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1 Introduction

In higher dimensional Nevanlinna theory, the second main theorem of holomorphic curves

into complex varieties intersecting subvarieties is a main research content. Recently, there

are many developments in extending the second main theorem for divisors to arbitrary closed

subschemes. To state some of the results, we recall the following notions.

Definition 1.1 Let D1, · · · , Dq be effective (Weil or Cartier) divisors on a complex projec-

tive variety X.

(i) D1, · · · , Dq are said to be in general position if for any subset I ⊂ {1, · · · , q} with

|I| ≤ dimX + 1,

codim
⋂

i∈I

SuppDi ≥ |I|.

(ii) D1, · · · , Dq are said to be in m-subgeneral position if for any subset I ⊂ {1, · · · , q} with

|I| ≤ m+ 1,

dim
⋂

i∈I

SuppDi ≤ m− |I|

(Here we set dim ∅ = −1).

Thus the divisors are in general position if they are in (dimX)-subgeneral position.
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Let L be a line sheaf (invertible sheaf) on the projective variety X , and let D be an effective

Cartier divisor on X . Ru and Vojta [4] introduced the number

γ(L, D) = lim sup
N→∞

Nh0(LN )
∞
∑

α=1
h0(LN (−αD))

,

where N passes over all positive integers such that h0(LN (−D)) 6= 0. In [4], Ru and Vojta

proved the following second main theorem in terms of this number.

Theorem 1.1 (see [4]) Let X be a complex projective variety, and let D1, · · · , Dq be

effective Cartier divisors on X. Assume that D1, · · · , Dq intersect properly, i.e., for any subset

I ⊂ {1, · · · , q} and any x ∈
⋂

i∈I

SuppDi, the sequence (φi)i∈I is a regular sequence in the local

ring OX,x, where φi is the local defining function of Di. (We remark that this assumption

is automatically true if X is smooth and D1, · · · , Dq are in general position on X.) Let D =

D1+ · · ·+Dq and let L be a line sheaf on X with h0(LN ) > 1 for N big enough. Let f : C → X

be an algebraically non-degenerate holomorphic curve. Then, for every ε > 0,

‖ mf (r,D) ≤
(

max
1≤j≤q

γ(L, Dj) + ε
)

Tf,L(r),

where “‖” means the inequality holds for all r outside a set of finite Lebesgue measure.

Ji, Yan and Yu introduced the notion of index of subgeneral position as follows.

Definition 1.2 (see [2]) Let D1, · · · , Dq be effective (Weil or Cartier) divisors on a pro-

jective variety X of dimension n. Let m ≥ n and κ ≤ n be two positive integers. We say

D1, · · · , Dq are in m-subgeneral position with index κ if D1, · · · , Dq are in m-subgeneral posi-

tion and for any subset J ⊂ {1, · · · , q} with |J | ≤ κ,

codim
⋂

j∈J

SuppDj ≥ |J |.

Obviously, the index κ is at least one for any divisors in subgeneral position. Ji-Yan-Yu

extended Ru-Vojta’s result to arbitrary effective divisors in subgeneral position.

Theorem 1.2 (see [2]) Let X be a smooth complex projective variety, and let D1, · · · , Dq

be effective divisors in m-subgeneral position with index κ on X. Let L be a line sheaf on X with

h0(LN ) > 1 for N big enough. Let f : C → X be an algebraically non-degenerate holomorphic

curve. Then, for every ε > 0,

‖ mf (r,D) ≤
(m

κ
max
1≤j≤q

γ(L, Dj) + ε
)

Tf,L(r), (1.1)

where D = D1 + · · ·+Dq.

The general and subgeneral position condition can be extended to the case of subschemes

as follows.

Definition 1.3 Let Y1, · · · , Yq be closed subschemes on a projective variety X of dimension

n. Let m ≥ n be a positive integer. We say Y1, · · · , Yq are in m-subgeneral position if for any

subset I ⊂ {1, · · · , q} with |I| ≤ m+ 1,

dim
⋂

i∈I

SuppYi ≤ m−
∑

i∈I

codimYi.
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If m = n, then Y1, · · · , Yq are called in general position.

