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Local Well-posedness of the Derivative Schrodinger
Equation in Higher Dimension for Any
Large Data

Boling GUO! Zhaohui HUO?

Abstract In this paper, the authors consider the local well-posedness for the derivative
Schrodinger equation in higher dimension

ut—iAu+|u|2(7~VU)+u2(Y-VH):0, (z,t) e R" x R, 7,?6]1{”; n > 2.

It is shown that the Cauchy problem of the derivative Schrodinger equation in higher

dimension is locally well-posed in H*(R™) (s > %) for any large initial data. Thus this

result can compare with that in one dimension except for the endpoint space H?.

Keywords Well-posedness, Derivative Schrédinger equation in higher dimension,
Short-time X 5, Large initial data
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1 Introduction

The aim in this work is to study the well-posedness for the Cauchy problem of the Schrodinger
equation with derivative in higher dimension (DNLS):

up — iAu + [ul*(7 - V) +u2(y -Vu) =0, (z,t)eR" xR, n>2, (1.1)
u(x,0) = up(x) € H*(R™), '
where (z, ) is the complex conjugate of u(z,t), 7 and X are real vectors; V = (0p,, 0y, - »
0z,), A is the Laplacian in R™. Notice that DNLS has a conserved quantity
[u(®)ll L2 = lluoll -
There exists a generalized form of the DNLS equation
uy —iAu = F(u,u, Vu, Vu), (z,t) € R" xR, (1.2)
u(z,0) = uo(z) € H3(R™), '
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where F : C?>"*2 — C is a polynomial having no constant or linear terms,

F(2) = F(z1,22,+  2ansa) =y, Cpa’ (1.3)
3<]p|<oo
here C, € C, p = (p1,p2,** , pant2) € Z3"?. We assume that every term in F contains at

least one derivative. An example of F satisfying (1.3) is given by
Flu,, Vi, V) = [ul2(F - Va) + ()2(X - Va). (1.4)

In one dimension, Takaoka [13] showed that the Cauchy problem (1.1) is locally well-posed
in H® for s > %, where he used the Gauge transformation to remove the derivative in w. In
[14], Takaoka showed that this result is sharp in the sense that the data map fails to be C? or
uniformly C? for s < %

In higher dimension, the local and global well posedness of (DNLS) (1.2) have been exten-
sively studied. For example: Ozawa and Zhai [12] showed that if F' is smooth function vanishing
of third order at the origin and satisfies an energy structure condition, then the Cauchy problem
(DNLS) (1.2) is globally wellposed in H*(R")(n > 3,5 > 2+ 2) with small data. By using the
local smooth effects for the solutions of the Schrédinger equation, Kenig, Ponce and Vega [8,
10] were able to deal with the non-elliptical case and they established the local well posedness
of equation (1.2) in H® with s > % for large data (H*® with s > n 42 + 1 for small data in
[8]); the local well posedness results have been generalized to the quasi- hnear (ultrahyperbolic)
Schrodinger equations, see [6, 11].

From above known results, it follows that there exists an open problem: How about solution
of (1.1) in high dimension with large data? For large data, Kenig, Ponce and Vega [10] obtained
local well posedness of the generalized DNLS equation (1.2) in H*® with s > %. Moreover,
Bienaimé [1] considered the generalized DNLS equation (1.2), and proved the local existence,
the uniqueness and the smoothing effect given any ug € H* with s > & + 3; his proof followed
the same plan as that of Kenig, Ponce and Vega [10]. In this paper, we will consider the solution
of (1.1) for large data, DNLS equation (1.1) is simpler than DNLS equation (1.2). In fact, we
can also use the stand energy method in [4] to show that the Cauchy problem (1.1) is locally
well-posed in H* with s > 5 + 1 for any large initial data. From the result in one dimension,
there exists a gap between H% and HZ*! in high dimension. In this paper, we will solve this
gap except for the endpoint space H . That is, the Cauchy problem (1.1) is locally well-posed
in H® with s > & for any large initial data. Moreover, from the following proof, it follows that
the flow map deﬁnes a continuous map on H® with s > Z, not a uniformly continuous map.
But basing on the method in this paper, we will show that the Cauchy problem (1.2) is locally
well-posed in H® with s > § + 1 for any large initial data in the future.

We usually use its integral equivalent formulation to study problem (1.1),

u(t) = S(t)uo + / St — ) ([uP(F - V) + u2(X - Va) (E)dt',

where S(t) = f;leit‘f‘ F is the group of the equation (1.1). From the previous arguments, we
guess that the first step is to choose the suitable spaces F* and IN®, then the key is to show the
following holds for some s and 6 > 0,

T o
Iu®(F - Vu) + (X - V) ey S T lulle () - (1.5)
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In fact, if 6 = 0, (1.5) holds for the Bourgain’s space F* = X
that is, we can easily obtain local well-posedness with small initial data.

Next we can define some suitable spaces F*(T'), N*(T) and E*(T), where the definitions of
F*(T), and N*(T') in Section 2 are different from these of [5]. Following some ideas in [5], we
will show that if u(t) is a solution of the Cauchy problem (1.1) in H* for some T > 0, s > &
and some 6 > 0,

1 and dual space N° = X

1
s,—3

YV -
lullescry S llullmscry + 1ul*(F - V) +u?(X - V) |lne ().

_)
127 - Va) + w2(X - V&) lvecry < CT ulle iy, (1.6)

[ullgecry < luollFre +T0Nullge (),

where the constant C is independent of ||ug|| 7+ and T" depends on ||ug||frs. Notice that the first
inequality in (1.6) is the analogue of the linear estimates, the second inequality in (1.6) is the
analogue of the trilinear estimate estimate, the third inequality in (1.6) is the analogue of the
energy-type estimate. From this, we can obtain the existence of the solution in H®. To prove
the uniqueness and continuity of solution in H®, we need to consider the difference equation
about (1.1). But the symmetries of the difference equation are not as good as the symmetries
of (1.1), which causes difficulties in the proofs of suitable energy estimates, which can be found
in Section 7. In fact, if u(x,t) and v(x,t) are solutions of (1.1) with initial data wg,vy € H®
with s > Z, then we can show that for some small § > 0,

sup [lw(®)| e < [lwollms + T ulfe|w] s [wlles +T?ful P

te(0,T)

pera[U]lrs [[w]les w] g5

+ T fullp wlffe + 7wl (1.7)

Fs

where 6 > 0 is small, and will be chosen later. In this paper, we mainly prove (1.7). In fact,
we will use some dispersive properties in Section 3 to prove (1.7).
The main result of the paper is listed as below.

