(z) =




0, z ∈ Σ3,
ρ̃(z)T+(z)

2

1− ρ(z)ρ̃(z)
, z ∈ iR−,

R4(z) =





ρ(z)T−(z)
2

1− ρ(z)ρ̃(z)
, z ∈ iR−,

0, z ∈ Σ4.

Rj have the following properties: For j = 1, 2, 3, 4,

|∂Rj(z)| . |z ∓ i| for all z ∈ Ωj in a small fixed neighborhood of ±i, (4.60)

|∂Rj(z)| . |p′j(i|z|)|+ |z|− 1
2 + |∂X1(|z|)| for all z ∈ Ωj . (4.61)

(2) when ξ < −3,

R1(z) =

{
−ρ̃(z)T (z)−2, z ∈ R

−,
0, z ∈ Σ1,

R2(z) =

{
0, z ∈ Σ2,
−ρ(z)T (z)2, z ∈ R−,

R3(z) =

{
−ρ̃(z)T (z)−2, z ∈ R+,
0, z ∈ Σ3,

R4(z) =

{
0, z ∈ Σ4,
−ρ(z)T (z)2, z ∈ R+.

Rj have the following properties:

|∂Rj(z)| . |p′j(|z|)|+ |z|− 1
2 for all z ∈ Ωj. (4.62)
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Proof We give the details for R11 when ξ ∈ [0, 2) only. The other cases are easily inferred.

Using the constants Tk(ξ) defined in Proposition 3.1, we give the extension of R11(z, ξ) on Ω11:

R11(z, ξ) = p11(ξ1, ξ)T1(ξ)
2(z − ξ1)

−2iν(ξ1)[1− cos(k0 arg(z − ξ1))]

+ cos(k0 arg(z − ξ1))p11(Re z, ξ)T (z)
2. (4.63)

Let z − ξ1 = leiψ = u + vi with l, ψ, u, v ∈ R. From r ∈ H1,1(R), which means p11 ∈ H1,1(R)

we have |p11(u)| . (1 + u2)−
1
2 . Then we have (4.56). Since

∂ =
1

2
(∂u + i∂v) =

eiψ

2
(∂l + il−1∂ψ),

we have

∂R11 = (p11(u, ξ)T (z)
2 − p11(ξ1, ξ)T1(ξ)

2(z − ξ1)
−2iν(ξ1))∂ cos(k0ψ)

+
1

2
T (z)2p′11(u, ξ) cos(k0ψ). (4.64)

Substitute (3.14) into above equation, (4.57) comes immediately. And the proof of the properties

for Rk, k = 1, 2, 3, 4 is similar in Proposition 4.1.

In addition, from Proposition 2.1, R(2) achieves the symmetry:

R(2)(z) = σ2R(2)(z)σ2 = σ1R(2)(−z)σ1 = σ3Q−R
(2)
(
− 1

z

)
σ3Q−. (4.65)

We now use R(2) to define the new transformation

M (2)(z) =M (1)(z)R(2)(z), (4.66)

which satisfies the following mixed ∂-RH problem.

RHP 2 Find a matrix valued function M (2)(z;x, t) with the following properties:

◮ Analyticity: M (2)(z;x, t) is continuous in C \ Σ(2), sectionally continuous first partial

derivatives in C \ (Σ(2) ∪ {ζn, ζn}n∈Λ) and meromorphic out Ω.

◮ Symmetry: M (2)(z) = σ2M (2)(z)σ2=σ1M (2)(−z)σ1 = i
z
M (2)

(
− 1

z

)
σ3Q−.

◮ Jump condition: M (2) has continuous boundary values M
(2)
± on Σ(2) and

M
(2)
+ (z;x, t) =M

(2)
− (z;x, t)V (2)(z), z ∈ Σ(2), (4.67)

where when |ξ + 2| < 1,

V (2)(z) =





(
1 0

−Cn(z − ζn)
−1T 2(z)e−2itθn 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∇;

(
1 −C−1

n (z − ζn)T
−2(z)e2itθn

0 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∆;

(
1 Cn(z − ζn)

−1T−2(z)e2itθn

0 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∇;

(
1 0

C
−1

n (z − ζn)e
−2itθnT 2(z) 1

)
as z ∈ ∂D(ζn, ̺), n ∈ ∆;

(4.68)
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and when |ξ + 2| > 1,

V (2)(z) =





R(2)(z)−1|Σk1∪Σk4
as z ∈ Σk1 ∪ Σk4;

R(2)(z)|Σk2∪Σk3
as z ∈ Σk2 ∪ Σk3;

R(2)(z)−1|Σ′
k1

∪Σ′
k4

as z ∈ Σ′
k1 ∪ Σ′

k4;

R(2)(z)|Σ′
k2∪Σ′

k3
as z ∈ Σ′

k2 ∪ Σ′
k3;

(
1 0

−Cn(z − ζn)
−1T 2(z)e−2itθn 1

)
as z ∈ ∂Dn, n ∈ ∇;

(
1 −C−1

n (z − ζn)T
−2(z)e2itθn

0 1

)
as z ∈ ∂Dn, n ∈ ∆;

(
1 Cn(z − ζn)

−1T−2(z)e2itθn

0 1

)
as z ∈ ∂Dn, n ∈ ∇;

(
1 0

C
−1

n (z − ζn)e
−2itθnT 2(z) 1

)
as z ∈ ∂Dn, n ∈ ∆.

(4.69)

◮ Asymptotic behaviors:

M (2)(z) = I +O(z−1), z → ∞, (4.70)

M (2)(z) =
i

z
σ3Q− +O(1), z → 0. (4.71)

◮ ∂-Derivative: For z ∈ C we have

∂M (2) =M (2)∂R(2), (4.72)

where when |ξ + 2| < 1,

∂R(2) =





(
0 ∂Rj(z)e

2itθ

0 0

)
, z ∈ Ωj , j = 1, 3, 5, 7,

(
0 0

∂Rj(z)e
−2itθ 0

)
, z ∈ Ωj , j = 2, 4, 6, 8,

0, elsewhere,

(4.73)

and when |ξ + 2| > 1,

∂R(2)(z, ξ) =





(
0 ∂Rkj(z, ξ)e

2itθ

0 0

)
, z ∈ Ωkj , k = 1, · · · , 4, j = 2, 4;

(
0 0

∂Rkj(z, ξ)e
−2itθ 0

)
, z ∈ Ωkj , k = 1, · · · , 4, j = 1, 3;

(
0 ∂Rk(z, ξ)e

2itθ

0 0

)
, z ∈ Ωk, k = 1, 3 (ξ > −1), k = 2, 4 (ξ < −3);

(
0 0

∂Rk(z, ξ)e
−2itθ 0

)
, z ∈ Ωk, k = 2, 4 (ξ > −1), k = 1, 3 (ξ < −3);

0, elsewhere.

(4.74)
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◮ Residue conditions: M (2) has simple poles at each point ζn and ζn for n ∈ Λ with

Res
z=ζn

M (2)(z) = lim
z→ζn

M (2)(z)

(
0 0

Cne
−2itθnT 2(ζn) 0

)
, (4.75)

Res
z=ζn

M (2)(z) = lim
z→ζn

M (2)(z)

(
0 −CnT−2(ζn)e

2itθn

0 0

)
. (4.76)

5 Decomposition of the Mixed ∂-RH Problem

To solve RHP 2, we decompose it into a model RH problem for MR(z) with ∂R(2) ≡ 0 and

a pure ∂-Problem with nonzero ∂-derivatives. For the first step, we establish a RH problem for

the MR(z) as follows.

RHP 3 Find a matrix-valued function MR(z) with the following properties:

◮ Analyticity: MR(z) is meromorphic in C \ Σ(2).

◮ Jump condition: MR has continuous boundary values MR
± on Σ(2) and

MR
+ (z) =MR

− (z)V (2)(z), z ∈ Σ(2). (5.1)

◮ Symmetry: MR(z) = σ2MR(z)σ2=σ1MR(−z)σ1 = i
z
MR

(
− 1

z

)
σ3Q−.

◮ ∂-Derivative: ∂R(2) = 0 for z ∈ C.