When the closed subschemes Y1, · · · , Yq are divisors, this definition is exactly the same with

Definition 1.1.

Definition 1.4 (see [5–6, 10]) Let L be a big line sheaf and let Y be a closed subscheme

on a complete variety X. We define

β(L, Y ) = lim inf
N→∞

∑

α≥1

h0(LN ⊗ I
α
Y )

Nh0(LN )
,

where IY is the ideal sheaf defining Y .

Definition 1.5 (see [6]) Let Y1, · · · , Yq be closed subschemes on a projective variety X.

We say that Y1, · · · , Yq intersect properly on X if for any subset I ⊂ {1, · · · , q} such that
⋂

i∈I

SuppYi 6= ∅, the sequence {φi,1 · · ·φi,ǫi , i ∈ I} is a regular sequence in the local ring OX,x

for x ∈
⋂

i∈I

SuppYi, where, for each 1 ≤ i ≤ q, φi,1 · · ·φi,ǫi are the local functions in OX,x

defining Yi. Therefore, ǫi ≥ codimYi, and
∑

i∈I

ǫi ≤ dimX.

Ru and Wang proved the following result for subvarieties.

Theorem 1.3 (see [6]) Let X be a smooth complex projective variety, and let Y1, · · · , Yq

be closed subschemes intersecting properly. Let L be a big line sheaf on X. Let f : C → X be

an algebraically non-degenerate holomorphic curve. Then, for every ε > 0,

∥

∥

∥

q
∑

i=1

β(L, Yi)mf (r, Yi) ≤ (1 + ε)Tf,L(r). (1.2)

We can also extend the index condition for subgeneral position to the case of closed sub-

schemes.

Definition 1.6 Let Y1, · · · , Yq be closed subschemes on a projective variety X of dimension

n. Let m ≥ n and κ ≤ n be two positive integers. We say Y1, · · · , Yq are in m-subgeneral position

with index κ if Y1, · · · , Yq are in m-subgeneral position and for any subset J ⊂ {1, · · · , q} with

|J | ≤ κ,

codim
⋂

j∈J

SuppYj ≥
∑

j∈J

codimYj .

Remark 1.1 If Y1, · · · , Yq are of locally complete intersection closed subschemes intersect-

ing properly onX , then they are in general position. The converse holds ifX is Cohen-Macaulay

(this is true if X is nonsingular) by [3, Theorem 17.4]. Thus, if X is a smooth projective variety,

then the subschemes Y1, · · · , Yq, which are of locally complete intersection, are in m-subgeneral

position with index κ, if and only if, the subschemes Y1, · · · , Yq are in m-subgeneral position

and for any set J ⊂ {1, · · · , q} with |J | ≤ κ, Yj , j ∈ J intersect properly.

The purpose of this paper is to extend Theorem 1.2 to the case of closed subschemes. Here

is our main result.

Theorem 1.4 (Main Theorem) Let X be a smooth complex projective variety, and let

Y1, · · · , Yq be closed subschemes, which are of locally complete intersection, in m-subgeneral
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position with index κ on X. Let L be a big line sheaf on X. Let f : C → X be an algebraically

non-degenerate holomorphic curve. Then, for every ε > 0,

∥

∥

∥

q
∑

i=1

β(L, Yi)mf (r, Yi) ≤
(m

κ
+ ε

)

Tf,L(r). (1.3)

Remark 1.2 We assume that X is smooth and the closed subschemes Y1, · · · , Yq are of lo-

cally complete intersection in Theorem 1.4, because we use the filtration which is valid for prop-

erly intersecting closed subschemes. If the closed subschemes Y1, · · · , Yq are in m-subgeneral

position and for any set J ⊂ {1, · · · , q} with |J | ≤ κ, Yj , j ∈ J intersect properly, then we

do not need these assumptions. When the closed subschemes intersect proplerly, we can take

m = κ = dimX , thus our main theorem recovers Ru-Wang’s result in [6].