Theorem 1.1 (a) Let n > 2 and s > 5. Assume ug € H* for any large data. Then there
exist some T = T(||ug||m+) and a unique local solution

u = (A7 (u0))(t) € C([0,T); H>)

of the Cauchy problem (1.1). (Denote the solution operator A% by (A%(uo))(t) = u(t), where
u(t) is the solution of (1.1) with initial data ug € H®.) Moreover, we have

|(AF (o) (®) 1+ < C(T.5, lfuollz=) for any T € R, 5> 2.
(b) Let ug € H®. Then the mapping
AP H® — C([-T,T] : H*)
extends uniquely to a continuous mapping

A% H® — C([-T,T): H?).
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2 Definitions and Notations

Define
z=FT)eERXxR", (7,7) = ()= e RxR" ..

The norm standard space X ; for the Schrédinger equation is (see defined [2, 7, 9]),

lullx, . = I16€)" (7 = $(€)) (. Tl 2 ., 2, (2.1)
Define the norm of dyadic X spaces as follows
lullr,, = NS¢0l s =€ — S 2a(E Dl 2z (22)
EAMCRY
lulle, y =1S(=tull, -y =€) (T = (&) al& Tl L2z (2.3)
EMCRY)

Denote u(§,7) = Fu(x,t) by the Fourier transform in ¢ and x of u and F(.yu by the Fourier
transform in the () variable. Let the phase function ¢(¢) = |£|? or —[€|? (sometimes, we also

let ¢(€&) = [¢* and ¢(€) = —[¢]?).
Then, we give definitions of some dyadic spaces, the properties of these spaces can be found

in [5]. First, we define the dyadic decomposition. Let n : R™ — [0, 1] denote an even smooth

function supported in [-2, 2] and equal to 1 in [-2, 2]. For j € Z, let x,(|¢]) = n(%)—n(ﬁ),

271
and

J2 J2
Xl = 2 X5 and X<jp = D X5
7=0

J=i

—+o0
For simplicity of notation, let n; = x; if j > 1and o =1— > n;. Also, for l; <ly € Z,
j=0

l2 l2
Mty 1) = Z moand <, = Zm-
1=l =0

For any k € Z,, we define the operators Py, P<j, P« with respective to the variable = by
the formulas

Peu(€) = m(1€)A(€),  Pepul€) = ner(€)a(€),  Peru(€) = ner(|€))a(E).

Forl € Z, let I, = {¢€ € R" : |¢| € 271,24}, For | € Zy, let I, = I if k > 1 and
Ip=1[-2,2]. For k € Z4 and j > 0, let

Dij={(71) ER"xR: € € Iy, 7 — ¢(€) € I;}.
We define first the Banach spaces Xj = X;(R™ x R) for k € Z,

Xi(R" xR) = {f(f,T) € L*(R" x R) : f is supported in R x I, and

+oo
1l = D2 2 Biim s (7 = SEDF(€ Pllsz , < o0}, (2.4)

Jj=0
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where f3(; 1) satisfies

1+7°%, if 27 > 72090k
2% , .

14+ ———, if 27 > 2%k > 72090k

Biw = T-02% (2.5)
1, if 27 < T-202%  for some fixed a,T > 0;
1 if k<1

Here 5, T will be chosen in the later.
For k € Z, define the frequency localized initial data spaces
Ep={¢:R = R: F(¢) = m()F(¢) and [|] s, = @ll2 < oo} (2.6)

The corresponding frequency localized energy spaces for the solutions are
Co(R: Ey) = {ur € C(R: Ey) : uy, is supported in R x [—4,4]}.

At frequency T—92 we will use the X*? structure given by the Xy, on the 702 time

scale. For k € Z, we define the normed spaces

Fio={um € Co®: B+ unll, = sup | Fuac- (T2~ ti))llx, < oof. (27)
k

For k € Z; we define the normed spaces Ny = Cy(R : Ei), which are used to measure the

frequency 1920k part of the nonlinear term, with norms

I Fellv, = sup (= 6(¢) + iT=298) =1 F( i mo(T~02% (£ — 1)) x, . (2.8)

In the following proof, we will use the localized spaces defined above, for any time T' € (0, 1]
we define the normed spaces

Fie(T) = {uk € C([-T.T1]: Ek) : [lurllpory= _ inf [kl r < 00}7
kr=uy in RX[-T,T] B (29)
NU(T) = {fr € C-T.T) B lfillweery = inf [ fullw, < oo},

fk:fk in RX[—T,T]
Next, we will assemble these dyadic function spaces above using a Littlewood-Paley de-

composition to obtain the global function spaces. For v € C([-T,T] : H®) and s > 0, we
define

lulBe(ry = I P<o(wO)IFr: +Y 7 sup 2% Pulu(t)) |5, - (2.10)
>1 ty€[=T,T]

Finally, the X - type control of the solutions, respectively, the nonlinearity is achieved



982 B. L. Guo and Z. H. Huo

using the normed spaces

F*(T) = {u e O(-T,T]: H*) : ||u]

bor) = Zz’“kup Wl ) < o},

N*(T) = { € CU-T,T): B*) + | i3 = Zz’“kHPk Wecry < oo,

(2.11)
F*=(T) = {u € C(=T.T): )l = 222 T Pl ) < o0}
NT) = {F € COT T B s 1 iy = S22 MR < 0)-
k=0
For any k € Z,, we define the set Sy of k-acceptable time multiplication factors
oo
Sy = {mk R R mills, = > 2778 0my 1 < oo}. (2.12)
=0
Direct estimates using the definitions and Lemma 4.1 show that for T' € (0, 1],
mt-PuH §(su m )u
[ 3 i) P [, S (sup sl ) - el
< (s . .
H ka HN . (2161123 ||mk||sk) l[ullns (7 (2.13)
< . s
[ ka Pu@) |, o S (o lmills,) el cry

Denote A ~ B by the statement: A < C1B and B < C1 A for some constant C; > 0, and
A < B by the statement: A < C%B for some large enough constant Cy > 0, and A < B by the
statement: A < C3B for some constant C'3 > 0. We use a+ and a— to denote expressions of
the form a + ¢ and a — e, where 0 < ¢ < 1.