◮ Asymptotic behaviors:

MR(z) = I +O(z−1), z → ∞, (5.2)

MR(z) =
i

z
σ3Q− +O(1), z → 0. (5.3)

◮ Residue conditions: MR has simple poles at each point ζn and ζn for n ∈ Λ with:

Res
z=ζn

MR(z) = lim
z→ζn

MR(z)

(
0 0

Cne
−2itθnT 2(ζn) 0

)
, (5.4)

Res
z=ζn

MR(z) = lim
z→ζn

MR(z)

(
0 −CnT−2(ζn)e

2itθn

0 0

)
. (5.5)

We now use MR(z) to construct a new matrix function

M (3)(z) =M (2)(z)MR(z)−1, (5.6)

which removes analytic component of MR(z) to get a pure ∂-problem.

∂-Problem 4 Find a matrix-valued function M (3)(z) with the following properties:

◮ Analyticity: M (3)(z) is continuous and has sectionally continuous first partial derivatives

in C.

◮ Asymptotic behavior:

M (3)(z) ∼ I +O(z−1), z → ∞. (5.7)

◮ ∂-Derivative: We have

∂M (3)(z) =M (3)(z)W (z), z ∈ C,
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where

W (z) =MR(z)∂R(2)(z)MR(z)−1. (5.8)

Proof By using properties of the solutions M (2)(z) and MR(z) for RHP 3 and ∂-Problem

4, the analyticity is obtained immediately. For its asymptotic behavior, from MR(z)−1 =

(1 + z−2)σ2M
R(z)Tσ2 we have

lim
z→0

M (3)(z) = lim
z→0

(zM (2)(z))σ2(zM
R(z)T )σ2

1 + z2

= iσ3Q−σ2(iσ3Q−)
Tσ2 = I. (5.9)

Since M (2)(z) and MR(z) achieve same jump matrix, we have

M
(3)
− (z)−1M

(3)
+ (z) =M

(2)
− (z)−1M

(r)
− (z)M

(r)
+ (z)−1M

(2)
+ (z)

=M
(2)
− (z)−1V (2)(z)−1M

(2)
+ (z) = I,

which implies M (3)(z) has no jumps and is continuous on C. We can also show that M (3)(z)

has no pole. For λ ∈ {ζn, ζn}n∈Λ, let Nλ denote the nilpotent matrix which appears in the left

side of the corresponding residue condition of ∂-problem 4 and RHP 5, we have the Laurent

expansions in z − λ,

M (2)(z) = a(λ)
[ Nλ

z − λ
+ I
]
+O(z − λ),

MR(z) = A(λ)
[ Nλ

z − λ
+ I
]
+O(z − λ),

where a(λ) and A(λ) are the constant matrices in their respective expansions. Then

M (3)(z) =
{
a(λ)

[ Nλ

z − λ
+ I
]}{[−Nλ

z − λ
+ I
]
σ2A(λ)

T σ2

}
+O(z − λ)

= O(1), (5.10)

which implies that M (3)(z) has removable singularities at λ. The ∂-derivative of M (3)(z) only

comes fromM (2)(z), because of the analyticity ofMR(z). In addition, unlike the zero boundary

case, we must check its property at ±i. The symmetries of M (2)(z) and MR(z) imply that

M (2)(z) =

(
γ ±q−γ

±q−γ γ

)
+O(z ∓ i), (5.11)

MR(z) =
±i

2(z ∓ i)

(
ι ∓q−ι

∓q−ι ι

)
+O(1) (5.12)

for two constants γ and ι. Then the singular part of M (3)(z) vanishes at z = ±i by simple

calculation immediately.

The unique existence and asymptotic ofM (3)(z) will be shown in Section 8. Compared with

|ξ + 1| < 1, it can be found that its jump matrix V (2) has additional portion on Σjk and Σj±

in the case of |ξ +1| > 1. So this case is more difficult to be dealt with. Denote U(n(ξ)) as the

union set of neighborhood of ξj for j = 1, · · · , 4,

U(n(ξ)) = ∪
k=1,··· ,n(ξ)

Uξk , Uξk =
{
z : |z − ξj | ≤ min

{
̺,

1

3
min
j 6=i∈N

|ζi − ζj |
}}

, (5.13)
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where n(ξ) = 0, 4, correspond to three cases |ξ + 1| > 1 and |ξ + 1| < 1, respectively. The case

n(ξ) = 0 implies that there is no phase point and U(n(ξ)) = ∅. Then jump matrix V (2)(z)

outside of U(n(ξ)) has the following estimates.

Proposition 5.1 For 1 ≤ p ≤ +∞, there exists a positive constant Kp relied on p satisfying

that the jump matrix V (2)(z) defined in (4.67) admits

‖V (2)(z)− I‖Lp(Σkj\Uξk
) = O(e−Kpt), t→ ∞ (5.14)

for j, k = 1, · · · , 4. And there also exists a positive constant K ′
p relied on p satisfying that the

jump matrix V (2) admits for j, k = 1, · · · , 4,

‖V (2)(z)− I‖Lp(Σ′
kj

) = O(e−K
′
pt), t→ ∞. (5.15)

Proof It can be proved simply by using definition of V (2)(z) and Lemma 4.2.

This proposition means that the jump matrix V (2)(z) uniformly goes to I on Σ̃ \ U(n(ξ)).

So outside the U(n(ξ)) there is only exponentially small error (in t) by completely ignoring the

jump condition of MR(z). This proposition enlightens us to construct the solution MR(z) as

follows:

MR(z) =

{
E(z, ξ)M (r)(z), z /∈ U(n(ξ)),

E(z, ξ)M (r)(z)M lo(z), z ∈ U(n(ξ)).
. (5.16)

Note that, for regions |ξ + 2| < 1, M (r)(z) has no jump except the circle around poles not in

Λ, and it has no phase point, which implies that MR(z) =M (r)(z). For the region |ξ + 2| > 1,

we decompose MR(z) into two part: M (r)(z) solves the pure RH problem obtained by ignoring

the jump conditions of RHP 3, which is shown in Section 6; M lo(z) is a localized model to

match parabolic cylinder functions in a neighborhood of each critical point ξj , and further

error function E(z, ξ) is computed by using a small-norm RH problem. These results will be

shown in Section 7.

6 Asymptotic of N (Λ)-Soliton/Breathers Solutions

The propose of this section is to show that M (r)(z) as solution of the RHP 3 with scatter-

ing data {ρ(z), {ζn, Cn}n∈N } given above can approximate with renormalization reflectionless

original RHP 0.

Proposition 6.1 The solution M (r)(z;D) of the RHP 3 with scattering data D = {ρ(z),
{ζn, Cn}n∈N } exists and is unique. By an explicit transformation, M (r)(z;D) can be re-

garded as a reflectionless solution of the original RHP 0 with modified scattering data D̂ =

{0, {ζn, c̊n}n∈N}, where

c̊n(x, t) = Cn exp
{
− 1

iπ

∫

I(ξ)

log(1 − |ρ(s)|2)
( 1

s− ζn
− 1

2s

)}
. (6.1)

Proof To transformM (r)(z;D) to the soliton-solution of RHP 0, the jumps and poles need

to be restored. We reverses the triangularity effected in (3.23):

N(z;D) =
( ∏

n∈∆

ζn

)σ3

M (r)(z)T−σ̂3G−1(z)
( ∏

n∈∆

z − ζn

ζ
−1

n z − 1

)−σ3

(6.2)
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with G(z) defined in (3.22). First we verify N(z) satisfying RHP 0. This transformation to

N(z) preserves the normalization conditions at the origin and infinity obviously. Comparing

with (3.23), this transformation restores the jump on D(ζn, ̺) and D(ζn, ̺) to residue for n /∈ Λ.

As for n ∈ Λ, take ζn as an example. Substitute (5.5) into the transformation:

Res
z=ζn

N(z) =
( ∏

n∈∆

ζn

)σ3

Res
z=ζn

M (r)(z)T−σ̂3G(z)−1
( ∏

n∈∆

z − ζn

ζ
−1

n z − 1

)−σ3

= lim
z→ζn

−
( ∏

n∈∆

ζn

)σ3

M (r)(z)

(
0 0

Cne
−2itθnT 2(ζn) 0

)( ∏

n∈∆

z − ζn

ζ
−1

n z − 1

)−σ3

= lim
z→ζn

N(z)

(
0 0

c̊ne
−2itθn 0

)
. (6.3)

Its analyticity and symmetry follow from the proposition of M (r)(z), T (z) and G(z) immedi-

ately. Thus, N(z) is the solution of RHP 0 with absence of reflection, whose uniquely exact

solution exists and can be obtained as described similarly in [18]. So M (r)(z) unique exists.