2 Preliminaries on Nevanlinna Theory

In this section, we briefly recall some definitions and facts in Nevanlinna theory.

2.1 Weil functions

We briefly recall the basic definition of Weil functions, one can refer to [7] for more details.

Let Y be a closed subscheme of a projective variety X . One can associate a Weil function

λY : X \ SuppY → R, well-defined up to O(1), which satisfies the following properties: If Y

and Z are two closed subschemes of X , and φ : X ′ → X is a morphism of projective varieties,

(i) λY ∩Z = min{λY , λZ};

(ii) λY+Z = λY + λZ ;

(iii) λY ≤ λZ , if Y ⊂ Z;

(iv) λY (φ(x)) = λφ∗Y (x).

In particular, let D be a Cartier divisor on a complex projective variety X . A Weil function

with respect to D is a function λD : (X \ SuppD) → R such that for all x ∈ X there is an

open neighborhood U of x in X , a nonzero rational function f on X with D|U = (f), and a

continuous function α : U → R such that

λD(x) = − log |f(x)|+ α(x)

for all x ∈ (U \ SuppD). Note that a continuous fiber metric ‖ · ‖ on the line sheaf OX(D)

determines a Weil function for D given by λD(x) = − log ‖s(x)‖ where s is the rational section

of OX(D) such that D = (s).

The Weil functions with respect to divisors satisfy the following properties:

(a) Functoriality: If λ is a Weil function for a Cartier divisor D on X , and if φ : X ′ → X

is a morphism such that φ(X ′) 6⊂ SuppD, then x 7→ λ(φ(x)) is a Weil function for the Cartier

divisor φ∗D on X ′.

(b) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2 on X ,

respectively, then λ1 + λ2 is a Weil function for D1 +D2.

(c) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor on X , then

λ1 = λ2 +O(1).

(d) Boundedness from below: If D is an effective divisor and λ is a Weil function for D,

then λ is bounded from below.
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Let X be a projective variety, and let Y ⊂ X be a closed subscheme.

Lemma 2.1 (see [7, Lemma 2.2]) There exist effective Cartier divisors D1, · · · , Dℓ such

that

Y =
ℓ
⋂

i=1

Di.

By Lemma 2.1, we can assume that Y = D1 ∩ · · · ∩ Dℓ, where D1, · · · , Dℓ are effective

Cartier divisors. This means that IY = ID1 + · · · + IDℓ
, where IY ,ID1 , · · · ,IDℓ

are the

defining ideal sheaves in OX . We set

λY = min{λD1 , · · · , λDℓ
}+O(1). (2.1)

Then we have λY : X \ SuppY → R, which does not depend on the choice of Cartier divisors.

2.2 Characteristic function

Let X be a complex projective variety and f : C → X be a holomorphic map. Let L → X

be an ample line sheaf and ω be its Chern form. We define the characteristic function of f with

respect to L by

Tf,L(r) =

∫ r

1

dt

t

∫

|z|<t

f∗ω.

Since any line sheaf L can be written as L = L1 ⊗ L−1
2 with L1, L2 being both ample, we

define Tf,L(r) = Tf,L1(r) − Tf,L2(r). A divisor D on X defines a line bundle O(D), we denote

by Tf,D(r) = Tf,O(D)(r). If X = Pn(C) and L = OPn(C)(1), then we simply write Tf,OPn(C)(1)(r)

as Tf(r).

The characteristic function satisfies the following properties:

(a) Functoriality: If φ : X → X ′ is a morphism and if L is a line sheaf on X ′, then

Tf,φ∗L(r) = Tφ◦f,L(r) +O(1).

(b) Additivity: If L1 and L2 are line sheaves on X , then

Tf,L1⊗L2(r) = Tf,L1(r) + Tf,L2(r) +O(1).

(c) Positivity. If L is ample and f : C → X is non-constant, then

Tf,L(r) → +∞ as r → +∞.

(d) Base locus: If the image of f is not contained in the base locus of |D|, then Tf,D(r) is

bounded from below.