Denote the convolution integral [ . dé by the form

/ dTldTQdT3d€1d€2d€3.
§=&1+&2+83;T=T1+T2+73

First, we introduce some variables for convenience
c=1xf, a=mntl4P 1=1,23, (2.14)
T=71+E? o=71—|¢ T=n+|a> o=n-14% 1=1,2,3. (2.15)
Define N := || and L; := |o;|, we adopt the notation that
1 < soprano, alto, tenor, baritone < 4
are the distinct indices such that
Nsoprano 2 Nalto = Ntenor 2 Nbaritone

are the highest, second highest, third highest, and fourth highest values of the frequencies
N1, Na, N3, Ny, respectively. Since &1 + & + &3 + & = 0, we must have Ngoprano ~ Nalto-
Similarly define Lgoprano = Lalto > Ltcnor > Lvaritone Wwhenever Ly, Ly, Ls, Ly > 0.

Let ¢ € C§°(R) with ¢ = 1 on [—1, 1] and supp ¢ C [~1,1]. Denote ¢5(-) = ¥(67*(-)) for
some 0 € R\ {0}.
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3 Multilinear Estimates

In Sections 5 and 7, the trilinear and multilinear estimates are obtained by using Tao’s
[k; Z]-multiplier method (see [15]). We firstly list some useful notations and properties for
multi-linear expressions. Let Z be any Abelian additive group with an invariant measure dé§.
For any integer k > 2, we denote I'y(Z) by the “hyperplane”

I‘k(Z):{(é-la7§/€)€Zk€1++€k:0}7

which is endowed with the measure
/ f=/ f&, o p—1, =& — - — Ep—1)d&r - - - A&,
I'n(2) Zk-1

and define a [k; Z]-multiplier to be any function m: TI'y(Z) — C. If m is a [k; Z]-multiplier, we
define ||m/||jz;2) to be the best constant, such that the inequality

k

‘/Fk(z H (&) \< IImHkZ]HHfJHLZ(Z

Jj=1

holds for all test functions f; defined on Z. It is clear that |[m||f,z) determines a norm on m,
for test functions at least. We are interested in obtaining the good boundedness on the norm.
We will also define ||m||(x, 7] in situations when m is defined on all of Z* by restricting to I'x(Z).
We give some properties of [|m||(,z], especially for the case k = 3. This corresponds to the
bilinear Xj; estimates of Schrodinger equation since multilinear estimates can be reduced to
some bilinear estimates (we can find it later).
Let

S +&+8=0, m+n+m=0, (3.1)
o =1+ hi(&), hi(&) ==£Ig17, =123 (3.2)

Then we will study the problem of obtaining

[m((€1,71), (2, 72), (€3, 73)) 3 R xm) S 1 (3.3)

where m((&1,711), (§2,72), (€3, 73)) is some [k; Z]-multiplier in T'3(R™ x R).
From (3.1) and (3.2), it follows that

01+ 02 + 03 = (&1, &2,83). (3.4)

By symmetry, there are only two possibilities for the h;: The (+ 4 +) case

h1(€) = ha(€) = hs(€) = |¢]*; (3.5)

and the (+ + —) case

hi(€) = ha(€) = [€]; hs(€) = —[¢I*. (3.6)

Of the two cases, the (+ + +) case is substantially easier, because the resonance function

h(é1,€2,83) =[] + &2l + &) (3.7)
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does not vanish except at the origin. The (+ 4 —) case is more delicate, because the resonance
function,

h(&1, €9, &3) = &) +|&° — |& (3.8)

vanishes when ¢ and &, are orthogonal. Notice that for &, &, &3 € R2, the resonance identity
is given by

|h(&1,&2,&3)| = [|&1]” + &l — &7 = 2[é1 - &f ~ &1 g — Z(&1,&)|-

In particular, we may assume

|h(&1, &2, &)| S |&ll&], (3.9)

and that

M) (3.10)

€112

We assume that |;| ~ Nj, |0;] ~ L; and |h(&1,62,&3)] ~ H. Where Nj, L; and H are
presumed to be dyadic, i.e., these variables range over numbers of form 2¢(k € Z). It is

£(&,8) = g +O(

convenient to define Nypax > Nmed = Nmin to be the maximum, median and minimum of Ny,
Ny, N3. Similarly define Lyyax > Limed = Lmin Wwhenever Ly, Lo, Ls > 0.
Then we estimate the following expression to replace (3.3),

Hm((va Ll)v (N27 LQ)? (N37 L3))XN1,N2,N3;H;L1,L2,L3 ||[3,R"><R] 5 1, (3'11)

where XN, N, Ng:H;L,,Lo, Ly 15 the multiplier

3

XNl,N2,N3;H;L1,L2,L3 (577—) = X|h(&)|~H H X|&5|~N; X|55|~L; - (312)
j=1

From the identities (3.1) and (3.4), XN, N, ,Ng;H:L1, Ly, L5 vanishes unless

Nax ~ Nmed (3.13)
and
Liax ~ max(H, Leqd)- (3.14)
Therefore, we only need to estimate
| XNy N N3 Hi L Lo Ls || 3,87 xR)- (3.15)

Then we have the following lemma about the boundedness of (3.15).

Lemma 3.1 (see [15]) Let H, N1, No, N3, L1, Lo, Ly > 0 obey (3.13)—(3.14).
e For the (+ + +) case, let the dispersion relations be given by (3.5), then H ~ N2, . It
follows that

n—1
(3.15) < L2 NNz min(NmaxNuin, Lmed)? . (3.16)

min

NG
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e For the (+ + —) case, let the dispersion relations be given by (3.6), then H < Ny Ny. It
follows that

— The ((++) case). If Ny ~ Ny > N3, then (3.15) vanishes unless H ~ N2, in which case
one has
3

_1 n—1
Nma?xN 2 min(NmameinaLmed)%~ (317)

min

(3.15) < L

min

— The ((+—) coherence). If we have

Ny~ N3> Ny; H~ Ly> Ll,Lg,NQQ, (3.18)
then we have
1 1 m-1 H 3
(8:15) S LpinNonite Ny min (H, NTmed) . (3.19)

Similarly with the roles of 1 and 2 reversed.
— In other cases, we have

n—1

<72 =3 AT LR H \3
(8.15) S LpiuNeni Ny min(H, Lunea)? min (1, NT)

min

(3.20)