Denote q(x, t; D̂) as the solution of (1.1) with modified scattering data D̂, namely,

q(x, t; D̂) = lim
z→∞

[zN ]12. (6.4)

In addition, let

q(r)(x, t;D) = lim
z→∞

[zM (r)]12. (6.5)

Then (6.2) gives

q(r)(x, t;D) =
( ∏

n∈∆

ζ
2

n

)
q(x, t; D̂). (6.6)

The jump matrix V (2) uniformly goes to identity and doesn’t contribute to the asymptotic

behavior of the solution. Define

ρ0 = min
n∈∆∪∇\Λ

|Im θn| 6= 0. (6.7)

Lemma 6.1 The jump matrix V (2)(z) in (4.69) satisfies

‖V (2)(z)− I‖L∞(Σ(2)) = O(e−2ρ0t), (6.8)

where ρ0 is defined by (6.7).

Proof Take z ∈ ∂D(ζn, ̺), n ∈ ∇ as an example.

‖V (2)(z)− I‖L∞(∂D(ζn,̺)) = |Cn(z − ζn)
−1T 2(z)e−2itθn |

. ̺−1e−Re(2itθn) . e2tIm(θn) ≤ e−2ρ0t. (6.9)

The last step follows from that for n ∈ ∇, Im θn < 0.

Corollary 6.1 For 1 ≤ p ≤ +∞, the jump matrix V (2)(z) satisfies

‖V (2)(z)− I‖Lp(Σ(2)) ≤ Kpe
−2ρ0t (6.10)

for some constant Kp ≥ 0 depending on p.
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This estimation of V (2)(z) inspires us to completely ignore the jump condition on M (r)(z),

because there is only exponentially small error (in t). We decompose M (r)(z) as

M (r)(z) = Ẽ(z)M
(r)
Λ (z), (6.11)

where Ẽ(z) is a error function and is a solution of a small-norm RH problem. We discuss it in

the following subsection. M
(r)
Λ (z) solves RHP 3 with V (2)(z) ≡ I.

RHP 5 Find a matrix-valued function M
(r)
Λ (z) with the following properties:

◮ Analyticity: M
(r)
Λ (z) is analytic in C \ {ζn, ζn}n∈Λ.

◮ Symmetry: M
(r)
Λ (z) = σ2M

(r)
Λ (z)σ2=σ1M

(r)
Λ (−z)σ1 = i

z
M

(r)
Λ

(
− 1

z

)
σ3Q−.

◮ Asymptotic behaviors:

M
(r)
Λ (z) = I +O(z−1), z → ∞, (6.12)

M
(r)
Λ (z) =

i

z
σ3Q− +O(1), z → 0. (6.13)

◮ Residue conditions: M
(r)
Λ (z) has simple poles at each point ζn and ζn for n ∈ Λ with:

Res
z=ζn

M
(r)
Λ (z) = lim

z→ζn
M

(r)
Λ (z)

(
0 0

Cne
−2itθnT 2(ζn) 0

)
, (6.14)

Res
z=ζn

M
(r)
Λ (z) = lim

z→ζn

M
(r)
Λ (z)

(
0 −CnT−2(ζn)e

2itθn

0 0

)
. (6.15)

Proposition 6.2 The RHP 5 exists a unique solution.

Proof The uniqueness of solution follows from the Liouville’s theorem. Its exact solution

exists and can be obtained as described similarly in [18].

Case I If Λ = ∅, then

M
(r)
Λ (z) = I +

i

z
σ3Q−. (6.16)

Case II If Λ 6= ∅ with Λ1 = {zjk}n1

k=1 and Λ2 = {wis}n2
s=1, then

M
(r)
Λ (z) = I +

i

z
σ3Q−

+

n2∑

s=1

[( αs

z−wis

κs

z−wis
κs

z−wis

αs

z−wis

)
+

(
− αs

z+wis

κs

z+wis
κs

z+wis
− αs

z+wis

)]

+

n1∑

k=1

[( βk

z−zjk

ςk
z−zjk

ςk
z−zjk

βk

z−zjk

)
+

(− βk

z+zjk

ςk
z+zjk

ςk
z+zjk

− βk

z+zjk

)]

+

n1∑

k=1

i
[



−q−βk

zjk z−1
−q−ςk
zjk z−1

−q−ςk
zjk z−1

q−βk

zjk z−1


+




q−βk

zjk z+1
−q−ςk
zjk z+1

−q−ςk
zjk z+1

−q−βk

zjk z+1



]
, (6.17)

where βk = βk(x, t), ςk = ςk(x, t), αs = αs(x, t) and κs = κs(x, t) can be obtained with linearly

dependant equations:

c−1
jk
T (zjk)

−2e−2iθ(zjk )tβk =
i

zjk
q− +

n2∑

h=1

( κh
zjk − wih

+
κh

zjk + wih

)



928 Y. L. Yang and E. G. Fan

+

n1∑

l=1

( ςl
zjk − zjl

+
ςl

zjk + zjl
− iq−ςl
zjlzjk − 1

− iq−ςl
zjlzjk + 1

)
, (6.18)

c−1
jk
T (zjk)

−2e−2iθ(zjk)tςk =
i

zjk
q− +

n2∑

h=1

( αh
zjk − wih

− αh
zjk + wih

)

+

n1∑

l=1

( βl
zjk − zjl

− βl
zjk + zjl

+
iq−βl

zjlzjk − 1
− iq−βl
zjlzjk + 1

)
(6.19)

and

c−1
is+N1

T (wis)
−2e−2iθ(wis)tαs =

i

wis
q− +

n2∑

h=1

( κh
wis − wih

+
κh

wis + wih

)

+

n1∑

l=1

( ςl
wis − zjl

+
ςl

wis + zjl
− iq−ςl
zjlwis − 1

− iq−ςl
zjlwis + 1

)
,

c−1
is+N1

T (wis)
−2e−2iθ(wis )tκs =

i

wis
q− +

n2∑

h=1

( αh
wis − wih

− αh
wis + wih

)

+

n1∑

l=1

( βl
wis − zjl

− βl
wis + zjl

+
iq−βl

zjlwis − 1
− iq−βl
zjlwis + 1

)

for k = 1, · · · , n1, s = 1, · · · , n2, respectively.

Corollary 6.2 Denote qrΛ(x, t) to be the N (Λ)-solution with scattering data

D̂ = {0, {ζn, c̊n}n∈Λ}.

By the reconstruction formula (2.67), the solution qrΛ(x, t) of (1.1) with scattering data {0,
{ζn, c̊n}n∈Λ} is given by

qrΛ(x, t) = −i lim
z→∞

z[M
(r)
Λ (z)]12. (6.20)

Then in Case I,

qrΛ(x, t) = q−. (6.21)

And in Case II,

qrΛ(x, t) = −i lim
z→∞

z[M
(r)
Λ (z)]12

= q− − i2

n2∑

s=1

κk − 2i

n1∑

k=1

(
ςk − iq−

ςk
zjk

)
. (6.22)

Remark 6.1 When ρ(s) ≡ 0, the scattering matrices S(z) ≡ I, which means q− =

q+e
2iν0(D̂). Then in case I, |qrΛ(x, t)| = |q−| = 1 implies that e2iν0(D̂) = 1, so q− = q+.

Remark 6.2 The N (Λ)-solution is not N (Λ)-soliton solution. Because when the discrete

spectrum ζn is not on unit circle, it corresponds to breather solution, while when the discrete

spectrum ζn is on unit circle, it corresponds to soliton solution. Suppose that the discrete

spectrum only distributes on unit circle, then it corresponds to pure soliton solution. We

will show that under this assumption, through Beal-Cofiman theorem, the N -soliton can be

expressed asymptotically as a sum (adjusted for boundary conditions) of N simple solitons.
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Consider the original scattering data Dsol = {ρ(z), {ζsoln , Cn}2N2
n=1} of RHP 0 under this case

with ζsolm = wm and ζsolm+N2
= −wm for m = 1, · · · , N2. For convenience, we assume that only

Im θ(w1) = 0. And the solution M (r)(z;Dsol) of the RHP 3 with scattering data Dsol can also

be regarded as a reflectionless soliton solution N sol(z) = N(z; D̂sol) of the original RHP 0 with

modified scattering data D̂sol = {0, {ζsoln , c̊n}2N2
n=1}. Further, there also has

q(r)(x, t;Dsol) =
( ∏

n∈∆2

ζ
−2

n

)
q(x, t; D̂sol). (6.23)

And N sol(z) is also given by

N sol(z) = I +
i

z
σ3Q− +

N2∑

l=1

[



αsol
l

z−wl

κsol
l

z−wl

κsol
l

z−wl

αsol
l

z−wl


+


− αsol

l

z+wl

κsol
l

z+wl

κsol
l

z+wl
− αsol

l

z+wl



]