(e) Globally generated line sheaves: If L is a line sheaf on X , and is generated by its global

sections, then Tf,L(r) is bounded from blow.
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2.3 Proximity functions

Let X be a projective variety and let Y ⊂ X be a closed subscheme. For a holomorphic

curve f : C → X with f(C) 6⊂ Supp Y , the proximity function of f with respect to Y is defined

by

mf(r, Y ) =

∫ 2π

0

λY (f(re
iθ))

dθ

2π
.

The proximity function satisfies the following properties:

(a) Functoriality: If φ : X → X ′ is a morphism and Y ′ is a closed subscheme on X ′ with

φ ◦ f(C) 6⊂ Supp Y ′, then

mf (r, φ
∗Y ′) = mφ◦f (r, Y

′) +O(1).

(b) Additivity: If Y1 and Y2 are two closed subschemes on X , then

mf(r, Y1 + Y2) = mf (r, Y1) +mf (r, Y2) +O(1).

(c) Boundedness from below: If D is an effective divisor, then mf (r,D) is bounded from

below.

2.4 A general form of Cartan’s second main theorem

To prove our main theorem, we need the following general form of Cartan’s second main

theorem given by Ru and Vojta [4].

Theorem 2.1 (see [4, Theorem 2.8] Let X be a complex projective variety, and let L be a

line sheaf on X. Let V be a linear subspace of H0(X,L) with dimV > 1, and let s1, · · · , sq be

nonzero elements of V . For each j = 1, · · · , q, let Dj be the Cartier divisor (sj). Let f : C → X

be an algebraically non-degenerate holomorphic curve. Then, for every ε > 0,

∥

∥

∥

∫ 2π

0

max
K

∑

j∈K

λDj
(f(reiθ))

dθ

2π
≤ (dimV + ε)Tf,L(r), (2.2)

where max
K

is taken over all subsets K of {1, · · · , q} such that the sections {sj}j∈K are linearly

independent.

3 Proof of Main Theorem

Given z ∈ C, we arrange so that

β(L, Y1,z)λY1,z (f(z)) ≥ β(L, Y2,z)λY2,z (f(z)) ≥ · · · ≥ β(L, Yκ,z)λYκ,z
(f(z))

≥ · · · ≥ β(L, Ym,z)λYm,z
(f(z)) ≥ · · · ≥ β(L, Yq,z)λYq,z

(f(z)). (3.1)

Since Y1, · · · , Yq are in m-subgeneral position, we have

q
∑

j=1

β(L, Yj,z)λYj,z
(f(z)) ≤

m
∑

j=1

β(L, Yj,z)λYj,z
(f(z)) +O(1)

≤
m

κ

κ
∑

j=1

β(L, Yj,z)λYj,z
(f(z)) +O(1). (3.2)
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Note that Y1,z , · · · , Yκ,z are located in general position and X is smooth, then we know that

Y1,z, · · · , Yκ,z intersect properly on X . Thus, we can use the filtration constructed in [1, 4, 6].

Now we consider the following filtration of H0(X,LN ) with respect to {Y1,z, · · · , Yκ,z}, where

N > 0 is an integer to be specified.

Denote βi := β(L, Yi).

Let ∆z =
{

az = (ai,z) ∈
κ
∏

i=1

β−1
i,z N

∣

∣

κ
∑

i=1

βi,zai,z = b
}

, where b > 0 is an integer to be specified.

For az ∈ ∆z and x ∈ R≥0, let

N(az , x) =
{

bz = (bi,z) ∈ N
κ |

κ
∑

i=1

ai,zbi,z ≥ x
}

and

I(az , x) =
∑

bz∈N(az,bx)

(⊗κ
i=1I

bi,z
Yi,z

) (3.3)

be an ideal of OX . Set

F(az)x = H0(X,LN ⊗ I(az , x))

and

F (az) =
1

h0(LN )

∫ +∞

0

(dimF(az)x)dx.