Lemma 3.2 (Comparison principle) (see [15]) If m and M are [k; Z] multipliers and
satisfy [m(§)] < [M(E)| for all § € Ty(Z). Then ||m|r.z) < | M|l;z)- Also, if m is a [k, Z]

multiplier, and a1, ,ay are functions from Z to R, then
k k
[m@ Tl s, < Imlwz T lasls... (3.21)
j=1 ’ j=1

Lemma 3.3 (Composition and TT™*) (see [15]) If k1,k2 > 1 and my, mo are functions
on Z¥ and Z*2, respectively, then

[ma €1y Sk )ma(hat1y s Sky k)l (ks k23 2)
<mi(€r, o &) Iz lma(€es o s €k )l k1527 (3.22)

As a special case, for all functions m : Z¥ — R, we have the TT* identity

lm(&r, - s &)m(—=Erra, -+ —Ea) ez = Im(&r, -+ 5 &)1 fegr.z- (3.23)

4 Linear Estimates, Trilinear Estimates, Energy Estimates,
Well-posedness of DNLS Equation

In this section, we give the proof of Theorem 1.1. In Theorem 1.1, we show that the Cauchy
problem (1.1) is locally well-posed in space H® for any large initial data.

Lemma 4.1 If Fu, € Xy with k > 1, then

S Buw2tIni(r = S(E)F (no(T~2%t)ui) (€, 7)]| 2.z

2]‘ ZT—§2§k
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+ Y R i — o) F@ @™ ) (€, 7) 2

20 <T—020k

+oo
S D228 lni(r — $(€))an(€ )z - (4.1)

§=0
Proof In fact, using the fact

IF6)Bs, S A2 + A7 2)[|£(1)]

we can have the results. This completes the proof of Lemma 4.1.

35,1’ A> O’ (42)

Lemma 4.2 (Global linear estimate) (see [5]) Assume T € (0,1] and s € R, u,f €
C([-T,T): H*®),

up —iAu=f on R" x (=T,T). (4.3)
Then
[ulles(ry < llullgsry + ([ fllne(7)- (4.4)
Proof Using (4.2) and the arguments in [5], we can obtain the results.
This completes the proof of Lemma 4.2.
Lemma 4.3 Let T € (0,1] and s € R, and u € F*(T), then

sup u(t)||me < |lullescr)- (4.5)
te[—T,T)

Proof From the definition of F*(T"), we can easily obtain the results.
Theorem 4.1 (Trilinear estimates) For T € (0,1), we have for s > % and some § > 0,

[ @(7 - Vus)llne () < CT? |[us|lws 1y lluzlles () [ us | v (1), (4.6)
%
ut (X - Va2)ur ||ne 1y < CT|ua e ||uz|

ro (1)l usllps (1) (4.7)
@7 - Vus)linson () < CT? Jn[lpon ) 2l oy sl ey
+ OT9||U1|
+ CTC|us||pe (1) lullpe (1) luslgon (1) (4.8)

Fe (1) ||u2llpen (1) | usl|ps (1)

%
ur (X - Vi) us|Non () < CTus||pen ¢y lluzlles (1) lusll e (7
+ CT||ua||ps (1) 1wzl pon () sl (1)

+ OT?||uy |

Fe (1) lu2l|ps (1) | usl pon (1) » (4.9)

where the constant C' is independent of ||ug||rs and T depends on ||uol|ms; Bn > & 41 is large
enough number obtained in [4], here the Cauchy problem (1.1) is locally well-posed in H®" with
Bn > 5 + 1 for any large initial data.

Theorem 4.2 (Energy estimates) Assume s > § and (3, is defined in Theorem 4.1. Let
T € (0,1), and u be a solution of the Cauchy problem (1.1) in C([0,T]; H*>®). Then for some
0 >0,

lu(®)llg:(ry < Clluollzze + CT?lu(t)llgs (7, (4.10)
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)2, e, 2+ CT Ju(t)]

[w@)lgon () < Clluollzzs, + CT [u(®)|gan o lu(t)]

< Clluol

2 2
sté(T)Hu(t)HFS(T)ﬂ (4.11)
B (4.12)

where the constant C' is independent of ||uo||g= and T depends on ||uol| g

Lemma 4.4 (see [4, 10]) Let s > &. Assume ug € H*. Then there is T = T (|juollu-) €
(0,1] and a unique solution u = A>®(ug) € C([-T,T]; H*®) of the initial value problem (1.1).
In addition, for any s > 3,

sup |u(t)||ms < C(s, [Juolla=, T). (4.13)
te[—T,T]

Proof By Lemma 4.2 and Theorems 4.1-4.2, similarly with the proof (a) in Theorem 1.1
in the following, we can obtain a priori estimate for some 7' = T(||uo||z+) € R,

sup [u(®)| e < Clluol| s, (4.14)
te(0,7)
where the constant C' is independent of ||ug|| = and T" depends on ||ug|| g« when u(t) is a solution
of the initial value problem (1.1). Moreover, from [4], it follows that the Cauchy problem (1.1)
is locally well-posed in H®" with 3, > 5 + 1 for any large initial data. Thus, we can obtain
Lemma 4.4.

In Sections 6—7, we will give the proofs of Theorems 4.1-4.2, respectively. Now we turn to
the proof of Theorem 1.1. First, we prove that if T € (0,1] and uw € C([-T,T] : H®) is a
solution of (1.1) with ug € H”" with 8, > % + 1, then

sup ||w()||gen < llullpen () S lluollmen - (4.15)
te[—T,T]

We first use a continuity argument to establish an F* bound on u in the interval [-T,T]. Tt
follows from Lemma 4.2 and Theorems 4.1-4.2 that for any 7" € [0, T, we have for s > %,

- _
lullgs(rry S ”uHES(T/_))'i' [u>(F - V) + w2 (X - V) || e (1);
(7 - Vu) +u?(X - V) |[ne ) < CT|[ullf 1 (4.16)
Il vy < ClluollFs + CT|lul

4
Fs(T")

where the constant C' is independent of ||ug|| = and T" depends on ||ug|| =
We denote X (1") = ||ulgs () + [[[u>(F - Vu) +u?( X - V)| s vy and eliminate |[ul|gs 7+
to obtain

X(T')? < NJuollzs + X(T")* + X(T")°. (4.17)
Assuming that X (7”) is continuous and satisfies
Tim X(T) < g (418)
Using (4.16), we have

lullps () S luollas- (4.19)
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To obtain (4.18), we first show that for v € C(=T,T;H®) the mapping T" — |ju[|gs(r) is
increasing and continuous on the interval [-T,T] and

i sy < s, )
Jimlullge () < luola (4.20)

The continuous property of ||[u|2(7 - Vu) + u?( e - Vr)||ns(7v) is obtained by applying the
following lemma to f = (ju|>(7 - Vu) 4 u ()\ Va)).