(6.24)

with

αsol
l = iq−wlκ

sol
l . (6.25)

Here, κsoll is solution of the following equation set:

κsoll = c̊le
2itθ(wl)

[
1−

N2∑

j 6=l,j=1

iq−wjκ
sol
j

( 1

wl − wj
− 1

wl + wj

)]
(6.26)

for l = 1, · · · , N2. Moreover,

lim
z→∞

z[N sol(z)]12 = iq− + 2

N2∑

l=1

κsoll . (6.27)

Consider

Ñ sol(z) = N sol(z)− i

z
σ3Q−

= I +

N2∑

l=1

[



αsol
l

z−wl

κsol
l

z−wl

κsol
l

z−wl

αsol
l

z−wl


+


− αsol

l

z+wl

κsol
l

z+wl

κsol
l

z+wl
− αsol

l

z+wl



]
. (6.28)

It is a solution of the original RHP 0 with modified scattering data D̂sol and the absence

of pole at z = 0. Like (3.23), all the residue at discrete spectrum ζsoln (including n = 1) is

transformed to jump at a small circle around it through

M̃ sol(z) = T sol(∞)−σ3Ñ sol(z)Gsol(z)T sol(z)σ3 , (6.29)

where like in (3.8) and (3.22),

T sol(z) =
∏

l∈∆2

z2 − w2
l

w2
l z

2 − 1
, T sol(∞) =

∏

l∈∆2

w2
l
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and

Gsol(z) =





(
1 0

−c̊n(z − ζn)
−1e−2itθn 1

)
as z ∈ D(ζsoln , ̺), n ∈ ∇2 ∪ Λ2;

(
1 −c̊−1

n (z − ζn)e
2itθn

0 1

)
as z ∈ D(ζsoln , ̺), n ∈ ∆2;

(
1 c̊n(z − ζn)

−1e2itθn

0 1

)
as z ∈ D(ζ

sol

n , ̺), n ∈ ∇2 ∪ Λ2;
(

1 0

c̊
−1

n (z − ζn)e
−2itθn 1

)
as z ∈ D(ζ

sol

n , ̺), n ∈ ∆2;

I as z in elsewhere.

Denote ∂Dsol =
2N2⋃
n=1

∂(D(ζsoln , ̺)∪D(ζsoln , ̺)) and ∂Dsol
l = ∂D(ζsoll , ̺)∪∂D(ζsoll , ̺)∪∂D(ζsoll+N2

, ̺)∪

∂D(ζ
sol

l+N2
, ̺). Thus, M̃ sol(z) admits the following properties:

◮ Analyticity: M̃ sol(z) is analytic in C \ ∂Dsol
N .

◮ Jump condition: M̃ sol has continuous boundary values M̃ sol
± on ∂D(ζsoln , ̺) and ∂D(ζ

sol

n , ̺)

and

M̃ sol
+ (z;x, t) = M̃ sol

− (z;x, t)V sol(z), (6.30)

where

V sol(z) =





(
1 0

−c̊n(z − ζn)
−1e−2itθn 1

)
as z ∈ ∂D(ζsoln , ̺), n ∈ ∇2;

(
1 −c̊−1

n (z − ζn)e
2itθn

0 1

)
as z ∈ ∂D(ζsoln , ̺), n ∈ ∆2;

(
1 c̊n(z − ζn)

−1e2itθn

0 1

)
as z ∈ ∂D(ζ

sol

n , ̺), n ∈ ∇2;

(
1 0

c̊
−1

n (z − ζn)e
−2itθn 1

)
as z ∈ ∂D(ζ

sol

n , ̺), n ∈ ∆2.

(6.31)

◮ Asymptotic behaviors:

M̃ sol(z) = I +O(z−1), z → ∞. (6.32)

Then

lim
z→∞

z[M̃ sol(z)]12 =
∏

l∈∆2

w4
l

( N2∑

j=1

2κsolj

)
. (6.33)

By Beal-Cofiman theorem,

M̃ sol(z) = I +
1

2πi

∫

∂Dsol

[(1− Cω)
−1I](s)ω(s)

s− z
ds,

where

ω(s) = V sol − I, Cωf = C−(fω),
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C−(f)(s) = lim
z→Σ

(2)
−

1

2πi

∫

∂Dsol

f(s)

s− z
ds

for any f ∈ L2(∂Dsol). Following the idea of [6], we write

ω =

N2∑

l=1

ωl, (6.34)

where ωl(z) = ω(z) for z ∈ ∂Dsol
l , and ωl(z) = 0 for z ∈ ∂Dsol

n , n 6= l. For l 6= 1, |ωl| =
O(e−2ρ0t), then

‖Cωl
‖L2(∂Dsol

l
)→L2(∂Dsol) = O(e−2ρ0t), ‖Cωl

‖L∞(∂Dsol)→L2(∂Dsol) = O(e−2ρ0t).

Therefore, although Cω1 and ω1 do not decay as t→ ∞, the interaction of between the operator

Cω1 and Cωl
for l = 1, · · · , N2 decay exponentially. Thus,

∫

∂Dsol

[(1− Cω)
−1I](s)ω(s)ds =

N2∑

l=1

∫

∂Dsol
l

[(1− Cω)
−1I](s)ωl(s)ds+O(e−2ρ0t).

So it is reasonable to separate out the contributions of each jump on ∂Dsol
l . For each l =

1, · · · , N2, consider

M̃ sol
l (z) = I +

1

2πi

∫

∂Dsol
l

[(1 − Cωl
)−1I](s)ωl(s)

s− z
ds,

which only has jump on ∂Dsol
l with

lim
z→∞

z[M̃ sol
l (z)]12 = − 1

2πi

∫

∂Dsol
l

[[(1− Cωl
)−1I](s)ωl(s)]12ds. (6.35)

Similar to (6.2), we restore the jump to poles:

Ñ sol
l (z) = T sol

l (∞)σ3M̃ sol
l (z)Gsol

l (z)−1T sol
l (z)−σ3 , (6.36)

where when l ∈ ∇2 ∪ Λ2, T
sol
l (∞) = T sol

l (z) = 1 and when l ∈ ∆2,

T sol
l (z) =

z2 − w2
l

w2
l z

2 − 1
, T sol

l (∞) = w2
l (6.37)

and

Gsol
l (z) =

{
Gsol(z) as z ∈ Dsol

l ;

I as z in elsewhere.

N sol
l (z) = Ñ sol

l (z) + i
z
σ3Q− lim

z→∞
Ñ sol
l (z) corresponds to the soliton solution of (1.1) with scat-

tering data Dsol
l = {0, {wl, c̊l}, {−wl, c̊l+N2}}, and

q(x, t;Dsol
l ) = −i lim

z→∞
[zN sol

l ]12. (6.38)

Combining above formulae, we deduce that:

q(r)(x, t;D) = q−

N2∏

l=1

w4
l +

∑

l∈∆2

w4
l (q(x, t;D

sol
l )− q−)

+
∑

l∈∇2∪Λ2

(q(x, t;Dsol
l )− q−) +O(e−2ρ0t). (6.39)
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6.1 Error estimate between M (r)(z) and M
(r)
Λ (z)

In this subsection, we consider the error matrix-function Ẽ(z) and show that for large times,

the error function Ẽ(z) solves a small norm RH problem which can be expanded asymptotically.

From the definition (6.11), we can obtain a RH problem for the matrix function Ẽ(z).

RHP 6 Find a matrix-valued function Ẽ(z) with the following properties:

◮ Analyticity: Ẽ(z) is analytic in C \Σ(2).