Then (F(az)x)x∈R≥0
is a filtration of H0(X,LN ) and for any basis Bz,az

of H0(X,LN ) with

respect to the above filtration (F(az)x)x∈R≥0
, we have

F (az) =
1

h0(LN )

∑

s∈Bz,az

µaz
(s),

where µaz
(s) = sup{µ ∈ R≥0 | s ∈ F(az)µ}.

We note that it suffices to use only the leading terms in (3.3). The union of the sets of

leading terms as x ranges over the interval [0, µaz
(s)] is finite, and each such bz occurs in the

sum (3.3) for a closed set of x. Therefore the supremum in the definition of µaz
(s) is actually

a maximum, i.e.,

µaz
(s) = max{µ ∈ R≥0 | s ∈ F(az)µ}. (3.4)

Then we have

s ∈ F(az)µaz (s)
(3.5)

and

LN ⊗ I(az , µaz
(s)) =

∑

bz∈Kaz,s

(⊗κ
i=1I

bi,z
Yi,z

), (3.6)

where Kaz,s is the set of minimal elements of N(az , µaz
(s)) relative to the product partial

ordering on Nκ. This set is finite. Hence, using the properties of Weil functions, we get

λ(s)(f(z)) ≥ min
bz∈Kaz,s

κ
∑

i=1

bi,zλYi,z
(f(z)) +O(1). (3.7)
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By [6, Proposition 3.8], we know

F (az) ≥ min
1≤j≤q

( b

βjh0(LN )

∞
∑

α=1

h0(LN ⊗ I
α
Yj
)
)

, (3.8)

which implies

∑

s∈Bz,az

µaz
(s) ≥ min

1≤j≤q

b

βj

∞
∑

α=1

h0(LN ⊗ I
α
Yj
). (3.9)

Note that there are only finitely many choice of {Y1,z, · · · , Yκ,z} ⊂ {Y1, · · · , Yq} and az ∈ ∆z ,

the number of basis Bz,az
is finite, write

{Bz,az
| z ∈ C, az ∈ ∆z} = {B1, · · · ,BT1}

and

B1 ∪ · · · ∪ BT1 = {s1, · · · , sT2}.

For each i = 1, · · · , T1, let Ji ⊆ {1, · · · , T2} be the subset such that Bi = {sj : j ∈ Ji}.

Claim 3.1 (Key inequality)

κ
∑

j=1

βj,zλYj,z
(f(z))

≤
b+ n

b
max
1≤i≤q

{ βi
∑

α≥1

h0(LN ⊗ I α
Yi
)

}

· max
1≤i≤T1

∑

j∈Ji

λ(sj)(f(z)) +O(1). (3.10)

For j = 1, · · · , κ, let

tj,z :=
λYj,z

(f(z))
κ
∑

j=1

βj,zλYj,z
(f(z))

, (3.11)

then
κ
∑

j=1

βj,ztj,z = 1. Choose az = (aj,z) ∈ ∆z such that

aj,z ≤ (b+ n)tj,z, j = 1, · · · , κ. (3.12)

Then (3.7), (3.11)–(3.12) and the definition of Kaz,s imply

κ
∑

j=1

βj,zλYj,z
(f(z)) ≤

κ
∑

j=1

βj,zλYj,z
(f(z)) ·

min
bz∈Kaz,s

κ
∑

j=1

aj,zbj,z

µaz
(s)

+O(1)

≤
κ
∑

j=1

βj,zλYj,z
(f(z)) ·

min
bz∈Kaz,s

κ
∑

j=1

(b+ n)tj,zbj,z

µaz
(s)

+O(1)

= (b+ n)

min
bz∈Kaz,s

κ
∑

j=1

bj,zλYj,z
(f(z))

µaz
(s)

+O(1)

≤ (b+ n)
λ(s)(f(z))

µaz
(s)

+O(1).
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Combining the above inequality with (3.9), we have

κ
∑

j=1

βj,zλYj,z
(f(z)) ≤ (b + n) ·

∑

s∈Bz,az

λ(s)(f(z))

∑

s∈Bz,az

µaz
(s)

+O(1)

≤
b+ n

b
max
1≤i≤q

{ βi
∑

α≥1

h0(LN ⊗ I α
Yi
)

}

· max
1≤i≤T1

∑

j∈Ji

λ(sj)(f(z)) +O(1).