Lemma 4.5 (see [5]) Assume T € (0,1) and f € C([0,T]; H*®). Then the mapping T' —
I|.fllnvs 77y is increasing, depends on ||uo||g- and is continuous on the interval [0,T] and

A | fll~s 2y = 0. (4.21)

To prove (4.15), using Lemma 4.2 and Theorems 4.1-4.2, we have
%
[ullgsn iy S Nullgen oy + Ul - Vu) +u2(X - V)| non 3
%
[ul*(F - Vu) + u?(X - V)| o ) < CT|ullpen T’)”u”%‘s(T/); (4.22)
Il vy < CllwolZa, + CT ull gy e
Using (4.19) and (4.22), we have
llgon ry S lollszon- (4.23)

This completes the proof of Theorem 1.1(a). Next we continuously prove Theorem 1.1(b).
Assume ug € H*® with s > 7,

{pm :me€Zy} CH™® and lim ¢, =ugin H’.

m—r oo

Let u,, be the solutions of the Cauchy problem (1.1) with initial data ¢,,. It suffices to prove
that the sequence u,, € C([-T,T]: H*) is a Cauchy sequence in C([-1,T]: H®).
It suffices to prove that for any § > 0, there is My such that

sup  |um(t) —w(t)||gs < for any m,l > Ms. (4.24)
te[—1,1]

For N € Z,, let ¢7]7V1 = P<n¢p,. We show first that for any N € Z., there is M; y such that

sup [[(A%¢n)(8) = (A% ) ()|l s < & for any m, 1 > Ms n. (4.25)
te[—1,1]

Using ||(A®¢N)(t)| ge. < C(N), we can easily obtain (4.25) by Lemma 4.6. Moreover, by

Lemma 4.6 below, we have

sup |[(A%0m) (1) = (AX¢p) (O 1+ < (A% 0m) (1) = (A%¢n) () p=1)

te[—1,1]
N N N
S Cligmlias oN |a)€m — Emllas + Cllgmiims o 1 n) 1Pmll grasall@m — G ll gas.  (4.26)

Using above, we have for enough large n, m,

sup [[(A%¢n)(t) = (A% 0m) ()l ae S 1A Pn)(E) — (A dm) (B)llFs (1)

te[—1,1]
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S N(A%Ga) () = (A (1) lw= (1) + [[(AZ D) (1) — (AZ ) ()]
+ (A% (1) — (A°°¢N)( )IIFsm
bn — O [l (4.27)

This completes the proof Theorem 1.1(b).

Fs(T)

S Clluol s

Lemma 4.6 Assume s > 5. Let uy,up € F*(1) be solutions to (1.1) with initial data
@1, 02 € H™ satisfying
[1llms + [[dllms < 1.

Then
lur = uzllge-s < Clouliue ol 191 — b2l s (4.28)
lur = u2llg. < Clgylime ligallns @2l mslld1r — doll e
+ Cligrlims gzl s |92l grovall o1 — G2l gro-a- (4.29)

Proof From the arguments in Section 7, we can obtain Lemma 4.6.

5 Dyadic Trilinear Estimates

In this section, by Lemma 4.1, we prove several dyadic bounds which are used in the proof
of Theorems 4.1. For the nonlinear terms (|u|?(7 - Vu) + u ()\ Vu)), by symmetry, we only
consider (|u[2(% - Vu)) and the estimate of (u (Y Vu)).

Define

ksoprane — N 0o = Soprano{ N, No, N3, Ny},
okato — N,11o = Alto{ N1, N2, N3, Ny},
ftencr — N oo = Tenor{ Ny, No, N3, N},
Qkvaritone — N oo = Baritone{ N1, Ny, N3, Ny}.

Lemma 5.1 (Trilinear estimate-I) Let s > 5. Assume that |§| ~ N, = 2’”, Ly =|o| =
|7 — (&) = 27, Let L) = maX{Ll,T_eNle}, 1=1,2,3,4. Let Neoprano 2 1~ 1, By symmetry
we assume N3 > No > Ny. Then for small enough €,6 > 0,

6(j47k4) /Ngoprano Nsoprano<€4> fl(Tlafl)f2(T2a€2)f3(7-3763)f4(7-47§4) s
Bliv k) Blin ko) Blis ks) S (Na)? (€1)°(€2)°(€3)° (L1)2 (L)% (L3)2 (L4)?
4

< <Ntenor>_6T0 H ||fjHL2- (5~1)

Jj=1

Remark 5.1 In this lemma, we use (5.1) to prove the following trilinear estimates

st (7 - Vus)|ne(ry < CT?Jur|[pe () ||uz]

Fo (1) |luslps (1) (5.2)

and

st (7 Vus)lnea () < CT lusllpon (7 luzllwe oy lluslles ()
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+ CT||ur || ps () | uzllwsn () | us]

+ CT?||ua||ps (1) || uz]

Fs(T)

Fo (1) l|usllpen () (5.3)

Remark 5.2 In this lemma, let fl(&,n) = (o >l]:(770(T_§2§k'(t i) Pr; (1)), i=1,2,3,4.
Here notice that 0 < 0. If Nsoprano ST~ 4 then we can easily obtain Theorem 4.1.

Proof By duality and the Plancheral identity, it suffices to show

lm((§1,71), (§2,72), (€3, 73), (§45 Ta))|| 4,7 <]

Nfoprano N4<£4>S
:H (N4> (€1)°(82)°(&s)®
(

L1)3(L2)2(Ls)7(Ly)?
< (Nienor) Y. (5.4)

[4,R" xR]

We often use the inequality

/ ‘ b0o— b0k ; 06 —0k 1
—_— < 772 , c{t:|t| <TY2 , 0<b< = 5.5
H <7_ — ¢(§)>b Lé.r ~ HfHLgT Suppf { | | ~ } D) ( )
Case 1 Assume Ny ~ Ngoprano and Ly < NfoprdnoT_g. By symmetry, we assume that

N3 ~ N4 ~ Nsoprano > N2 > N1~
Notice that
. 5o 1
supp f; C {t : |t| < T2 Oksopranc} 0 < b < 3 1=1,234
Then
NSHOprano N4 <€4>S
(NP (&)5(€2)* (&) ™