◮ Asymptotic behaviors:

Ẽ(z) ∼ I +O(z−1), |z| → ∞. (6.40)

◮ Jump condition: Ẽ has continuous boundary values Ẽ± on Σ(2) satisfying

Ẽ+(z) = Ẽ−(z)V
Ẽ ,

where the jump matrix V Ẽ is given by

V Ẽ(z) =M
(r)
Λ (z)V (2)(z)M

(r)
Λ (z)−1. (6.41)

Proposition 6.2 implies thatM
(r)
Λ (z) is bounded on Σ(2). By using Lemma 6.1 and Corollary

6.1, we have the following estimates

‖V Ẽ(z)− I‖Lp . ‖V (2)(z)− I‖
Lp(Σ(2)\Σ̃) = O(e−2ρ0t) (6.42)

for 1 ≤ p ≤ +∞. This uniformly vanishing bound ‖V Ẽ(z) − I‖ establishes RHP 6 as a small-

norm RH problem. Therefore, the existence and uniqueness of the RHP 6 can be shown by

using a small-norm RH problem

Ẽ(z) = I +
1

2πi

∫

Σ(2)

(I + η(s))(V Ẽ(s)− I)

s− z
ds, (6.43)

where the η̃ ∈ L2(Σ(2) \ Σ̃) is the unique solution of the following equation

(1− C
Ẽ
)η̃ = C

Ẽ
(I), (6.44)

here C
Ẽ
: L2(Σ(2) \ Σ̃) → L2(Σ(2) \ Σ̃) is a integral operator defined by

C
Ẽ
(f)(z) = C−(f(V

Ẽ(z)− I)), (6.45)

the Cauchy projection operator C− on Σ(2) \ Σ̃. Then by (6.41) we have

‖C
Ẽ
‖ ≤ ‖C−‖‖V Ẽ(z)− I‖L∞ . O(e−2ρ0t), (6.46)

which means ‖C
Ẽ
‖ < 1 for sufficiently large t, therefore 1 − C

Ẽ
is invertible, and η̃ exists and

is unique. Moreover,

‖η̃‖
L2(Σ(2)\Σ̃) .

‖C
Ẽ
‖

1− ‖C
Ẽ
‖ . O(e−2ρ0t). (6.47)

Then we have the existence and boundedness of Ẽ(z).
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Proposition 6.3 For Ẽ(z) defined in (6.43), it satisfies

|Ẽ(z)− I| . O(e−2ρ0t). (6.48)

As z → ∞, the large z expansion of Ẽ is

Ẽ(z) = I + Ẽ1z
−1 +O(z−2), (6.49)

where

Ẽ1 = − 1

2πi

∫

Σ(2)

(I + η̃(s))(V Ẽ(z)− I)ds, (6.50)

satisfying long time asymptotic behavior condition

Ẽ1 . O(e−2ρ0t). (6.51)

Proof By combining (6.47) and (6.42), we obtain

|Ẽ(z)− I| ≤ |(1− C
Ẽ
)(η̃)|+ |CẼ(η̃)| . O(e−2ρ0t). (6.52)

As z → ∞, geometrically expanding (s− z)−1 for z large in (6.43) leads to (6.49). Finally for

Ẽ1,

|Ẽ1| . ‖V Ẽ(z)− I‖L1 + ‖η̃‖L22‖V Ẽ(z)− I‖L2 . O(e−2ρ0t). (6.53)

7 Localized RH Problem near Phase Points

When |ξ+2| > 1, it is necessary to consider the effect of stationary phase points. Proposition

5.1 gives that out of U(n(ξ)), the jumps are exponentially close to the identity. Hence we only

need to continue our investigation near the stationary phase points in this section. Denote a

new contour Σ(0) =
( ⋃
k,j=1,2,3,4

Σkj
)
∩ U(n(ξ)) shown in Figure 8. Consider the following RH

problem.

RHP 7 Find a matrix-valued function M lo(z) with the following properties:

◮ Analyticity: M lo(z) is analytical in C \ Σ(0).

◮ Symmetry: M lo(z) = σ2M lo(z)σ2=σ1M lo(−z)σ1 = i
z
M lo

(
− 1

z

)
σ3Q−.

◮ Jump condition: M lo(z) has continuous boundary values M lo
± (z) on Σ(0) and

M lo
+ (z) =M lo

− (z)V (2)(z), z ∈ Σ(0). (7.1)

◮ Asymptotic behaviors:

M lo(z) = I +O(z−1), z → ∞. (7.2)

This RH problem only has jump conditions without poles. The jump matrix V (2)(z) is a

upper/lower matrix with entry on the diagonal. For k = 1, · · · , 4, we denote

wkj(z) =





(
0 ijRkj(z, ξ)e

2itθ

0 0

)
, z ∈ Σkj , j = 2, 4,

(
0 0

ij−1Rkj(z, ξ)e
−2itθ 0

)
, z ∈ Σkj , j = 1, 3.

(7.3)
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Figure 8 Jump contours Σ(0) of M lo(z). The figures (a) and (b) are corresponding to the cases

−1 < ξ and ξ < −3, respectively.

Then V (2)(z) = I − wkj(z) for z ∈ Σkj . Besides, let

Σ
(0)
k =

⋃

j=1,··· ,4

Σkj , wk(z) =
∑

j=1,··· ,4

wkj(z), (7.4)

w±
kj(z) = wkj(z)|C± , w±

k (z) = wk(z)|C± , w±(z) = w(z)|C± . (7.5)

Recall the Cauchy projection operator C± on Σ(2),

C±(f)(s) = lim
z→Σ

(2)
±

1

2πi

∫

Σ(2)

f(s)

s− z
ds, (7.6)

by which, we further define operator

Cw(f) = C+(fw
−) + C−(fw

+), Cwk
(f) = C+(fw

−
k ) + C−(fw

+
k ). (7.7)

Then Cw =
4∑

k=1

Cwk
.

Lemma 7.1 The matrix functions wkj defined above admit the following estimation:

‖wkj‖Lp(Σkj) = O(t−
1
2 ), 1 ≤ p < +∞. (7.8)

This lemma can be obtained by simple calculation. And it implies that I −Cw and I −Cwk

are reversible. So the solution of above RHP 7 exists uniquely, and it can be written as

M lo(z) = I +
1

2πi

∫

Σ(0)

(I − Cw)
−1Iw

s− z
ds. (7.9)

Next, we show the contributions of every crosses Σ
(0)
k can be separated out.
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Corollary 7.1 As t→ +∞,

‖Cwk
Cwj

‖B(L2(Σ(0))) . t−1, ‖Cwk
Cwj

‖L∞(Σ(0))→L2(Σ(0)) . t−1. (7.10)

Direct calculation establishes that

(I − Cw)
(
I +

n(ξ)∑

k=1

Cwk
(I − Cwk

)−1
)
= I −

∑

1≤k 6=j≤n(ξ)

Cwj
Cwk

(I − Cwk
)−1,

(
I +

n(ξ)∑

k=1

Cwk
(I − Cwk

)−1
)
(I − Cw) = I −

∑

1≤k 6=j≤n(ξ)

(I − Cwk
)−1Cwk

Cwj
.

Then following the step of [6], we derive the following proposition.

Proposition 7.1 As t→ +∞,

∫

Σ(0)

(I − Cw)
−1Iw

s− z
ds =

n(ξ)∑

k=1

∫

Σ
(0)
k

(I − Cwk
)−1Iwk

s− z
ds+O(t−

3
2 ). (7.11)

So, as t → +∞, we consider to reduce the RHP 7 to a model RHP whose solution can be

given explicitly in terms of parabolic cylinder functions on every contour Σ
(0)
k , respectively. And

we only give the details of Σ
(0)
1 , the model of other critical point can be constructed similarly.

We denote Σ̂
(0)
1 as the contour {z = ξ1 + le±ϕi, l ∈ R} oriented from Σ

(0)
1 , and Σ̂1j is the

extension of Σ1j respectively. For z near ξ1, rewrite phase function as

θ(z) = θ(ξ1) + (z − ξ1)
2θ′′

(ξ1)

2
+O((z − ξ1)

3). (7.12)

When ξ > −1, θ′′(ξ1) < 0 and when ξ < −3, θ′′(ξ1) > 0. It is naturally to consider the following

local RH problem.

RHP 8 Find a matrix-valued function M lo,1(z) with the following properties:

◮ Analyticity: M lo,1(z) is analytical in C \ Σ̂1.

◮ Jump condition: M lo,1(z) has continuous boundary values M lo,1
± on Σ̂1 and

M lo,1
+ (z) =M lo,1

− (z)V lo,1(z), z ∈ Σ̂
(0)
1 , (7.13)

where

V lo,1(z) = V (2)(z), z ∈ Σ̂
(0)
1 . (7.14)

◮ Asymptotic behaviors:

M lo,1(z) = I +O(z−1), z → ∞. (7.15)

RHP 8 does not possess the symmetry condition shared by preceding RHP, because it is a

local model and will only be used for bounded values of z. In order to motivate the model, let

ζ = ζ(z, ξ) denote the rescaled local variable

ζ(z, ξ) =

{
t
1
2

√
−2θ′′(ξ1)(z − ξ1), ξ > −1;

t
1
2 i
√
2θ′′(ξ1)(z − ξ1), ξ < −3.