Thus the claim is proved.

Combining (3.2) and (3.10), we obtain that

q
∑

j=1

βjλYj
(f(z))

≤
m

κ
·
b+ n

b
max
1≤i≤q

c
{ βi

∑

α≥1

h0(LN ⊗ I α
Yi
)

}

· max
1≤i≤T1

∑

j∈Ji

λ(sj)(f(z)) +O(1). (3.13)

By using Theorem 2.1 with V = H0(X,LN ), we have, for every ε1 > 0,

∥

∥

∥

∫ 2π

0

max
K

∑

j∈K

λ(sj)(f(re
iθ))

dθ

2π
≤ (h0(LN ) + ε1)Tf,LN (r), (3.14)

where max
K

is taken over all subsets K of {1, · · · , T2} such that the sections {sj}j∈K are linearly

independent. From the property of characteristic function, Tf,LN (r) = NTf,L(r).

Choose ε1 > 0, and positive integers N and b such that

b + n

b
max
1≤i≤q

{βiN(h0(LN ) + ε1)
∑

α≥1

h0(LN ⊗ I α
Yi
)

}

< 1 +
κǫ

2m
. (3.15)

Then, it follows from (3.13)–(3.15) that

∥

∥

∥

q
∑

i=1

β(L, Yi)mf (r, Yi) ≤
(m

κ
+ ǫ

)

Tf,L(r).

Thus the main theorem is proved.

4 Schmidt’s Subspace Theorems

In this section, we introduce the counterpart in number theory of our main theorem accord-

ing to Vojta’s dictionary which gives an analogue between Nevanlinna theory and Diophantine

approximation (see [8–9]).

Let k be a number field. Denote by Mk the set of places (i.e., equivalence classes of absolute

values) of k and write M∞
k for the set of archimedean places of k.

Let X be a projective variety defined over k, let L be a line sheaf on X and let Y be a closed

subscheme. For every place v ∈ Mk, we can associate the Weil functions (or local heights) λL,v

and λY,v with respect to v, which have similar properties as the Weil function introduced in

Section 2 (see [7]). Define

hL(x) =
∑

v∈Mk

λL,v(x) for x ∈ X
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and

mS(x, Y ) =
∑

v∈S

λY,v(x) for x ∈ X \ SuppY,

where S is a finite subset of Mk containing M∞
k .

Instead of Theorem 2.1, we shall use the following general form of Schmidt’s subspace

theorem given by Ru and Vojta [4].

Theorem 4.1 (see [4, Theorem 2.7] Let X be a projective variety defined over k, and let L

be a line sheaf on X. Let V be a linear subspace of H0(X,L) with dim V > 1, and let s1, · · · , sq
be nonzero elements of V . For each j = 1, · · · , q, let Dj be the Cartier divisor (sj). Let S be a

finite subset of Mk containing M∞
k , let ε > 0 and c ∈ R. Then there is a proper Zariski-closed

subset Z of X such that

∑

v∈S

max
K

∑

j∈K

λDj ,v(x) ≤ (dimV + ε)hL(x) +O(1)

holds for all x ∈ (X \ Z)(k). Here max
K

is taken over all subsets K of {1, · · · , q} such that the

sections {sj}j∈K are linearly independent.

Now, we state the counterpart of Theorem 1.4, whose proof is similar and is therefore

omitted here.

Theorem 4.2 Let X be a smooth projective variety defined over k, and let Y1, · · · , Yq be

closed subschemes, which are of locally complete intersection, in m-subgeneral position with

index κ on X. Let L be a big line sheaf on X. Let S be a finite subset of Mk containing M∞
k .

Then, for every ε > 0,

q
∑

i=1

β(L, Yi)mS(x, Yi) ≤
(m

κ
+ ε

)

hL(x)

holds for all k-rational points outside a proper Zariski-closed subset of X.
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