Subcase 1-1 Assume Ny 2 T—i

Sub-subcase 1-1-1 If Ly > N2 > NIT=20 then — )ggfe’:ﬂm — 3 9-F-00%
J1.R1 J2,R2 J3:k3
Using (3.19) in Lemmas 3.1(We only consider the bad case.), 3.2-3.3, we have for s > & + 10¢,

S Na(Np) 7 (N2)™°

lm((€1,71), (€2, 72), (€3, 73), (§a, 7a)) || [4,r7 xR)

_ _1 _d2 g, 0k 1
(NG N2 S (£1)7(L2)3(L3)7 (L) 7 laR" xR
< (N2) N T Noggrano2 T 72% | L [——
<£1> (L3)2 NBR R (L5)2 (L4)2 Il[3.R"xR]
S <N1>—S%+5<N2>—s+%+sT02—%2T 02 5 L2 N2 1 < thlaerG (56)
Sub-subcase 1-1-2 If L, < N2, then we can assume Bla ea) < 1. Using (3.19)

) Bi1 k1) Bz ko) Blig k) ™
in Lemmas 3.1-3.3, we have for s > 5 + 10g,

lm((§1,71), (§2,72), (€3, 73), (§4, 1))l 4,7 <]

5 <N1>_S<N2>_%+ETHNSOpranO 1 ! T 1
(L£1)%(L2)% (L3)7(La)?
1

(L1)7(L3)2

[4,R™ X R]
1

N <N1>—S<N2>—ST9NSoprano 3R"><R]Hm

[3,R" xR]
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SN TIEEE(NG) T EETY < Nigr o, T (5.7)
Subcase 1-2 If Ly < NgT_Qg and N < T71, then B g@’k‘”ﬁ_ < 1. Using
(J1,k1)P(G2,k2) P (i3,k3)
Lemmas 3.1-3.3 and (5.5), we have for s > & + 10g,
lm((§1,71), (§2,72), (&3, 73), (§45 Ta)) | [4,R7 <]
vy 1
< N —s N. —SNSO ranoNbeT_QbeH
N< 1> < 2> P 2 <£1>%<£2> +b<£3>%< >% [4,R" xE]
y 1 1
< N —s N. —SNSO ranoNbe —2b9H7 Hi
S ()7 () P 2 (L1)2(L3)2 3R xR (L) +0(L,) 5 13 Rn xER)
5 <N1>_S%+E<N> s +6Nb9T_b2eT‘9N;)g€dno ~ Nt_eralorTe (58)
Subcase 1-3 If Ly > NIT7-20 and N, < T~%, then — 6“:4"“‘“ A < T4 Using
2 Bit k1) Bz k) Blig ka)
Lemmas 3.1-3.3, we have for s > § + 10g,
lm((§1,71), (§2,72), (€3, 73), (§45 1))l 4,7 <]
6 1
S (V1) 7 (No) ™2 P55 Nogprano
S (M) () P (£1)2 (L2)2(L3)0(Ly) 2 I[4.R"xR]
= 1 1
5 N1)73(N: _STeNso ranol|| > - 1, - .1 Hi
(V1) (M) P (L1)2 <53>% [3,R™ xR] <£2>%+b<L4>% [3,R™ xR]
(5.9)

S (N TR (N) TR S N

T-% By symmetry, we assume that
N? T—% Thus we have

soprano

. 6
Case 2 Assume Ny ~ soprano and L4 ~ Nsoprdno

N3 ~ N4 ~ Nsoprano Z N2 > N1 It 1mpl1es that L3 or LQ or L1 =

Dliguha) < 1. Similarly to Case 1, we have the results.

5(j11k1)5(j21k2)5(j31k3)
Case 3 Assume Ny < Ngoprano. By symmetry, we assume that N3 ~ Ny ~ Neoprano >

N4 > Ni. Then for s > 5, we have

Nfoprdno N4 <€4>5 -
N, N
<N4> <§1>s<§2>s<€3>s ~ bOpran0< 1>

Similarly to Case 1, we have the results.

This completes the proof of Lemma 5.1.
Lemma 5.2 (Trilinear estimate-1I) Let s > 5. Assume that [§] ~ N, = 2’”, Ly =0 =
|7 — (&) = 271, Let L) = maX{Ll,T_eNle}, = 1 2,3,4. Let Ngoprano 2 1T~ 1, By symmetry

we assume N3 > No > Ny. Then for small enough €,0 > 0,

Bja,ka) / Nsoprano N4<€4> _
B k1) Bz k) Bia ks Ny) )5 (E2)5(&3)5 0
_ f1(T1751)f2(727§2)f3(73,§3)f (T4,§4)d5
(L1)%(L2)* (La)* (La)

4
< O<Ntcnor>_sT9 H ||fl||L2

=1

(S

(5.10)
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Remark 5.3 In this lemma, we use (5.10) to prove the following trilinear estimates

Hulﬂg(7 : VU3)HN57§(T> < CTGHU1|

Fs(T)||U2| FS(T)HU3HF57§(T)' (5.11)

Proof Similarly to the proof of Lemma 5.1, we have the results.

6 Trilinear Estimates

gl this section, we give the proof of Theorem 4.1. For the nonlinear terms |u|?(% - Vu) +
u?( X - V), by symmetry, we only consider (|u|2(7 - Vu)), and the estimate of (u2( X - Va)) is
similar with that of (Ju|2(7 - Vu)).

Theorem 6.1 Assume k,ki,ko € Zy, k = max{k, ki, ka2, k3} > 100 and uy, € Fy;, j =
1,2,3. Then for s > 5 and small enough €,0 > 0,

25 || up, Wy - Vg, ||, < C2 Frenorsgbrtbatha)s bl 1o g, || 5y, sl £, (6.1)
2550 ||, Ty 7 - Vg, || v, < €2 Feenoreafukagatha)s by 1 g g, || 7y, N1y | 1,
+ 02_1“%0162(k1+k3)52ﬂnk2T0”ukl HFkl Huk2 ||Fk2 ||uk3 ||Fk3
+ CQ_ktcnors2<k1+k2)s2ﬁnk3T€||u7€1 HFkl Hukz ||Fk2 ||Uk3 ||Fk3 ) (62)
2570, 5 T - Vg, | v, < 02_’“9“0"52<k1+k2)82k3(8_0)T9H“lﬁHFkl [k |, ks | 7y (6-3)
where the constant C is independent of |uo| ms; Bn > § + 1, here the Cauchy problem (1.1) is
locally well-posed in HP» with (3, > 5 + 1 for any large initial data.