(7.16)
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In fact, although when ξ < −3, the jump line Σ̂
(0)
1 is around the imaginary axis, when we trans

it to the model pc RHP, the expression of ζ(z, ξ) is the same as the case of ξ > −1. This change

of variable maps Uξ1 to an expanding neighborhood of ζ = 0. Additionally, let

ρξ1 =

{
ρ(ξ1)T1(ξ)

2e−2itθ(ξ1)e−iν(ξ1) log(−2tθ′′(ξ1)), ξ > −1;

ρ(ξ1)T1(ξ)
2eiν(ξ1) log(2tθ

′′(ξ1)), ξ < −3
(7.17)

with |ρξ1 | = |ρ(ξ1)|. In the above expression, the complex powers are defined by choosing the

branch of the logarithm with −π < arg ζ < π in the cases ξ > −1, and the branch of the

logarithm with 0 < arg ζ < 2π in the case ξ < −3. Through this change of variable, the jump

V lo,1(z) approximates to the jump of two parabolic cylinder model problem (depending on ξ)

as follows: RHP pc: Find a matrix-valued function Mpc(ζ; ξ) with the following properties:

◮ Analyticity: Mpc(ζ; ξ) is analytical in C \ Σpc with Σpc = {Reϕi} ∪ {Re(π−ϕ)i} shown in

Figure 9.

◮ Jump condition: Mpc has continuous boundary values Mpc
± on Σpc and

Mpc
+ (ζ; ξ) =Mpc

− (ζ; ξ)V pc(ζ), ζ ∈ Σζ , (7.18)

where in the case ξ > −1,

V pc(ζ; ξ) =





(
1 0

rξ1ζ
−2iν(ξ1)e

i
2 ζ

2

1

)
, ζ ∈ R+eϕi,

(
1 rξ1ζ

2iν(ξ1)e−
i
2 ζ

2

0 1

)
, ζ ∈ R+e−ϕi,

(
1 0

rξ1
1+|rξ1 |

2 ζ
−2iν(ξ1)e

i
2 ζ

2

1

)
, ζ ∈ R+e(−π+ϕ)i,

(
1

rξ1
1+|rξ1 |

2 ζ
2iν(ξ1)e−

i
2 ζ

2

0 1

)
, ζ ∈ R+e(π−ϕ)i,

(7.19)

and in the case ξ < −3,

V pc(ζ; ξ) =





(
1 − rξ1

1−|rξ1 |
2 ζ

−2iν(ξ1)e−
i
2 ζ

2

0 1

)
, ζ ∈ R+eϕi,

(
1 0

rξ1
1−|rξ1 |

2 ζ
2iν(ξ1)e

i
2 ζ

2

1

)
, ζ ∈ R+e(2π−ϕ)i,

(
1 −rξ1ζ−2iν(ξ1)e−

i
2 ζ

2

0 1

)
, ζ ∈ R+e(π+ϕ)i,

(
1 0

rξ1ζ
2iν(ξ1)e

i
2 ζ

2

1

)
, ζ ∈ R+e(π−ϕ)i.

(7.20)

◮ Asymptotic behaviors:

Mpc(ζ; ξ) = I +Mpc
1 ζ−1 +O(ζ−2), ζ → ∞. (7.21)

Then [16, Theorems A.1–A.6] proved that as t→ ∞,

M lo,1(z) = I +
1

ζ(z, t)

(
0 [Mpc

1 ]12

[Mpc
1 ]21 0

)
+O(t−1). (7.22)
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）（

Figure 9 The contour Σpc in case ξ > −1 and ξ < −3, respectively.

Although the angle ϕ of the jump line is not π
4 , as we assuming previous, ϕ < π

4 , by a simple

transformation we can trans the jump to R then restore it on π
4 . So it can also match the

classical parabolic-cylinder model. Namely, RHP pc has an explicit solution Mpc(ζ, ξ), which

is expressed in terms of solutions of the parabolic-cylinder equation similarly as [16],

( ∂2
∂z2

+
(1
2
− z2

2
+ a
))
Da(z) = 0.

Note that the difference of jump matrices in ξ > −1 and ξ < −3 lead to two parabolic-cylinder

models. The difference of this two pc models is the branch cut of the logarithmic function.

When ξ > −1, it matches the pc model in [16] while when ξ < −3, it matches the pc model

in [15]. A derivation of pc model is given in [6], and a direct verification of this two pc models

is given in [17]. For brevity, denote β̃1
12 = −i[Mpc

1 ]12 and β̃1 = i[Mpc
1 ]21. Therefore, when

ξ > −1,,

β̃1
12 =

√
2πei

π
4 e−πν

ξ1
2

rξ1Γ(−iν(ξ1))
, β̃1

21 =
ν(ξ1)

β̃1
12

. (7.23)

Here, Γ(z) is the Gamma function. And when ξ < −3,

β̃1
12 =

√
2πei

π
4 eπν

ξ1
2

rξ1Γ(iν(ξ1))
, β̃1

21 =
−ν(ξ1)
β̃1
12

. (7.24)

Substitute above consequences into (7.22) and obtain:

M lo,1(z) = I +
t−

1
2 (−2θ′′(ξ1))

− 1
2

z − ξ1

(
0 −iβ̃1

12

iβ̃1
21 0

)
+O(t−1). (7.25)

For the model around other stationary phase points, it also admits

M lo,k(z) = I +
t−

1
2 ((−1)k2θ′′(ξ1))

− 1
2

z − ξ1

(
0 −iβ̃k12

iβ̃k21 0

)
+O(t−1) (7.26)

for k = 2, 3, 4. Here, by the symmetry of M lo(z), we obtain that for z ∈ Uξ1 ,

M lo,1(z) =
i

z
σ3M

lo,2
(1
z

)
Q− =

i

z
M lo,3

(
− 1

z

)
σ3Q− = σ3M

lo,4(−z)σ3,
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which also lead to the relationship of β̃k12 with β̃1
12. Then together with Proposition 7.1, we

final obtain the following proposition.

Proposition 7.2 As t→ +∞,

M lo(z) = I + t−
1
2

n(ξ)∑

k=1

Ak(ξ)

z − ξk
+O(t−1), (7.27)

where

Ak(ξ) = ((−1)k2θ′′(ξ1))
− 1

2

(
0 −iβ̃k12

iβ̃k21 0

)
. (7.28)

8 The Small Norm RH Problem for Error Function

In this section, we consider the error matrix-function E(z; ξ). When |ξ+2| < 1 the definition

(5.16) implies that E(z; ξ) ≡ I, so only the case |ξ + 2| > 1 needs to be investigate. And we

can obtain a RH problem for the matrix function E(z; ξ) for |ξ + 2| > 1.

RHP 10 Find a matrix-valued function E(z; ξ) with the following properties:

◮ Analyticity: E(z; ξ) is analytical in C \ Σ(E), where

Σ(E) = ∂U(ξ) ∪ (Σ(2) \ U(ξ)).

◮ Asymptotic behaviors:

E(z; ξ) ∼ I +O(z−1), |z| → ∞. (8.1)

◮ Jump condition: E(z; ξ) has continuous boundary values E±(z; ξ) on Σ(E) satisfying

E+(z; ξ) = E−(z; ξ)V
(E)(z),

where the jump matrix V (E)(z) is given by

V (E)(z) =

{
M (r)(z)V (2)(z)M (r)(z)−1, z ∈ Σ(2) \ U(ξ),

M (r)(z)M lo(z)M (r)(z)−1, z ∈ ∂U(ξ),
(8.2)

which is shown in Figure 10. We will show that for large times, the error function E(z; ξ) solves

following small norm RH problem. By using Proposition 5.1, we have the following estimates

of V (E):

‖V (E)(z)− I‖p .
{
exp{−tKp}, z ∈ Σkj \ U(ξ),

exp{−tK ′
p}, z ∈ Σ′

kj .
(8.3)

For z ∈ ∂U(ξ), M (r)(z) is bounded, so by using (7.2), we find that

|V (E)(z)− I| = |M (r)(z)−1(M lo(z)− I)M (r)(z)| = O(t−
1
2 ). (8.4)

Therefore, the existence and uniqueness of the RHP 10 can be shown by using a small-norm

RH problem (see [7–8]). Moreover, according to Beal-Coifman theory, the solution of the RHP

10 can be given by

E(z; ξ) = I +
1

2πi

∫

Σ(E)

(I +̟(s))(V (E)(s)− I)

s− z
ds, (8.5)
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Figure 10 The jump contour Σ(E) for the E(z; ξ). The blue circles are U(ξ).
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where the ̟ ∈ L∞(Σ(E)) is the unique solution of the following equation

(1− CE)̟ = CE(I). (8.6)

CE is a integral operator: L∞(Σ(E)) → L2(Σ(E)) defined by

CE(f)(z) = C−(f(V
(E)(z)− I)), (8.7)

where the C− is the usual Cauchy projection operator on Σ(E). By (8.4), we have

‖CE‖ ≤ ‖C−‖‖V (E)(z)− I‖2 . O(t−
1
2 ), (8.8)

which implies that 1−CE is invertible for sufficiently large t. So ̟ exists and is unique. Besides,

‖̟‖L∞(Σ(E)) .
‖CE‖

1− ‖CE‖
. t−

1
2 . (8.9)

In order to reconstruct the solution q(x, t) of (1.1), we need the asymptotic behavior of E(z; ξ)

as z → ∞ and the long time asymptotic behavior of its coefficient of 1
z
term in its expansion

as z → ∞. Note that when we estimate its asymptotic behavior, from (8.3) and (8.5) we only

need to consider the calculation on ∂U(ξ) because the others approach zero exponentially on

other boundary.