Remark 6.1 In this lemma, we use (6.1) to prove the following trilinear estimates

st (7 - Vug) || () < CT||us |

Fo(1) [u2l|pe (1) | usl|ps (1) (6.4)

we use (6.2) to prove the following trilinear estimates

ur@2 (7 - Vus)|nea (1) < CT us||pon (2 uallwe oy lluslles ()
+ CT0||U1||FS(T)HU2HF¢% ) llusllps ()

+OT? ||

Fe (1) |w2lles (1) |usllpen () (6.5)

Proof We only prove (6.1). The proofs of (6.2) and (6.3) are similar with that of (6.1).
From the definition of Ny, it follows that

2, Wy 7 - V|| 3, = 2° sup (7 — ¢(&) +iT~72°%) 7"

tr€
- F(up, Ty 7 - Vg - n0(T72% (t — i) x, - (6.6)
Using the definitions and (2.13), we have
(6.6) < 272% sup ||(r — ¢(€) +iT~2%) " 11, (€) - o (T~02%% (¢ — 1)
trER

Flugy - o (T~ 02 sommane (8 — 3, )] 5 Fltiy - 1o(T 7020 mmme (£ — ty,))]
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# Flugy - no(T 0200w (t — t,))]||x,,

S 292 sup ||(7 = ¢(€) +1T"2%) 1y, (€) - mo(T~92%%(t — 1)
trER

Fluy - mo(T~02%eowmane (1 — 41.))] 5 F(rz) - 10 (T =02 sommone (¢ —13,))]
# Fl(ugy) - 1o(T~02%sommane (1t — 11))]| x,
Let
fo = Fglun, -noT~ 2%t —t, ))), m=1,3,
Fro = F@g - no(T702%%2 (¢ — t4,)))
and

Fimsim = M (7 = E) F(ur, - mo(T=92%m (£ — 1, 1)), m=1,3,
Frago = Mo (T + () F (Wi - o (T2 (t — tr,))).

Using Lemma 4.1 and (2.13), it suffices to prove that if f, ;, : R” x R — R, are supported
in Dy, j,, 29t > T792%1 | =1,2,3, then for s > %,

(66) 5 2k328k Z ﬁ(jak)2%(2j + iT_GQGk)_lnle,j : fkl»jl * fk27j2 * fk37j3||L2

2]‘2*1’*—529%
3
k1+ko+k —Ktenore® L
< 9kithatha)sg—krenore Z H22 Bk |l 12 (6.7)
201 >T—02k 1=1,2,31=1

In fact, using Lemma 5.1, we can obtain the above. Then performing the j summations for
(6.7), we have (6.1). This completes the proof of Theorem 6.1.

Now we turn to the proof of (4.6) in Theorem 4.1. The proofs of (4.7)—(4.9) are similar
with that of (4.6). From the definition of N?, it follows that for s > %,

a2 - V|| = > 2% Pu(w@3 7 - Vus) %, - (6.8)
k=0

For 22%% || Py (u W2 - Vus)||%,, using Theorem 6.1, we have

22%|| Pe(w@ Y - V) |3,

<Y 2% | PPy, (ua) P, (W) P, (us)) | %,
k1,k2,k3>0

S Y s kel B ) P B [P, (69)
k1,ko,k3>0

Then performing the & summations for (6.9), we have for s > 2,

o0

a2 - Vus|lRee = D 2°% | Pr(wnwz - Vus)llR, S Tl lJuzll fusllz. (6.10)
k=0

This completes the proof of (4.6) in Theorem 4.1.
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7 Energy Estimates

In this section, we give the proofs of Theorem 4.2 and Lemma 4.6. For the DNLS equation
(1.1), we have

{ut —iAu=f, (x,t) e R* xR, (7.1)

u(z,0) = up(x),

where f = |ul2(7 - Vu) + 7 - u2Va. We apply the operator Py to the equation (7.1), then
multiply by Piu, integrate and take the real parts to conclude that

92ks Pru(t 22 < 92ks Prug 22 —|—22kS sup |Re P (f) Py (uw)dadt|. 7.2
L2 = L
[t|<T Rx[0,t]

Theorem 7.1 (Coifman-Meyers theorem see [3]) Let 1 < p1,-++ ,pm < 400 and 1 < p <
+o0o satisfy % = pll + p% + -+ ﬁ, Assume that f1, fa, -+, fm € S(R) are functions with
Fourier variables supported in |§;| ~ N; for some dyadic numbers N; with i = 1,2,--- ,m.

Assume also that v(&) = (&1, -+, &m) € C°(R™) satisfies the Marcinkiewicz type condition

B= (B, Bm) €N, |357(§)|§ﬁ|€|_5 (7.3)
on the support of T]." fi(&). Then
| [ e e [ e @ ++eae, --dg < T flon (7.4)
with an tmplicit constant that does not depend on dyadic numbers N;, 1 = 1,2,--- ,m.

Theorem 7.2 Assume s > 5. If u(t) and v(t) are solutions of the Cauchy problem (1.1)
with initial datum uy € H® and vy € H?, respectively (u(t) and v(t) only exist). Then the
difference w = u — v satisfies that

sup lw(®)lle S lwllws(r) < lwollmrs + TP (ullfs + [wlFs + l[ullewlles)[w]e:[lw][e-
te(0,
T°(|lulle- wlle- + [lw]F) (7.5)
Proof First, the difference w = u — v satisfies that
—iAw = (Ju]2(7 - Vw) + (w7 - Vu—wu7 Vw + uw v _Yu—uw7 Vw
—|w|27 Vu+ |w|_2>7 Vw) + u? ()\ VW) + (vw X - Va —ww X VT (7.6)

—i—uw/\ Vi —uw X - Vo —w? X - Vu+w? X - Vo)),
w(z,0) = wo(x).

We apply the operator P to the equation (7.6). By symmetry, we only consider the operator
Py, multiply by Pyw, then integrate and take the real parts, we have

2 Prw(t)z S 2| Prwolis +Re [ PuuP(F - Vw)
R™ % [0,t]

+ (Wu 7 - Vu—wiy - Vw + w7 - Vu —uwy - Vw
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w2 -Vt w2 - V) + u3(X - VD)
+(uw?-VU—qu-V@—i—qu-Vﬂ—qu-VE

WX VT w? X V) (@) dadt. (7.7)

By symmetry, we only consider the three terms

(Ap) : ‘Re /R o Pe(ww(7 - Vw)) Py (E)dxdt‘.