Proposition 8.1 As z → ∞, we have

E(z; ξ) = I +
E1

z
+O(z−2), (8.10)

where

E1 = − 1

2πi

∫

Σ(E)

(I +̟(s))(V (E) − I)ds, (8.11)

satisfying long time asymptotic behavior condition

E1 = t−
1
2H(1) +O(t−1), (8.12)

in which

H(1) = −
4∑

k=1

1

2πi

∫

∂Uξk

M (r)(s)−1Ak(ξ)M
(r)(s)

(s− ξk)
ds

= −
4∑

k=1

M (r)(ξk)
−1Ak(ξ)M

(r)(ξk). (8.13)

In order to facilitate calculation, denote

f11 = [H(1)]12. (8.14)

9 Analysis on the Pure ∂-Problem

Now we consider the asymptotics behavior of M (3)(z). The ∂-problem 4 of M (3)(z) is

equivalent to the integral equation

M (3)(z) = I +
1

π

∫

C

M (3)(s)W (s)

z − s
dm(s), (9.1)



Long-time Asymptotic Behavior for DNLS Equation 941

where m(s) is the Lebesgue measure on the C. Denote Cz as the left Cauchy-Green integral

operator with

fCz(z) =
1

π

∫

C

f(s)W (s)

z − s
dm(s).

Then (9.1) can be rewritten as

M (3)(z) = I · (I − Cz)
−1. (9.2)

The existence of operator (I − Cz)
−1 is given by the following lemma.

Lemma 9.1 The norm of the integral operator Cz decays to zero as t→ ∞ :

‖Cz‖L∞→L∞ . t−
1
2 , (9.3)

which implies that (I − Cz)
−1 exists.

Proof For any f ∈ L∞,

‖fCz‖L∞ ≤ ‖f‖L∞

1

π

∫

C

|W (s)|
|z − s| dm(s),

where W (s) =M (r)(s)∂R(2)(s)M (r)(s)−1. So we only need to estimate the integral

1

π

∫

C

|W (s)|
|z − s| dm(s).

Since W (s) ≡ 0 out of Ω, we only need to focus on the estimation of

1

π

∫

Ω

|W (s)|
|z − s| dm(s).

Unlike the zero boundary case in [16], here detM (r)(z) = 1 + z−2, and Proposition 6.1 implies

that |M (r)(z)| .
√
1 + |z|−2. So

1

π

∫

Ω

|W (s)|
|z − s| dm(s) .

1

π

∫

Ω

|∂R(2)(s)|
|z − s|

1 + |s|−2

|1 + s−2|dm(s). (9.4)

Note that, in the case |ξ + 2| > 1 and the case |ξ + 2| < 1, there are different kinds of Ω and

∂R(2). So it needs to be discussed separately.

(1) Case |ξ + 2| < 1.

For j = 1, 4, 5, 8, |M (r)(z)| is bounded in Ωj . But when z ∈ Ωj for j = 2, 3, 6, 7, the singularity

at z = ±i needs to be treated more carefully. So in the following calculation, we take Ω2 in the

second case as an example, because it is more elaborate than Ωj for j = 1, 4, 5, 8. Denote three

sub-regions of Ω2 as

D1 = D(0, 1− ε0) ∩Ω2, D2 = D(0, 1 + ε0) \ D(0, 1− ε0) ∩ Ω2,

D3 = Ω2 \ D(0, 1 + ε0). (9.5)

Then the integral
∫
Ω2

|W (s)|
|z − s| dm(s) is divide to three parts:

Ii =

∫

Di

|∂R(2)(s)|
|z − s|

1 + |s|−2

|1 + s−2|dm(s) for i = 1, 2, 3. (9.6)
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Let s = u+ vi = reiϑ, z = ζ + iη. In the following calculation, we will use the inequality

‖|s− z|−1‖Lq(R+) =
{∫ +∞

0

[(v − η

u− ζ

)2
+ 1
]− q

2

d
( v − η

|u− ζ|
)} 1

q |u− ζ|− 1
p . |u− ζ|− 1

p (9.7)

with 1 ≤ q < +∞ and 1
p
+ 1

q
= 1. For s ∈ D3, |s| > 1 + ε0, then

1 + |s|−2

|1 + s−2| <
1 + |s|2
|s|2 − 1

< 1 +
2

ε20 + 2ε0
<∞. (9.8)

Then together with (4.14), we have

I3 .

∫

Ω2

|∂R(2)(s)|
|z − s| dm(s) =

∫

Ω2

|∂R2(s)e
2itθ|

|z − s| dm(s). (9.9)

Moreover, by Lemma 4.1,

|e2itθ| ≤ e−c sin 2ϑF (r)2 ≤ e−2cuv ≤ e−2cu, (9.10)

where c is a positive constant, and the last step follows form

v ≥ max
{
1 + ε0,

u

tanϕ

}
≥ 1 + ε0 > 1.

Substitute (4.19) and above inequality into (9.9) and obtain:

I3 .

∫ +∞

0

∫ +∞

u
tan ϕ

|p′2(ir)|e−4cut

|z − s| dvdu+

∫ +∞

0

∫ +∞

u
tan ϕ

|r|− 1
2 e−2cut

|z − s| dvdu

+

∫ +∞

0

∫ +∞

u
tan ϕ

|∂X1(r)|e−4cut

|z − s| dvdu.

By Cauchy-Schwarz inequality, the first term has

∫ +∞

0

∫ +∞

u
tan ϕ

|p′2(ir)|e−4cut

|z − s| dvdu

≤
∫ +∞

0

‖ρ̃′‖L2(iR)‖|s− z|−1‖L2(R+)e
−2cutdu

≤
∫ +∞

0

e−2cut|u− x|− 1
2 du . t−

1
2 . (9.11)

So does the last term. Before we estimate the second term, we consider for p > 2,

(∫ +∞

u
tan ϕ

|u2 + v2|− p
2 dv

) 1
p

=
(∫ +∞

u
sinϕ

|r|− p
2+1v−1dr

) 1
p

. u−
1
2+

1
p . (9.12)

Then

∫ +∞

0

∫ +∞

u
tan ϕ

|r|− 1
2 e−2cut

|z − s| dvdu ≤
∫ +∞

0

‖r‖Lp
v(

u
tan ϕ

,+∞)‖|s− z|−1‖Lq(R+)e
−2cutdu

≤
∫ +∞

0

e−2cut|u− x|− 1
p u−

1
2+

1
pdu . t−

1
2 . (9.13)
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Combining above inequalities we finally have I3 . t−
1
2 . As for I2, the singularity at i can be

balanced by (4.20), and recall that 1 > ε0 > 0 with (1− ε0) cosϕ >
1
2 ,

I2 .

∫ 2

0

∫ 2

1
2

e−2cut

|z − s|
1 + |s|2
|s+ i| dvdu .

∫ 2

0

∫ 2

1
2

e−2cut

|z − s|dvdu

.

∫ 2

0

|u− x|− 1
2 e−2cutdu . t−

1
2 . (9.14)

Finally, consider I1, similarly we have

I1 .

∫ 1−ε0

0

∫ 1−ε0

u

(|p′2(ir)|+ |r|− 1
2 + |∂X1(r)|)

e−2cut

|z − s|dvdu, (9.15)

which can be estimated same as I3.

(2) Case |ξ + 2| > 1.

The proof in region Ωjk containing z = ±i is similar as above case |ξ + 2| < 1. By Lemma 4.2

and (4.57), the other region can be estimated similarly as [16]. So the proof is completed.

As z → ∞, M (3)(z) has asymptotic expansion:

M (3)(z) = I − M
(3)
1 (x, t)

z
+O(z−2), (9.16)

where M
(3)
1 is a z-independent coefficient. The asymptotic behavior of M

(3)
1 is given by the

following proposition.

Proposition 9.1 As z → ∞, the expansion above holds with

M
(3)
1 (x, t) =

1

π

∫

C

M (3)(s)W (3)(s)dm(s). (9.17)

There exist constants T1, such that for all t > T1, M
(3)
1 (x, t) satisfies

|M (3)
1 (x, t)| . t−

3
4 . (9.18)

Proof Lemma 9.1 and (9.2) imply that for large t, ‖M (3)(z)‖L∞ . 1. The proof proceeds

along the same lines as the proof of above proposition. Like in the above proposition, the two

cases need to be discussed separately. When |ξ + 2| < 1, for the same reason, we only estimate

the integral on Ω2.

1

π

∫

Ω2

M (3)(s)W (3)(s)dm(s) .
1

π

∫

Ω2

|∂R2(s)e
2itθ|1 + |s|−2

|1 + s−2|dm(s). (9.19)

Let s = u+ vi = reiϑ. And we also divide right integral of above inequality to three parts

Ii+3 =
1

π

∫

Di

|∂R2(s)e
2itθ|1 + |s|−2

|1 + s−2|dm(s). (9.20)

For I4,
1+|s|−2

|1+s−2| <∞, so

I4 .

∫ +∞

0

∫ +∞

u
tan ϕ

|p′2(ir)|e−2cuvtdvdu+

∫ +∞

0

∫ +∞

u
tan ϕ

|r|− 1
2 e−2cuvtdvdu
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+

∫ +∞

0

∫ +∞

u
tan ϕ

|∂X1(r)|e−2cuvtdvdu. (9.21)

Note that

(∫ +∞

u
tan ϕ

e−2cuvtqdv
) 1

q

=
(∫ +∞

u
tan ϕ

e−2cuvtqd(2cuvtq)
) 1

q

(2cutq)−
1
q

. e−c
′u2t(ut)−

1
q , (9.22)

where c′ is a positive constant. Then the first integral in (9.21) have

∫ +∞

0

∫ +∞

u
tan ϕ

|p′2(ir)|e−2cuvtdvdu . t−
1
2

∫ +∞

0

‖ρ̃′‖L2(iR)u
− 1

q e−c
′u2tdu . t−

3
4 .

The last integral can be bounded in the same way. To estimate the second term, we also use

Cauchy-Schwarz inequality for 4 > p > 2 and 1
q
+ 1

p
= 1,

∫ +∞

0

∫ +∞

u
tan ϕ

|r|− 1
2 e−2cuvtdvdu . t−

1
q

∫ +∞

0

u
2
p
− 3

2 e−c
′u2tdu . t−

3
4 . (9.23)

The bound for I4 follows in the same manner as for I6. Turning to I5, we also use |∂R2(z)| .
|z − i| and obtain

I5 .

∫

D2

e−2cut

|z − s|
1 + |s|2
|s+ i| dm(s) .

∫ 2

1
2

∫ 2

u

e−2cuvtdvdu

=

∫ 2

1
2

(cut)−1(e−2cu2t − e−4cut)du . t−1. (9.24)

This estimate is strong enough to obtain the result. And when |ξ+2| > 1, the regions containing

z = ±i are estimated in the same way as above case. Lemma 4.2 and (4.57) give that the other

region can be estimated similarly as [16].

10 Asymptotic for the DNLS Equation

Now we begin to construct the long time asymptotics of the DNLS equation (1.1). Inverting

the sequence of transformations (3.23), (4.66), (5.6) and (6.11), we have

M(z) = T (∞)σ3M (3)(z)M (r)(z)R(2)(z)−1T (z)−σ3 . (10.1)

To reconstruct the solution q(x, t) through (2.67), we take z → ∞ out of Ω in above equation.

In this case, R(2)(z) = I. When |ξ+2| < 1, using Propositions 3.1, 6.3 and 9.1, we deduce that

M(z) = T (∞)σ3(I +M
(3)
1 (z)z−1)Ẽ(z)M

(r)
Λ (z)

· T (∞)−σ3

(
1 + z−1 1

2πi

∫

R

log(1− ρ(s)ρ̃(s))ds
)−σ3

+O(z−2), (10.2)

which admits long time asymptotics

M(z) = T (∞)σ3M
(r)
Λ (z)T (∞)−σ3

(
1 + z−1 1

2πi

∫

R

log(1− ρ(s)ρ̃(s))ds
)−σ3
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+O(z−2) +O(t−
3
4 ).

From (2.67),

q(x, t) = −i lim
z→∞

[zM ]12

= T (∞)−2qrΛ(x, t) +O(t−
3
4 ), (10.3)

where qrΛ(x, t) is given in Corollary 6.2. And when |ξ + 2| > 1, we also have

M(z) = T (∞)σ3(I +M
(3)
1 (z)z−1)E(z)Ẽ(z)M

(r)
Λ (z)

T (∞)−σ3

(
1 + z−1 1

2πi

∫

R

log(1 − ρ(s)ρ̃(s))ds
)−σ3

+O(z−2). (10.4)

Propositions 3.1, 6.3, 8.1 and 9.1 give that as t→ ∞,

M(z) = T (∞)σ3

(
I + t−

1
2
H(1)

z

)
M

(r)
Λ (z)T (∞)−σ3

(
1 + z−1 1

2πi

∫

R

log(1− ρ(s)ρ̃(s))ds
)−σ3

+O(z−2) +O(t−
3
4 ).

From (2.67),

q(x, t) = −i lim
z→∞

[zM ]12

= T (∞)−2qrΛ(x, t) − t−
1
2 if11 +O(t−

3
4 ) (10.5)

with f11 defined in (8.14). Therefore, we achieve main result of this paper.

Theorem 10.1 Let q(x, t) be the solution for the initial-value problem (1.1) with generic

data u0(x) admitting Assumption 2.1 and scatting data {r(z), {ζn, Cn}4N1+2N2
n=1 }. Let ξ = x

t
.

Denote qrΛ(x, t) to be the N (Λ)-solution corresponding to scattering data {0, {ζn, c̊n}n∈Λ} shown

in Corollary 6.2. And Λ is defined in (3.3). There exists a large constant T1 = T1(ξ) for all

T1 < t→ ∞,

(1) when |ξ + 2| < 1,

q(x, t) = T (∞)−2qrΛ(x, t) +O(t−
3
4 ); (10.6)

(2) when |ξ + 2| > 1,

q(x, t) = T (∞)−2qrΛ(x, t)− t−
1
2 if11 +O(t−

3
4 ), (10.7)

where qrΛ(x, t), T (z) and f11 are shown in Propositions 3.1, Corollary 6.2 and (8.14), respec-

tively.

Corollary 10.1 Suppose that the simple poles only distribute on unit circle, there exists a

large constant T1 = T1(ξ) for all T1 < t→ ∞,

(1) when |ξ + 2| < 1,

q(x, t) = T (∞)−2
(
q−

N2∏

l=1

w4
l +

∑

l∈∆2

w4
l (q(x, t;D

sol
l )− q−)
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+
∑

l∈∇2∪Λ2

(q(x, t;Dsol
l )− q−)

)
+O(t−

3
4 ), (10.8)

(2) when |ξ + 2| > 1,

q(x, t) = T (∞)−2
(
q−

N2∏

l=1

w4
l +

∑

l∈∆2

w4
l (q(x, t;D

sol
l )− q−)

+
∑

l∈∇2∪Λ2

(q(x, t;Dsol
l )− q−)

)
− t−

1
2 if11 +O(t−

3
4 ), (10.9)

where q(x, t;Dsol
l ) is the soliton solution defined in Corollary 6.2 with scattering data Dsol

l =

{0, {wl, c̊l}, {−wl, c̊l+N2}}.

The long time asymptotic expansion (10.8)–(10.9) shows the soliton resolution of for the ini-

tial value problem of the derivative nonlinear schrödinger equation, which can be characterized

with an N (Λ)-solution whose parameters are modulated by a sum of localized soliton-soliton

interactions. Our results also show that the poles on curve soliton solutions of the derivative

Schrödinger equation has dominant contribution to the solution as t→ ∞.
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