(By): [Re /RMO t] P(m(3 - V) Pe(m)ddi|

(Dy) : [Re / Po(u - Vu) Pe(m) |
R™ x[0,t]

The other cases in (7.7) can be considered similarly to those of Ay, By, D.

We first consider the term (Az) : |Re fR"x[O 7 Pr (ww(7 - Vw)) Py (w)dadt|. Then we have

Re / Py(ww(7 - Vw)) Py (w)dadt
R™ % [0,t]

~ Re / PL(u(7 -V Poyw)) P (@) dadt + Re / P (7 - V Peyw)) Py () dadt
R % [0,t] R % [0,t]

+ Re / Po(u(7 - ¥ Pogw)) Py () dadt
R”™ x[0,¢]

= A} + A7 + A3 (7.8)

For A? and A3, we will use the following Lemma 7.1 to consider them. For A}, we have
A} = Re / Py(uiw(7 - VPoyw)) Py (w)dazdt
R™x[0,t]
= / Py(uiw (7 - VPoyw)) Py (w)dzdt + / Py(uw(7 - VPoy@)) Py (w)dazdt
7 x[0,t] 7 x[0,t]

= Al 4 A2, (7.9)

Next we consider the term (By) : |Re fR"x[O i P (Tw(7 - Vw) Py (w)dxdt|. Then we have

By = Re / Po(@w(3 - V) Py (w)dadt
R™ x[0,t]

= Re / Py(uw(7 - VPoyw)) Py (w)dzdt 4+ Re / Py(uw(7 - VPgpw)) Py (w)dadt
7 x[0,t] " x[0,t]

+ Re / Py(uw(7 - VPspw)) Py (w)dadt
"% [0,t]
:= Bj + B} + B}. (7.10)

For B and B3, we will use the following Lemma 7.1 to consider them. For B}, we have

B} =Re / Py (tw(7 - VPopw)) Py (w)dzdt
R™ % [0,t]
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= / Py(uiw(7 - VPoy@)) Py (w)dadt + / Py(@w(7 - VPoyw)) Py, (w)dzdt
R"™ x[0,t] R™ x[0,t]
.= Bi' + B} (7.11)

Thus Aj + Bj, we have for some k12 < k,
AP+ Bl = | / Po(ui(F - V Pw)) Py () dadt
R % [0,t]
+ / Py (ww(7 - vakw))Pk(w)dxdt}
R”™ x[0,¢]
- ‘ / Pklz(uE)V(|Pkw|2)dxdt‘ (7.12)
nx[0,t]
and
42+ BJ? = | / Po(@w(F - VPoy®)) Py (w)dadt
" x[0,t]
+ / Pi(@w(7 - VPopw)) Py (m)d:z:dt‘
R"™ x[0,1]

- ‘ / Pe,, (Ew)V(|Pkw|2)dxdt‘. (7.13)
nx[0,t]

For A}' 4+ B}! and A}* + B}, we can use the following Lemma 7.1 to consider them.

Lemma 7.1 (Dyadic energy estimates-I) Let s > 4. Assume that |§| ~ Ny = 2k L =
loo| = | —(&)| = 2. Let £; = max{L;, T-°N? 1 1=1,2,3,4. Assume Nooprano = T 4.

soprano

Then for some small €,60 > 0,

1
ﬁ(jl-,kl)ﬁ(jz-,kz)ﬁ(js-,ks)ﬁ(jal,kz;)

./T_gNg)pranoNteﬂor<§4>s fl(Tla51)f2(T2752)f3(73,§3)f4(74a§4)d5

. (@)se)E) (L1)2(L2)2 (L) (La)?
4

S <Nten0r>_€T9 H Hfj”Lz' (7.14)
j=1

Remark 7.1 In this lemma, let

Here @ = w or w or W or @.

Proof By duality and the Plancheral identity, it suffices to show

lm((§1,71), (§2,72), (€3, 73), (§4, Ta)) | [4,R7 <]

Tﬁngoprano Ntenor (64)°
— H DR < (Nvenor) T, (7.15)
TALTSLSUTRTLEST
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Similarly to the proof of Lemma 5.1. Then using Lemmas 3.1-3.3, we have for s > 5 + ¢,

lm((§1, 1), (§2,72), (€35 73)5 (§a, 72)) |4, R7 xR)

s 1
5 <N1> SNtcnorT eNseopranoNteHOT 1 1 1 1
<£ >2 <£2>2 <£ >2<£4>2 [4,R" xR]
1 1
S <N1> SNt;ISer GNfopranoNtCHOY -1 I Hil
(L£1)2(L3)2 "BR xR ()2 (£,)2 II[B,R"xR]
S <N1> o+3 Ntcz:rzT GNseopranoNtCHOYNsoérano ~ <Ntcnor> ET@' (716)
This completes the proof of Lemma 7.1.
For Dy, we can use the following Lemma 7.2 to consider them.
Lemma 7.2 (Dyadic energy estimates-II) Let s > 3. Assume that |§| ~ =2k I, =

lou| = | —¢(&)| = 27", Let £; = max{L;, T eNsoprano} l
Then for some small § > 0,

1
ﬁ (J1, kl)ﬁ (J2; k2)ﬁ(j31k3)ﬁ(j4,k4

1,2,3,4. Assume NSoprano > T,

./T t9]\/vfopr(moNsomano<€> (Tla§l)f2(72752)f3(7'3a§3)f4(7'4a§4) ds
. (&) (€)% (&s)® (L1)2 (L)% (L3)2 (L4)?
4
S <Ntcnor> ETGNtenoeroprdnoH Hfj||L2' (717)

Proof Similarly to the proof of Lemma 7.1, we have the results. This completes the proof
of Lemma 7.2.

Thus using Lemmas 7.1-7.2, we have

> (A} + A%+ B+ B + [A}' + B+ [A}? + B’ + Dy)

k
S TNl [wlz +T°llulleslwlle:|w] g sllullg. s (7.18)
Thus using (7.7) and (7.18), we have
22| Pew(t)l|7s < 2% lwoll7s + T (lullfs + [lwl[F)l[wlle: | w]e:
+T0([[ullp: + l[wle) [ wllgollull g.a- (7.19)

This completes the proof Theorem 7.2.
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