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Abstract In this paper, the authors introduce the index of subgeneral position for closed
subschemes and obtain a second main theorems based on this notion. They also give
the corresponding Schmidt’s subspace type theorem via the analogue between Nevanlinna
theory and Diophantine approximation.
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1 Introduction

In higher dimensional Nevanlinna theory, the second main theorem of holomorphic curves
into complex varieties intersecting subvarieties is a main research content. Recently, there
are many developments in extending the second main theorem for divisors to arbitrary closed
subschemes. To state some of the results, we recall the following notions.

Definition 1.1 Let Dy, ---, D, be effective (Weil or Cartier) divisors on a complex projec-
tive variety X .
(i) D1,---,Dy are said to be in general position if for any subset I C {1,---,q} with
7| <dim X +1,
codim ﬂ Supp D; > |I].
il
(i) D1, -+, Dy are said to be in m-subgeneral position if for any subset I C {1,---,q} with

I <m+1,
dimﬂSuppDi <m—|I|
i€l

(Here we set dim@) = —1).

Thus the divisors are in general position if they are in (dim X )-subgeneral position.
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Let £ be a line sheaf (invertible sheaf) on the projective variety X, and let D be an effective
Cartier divisor on X. Ru and Vojta [4] introduced the number
NRO(LN
~v(£, D) = limsup — (£7) ,
Nzee 32 hO(LN (—aD))
a=1

where N passes over all positive integers such that h°(LY(—D)) # 0. In [4], Ru and Vojta
proved the following second main theorem in terms of this number.

Theorem 1.1 (see [4]) Let X be a complex projective variety, and let Dy,---,D, be

effective Cartier divisors on X. Assume that Dy, --- , D, intersect properly, i.e., for any subset
Ic{l,---,q} and any x € () Supp D;, the sequence (¢p;)icr is a reqular sequence in the local
iel

ring Ox x, where ¢; is the local defining function of D;. (We remark that this assumption
is automatically true if X is smooth and D1,--- , Dy are in general position on X.) Let D =
Di+---+ D, and let L be a line sheaf on X with h°(LN) > 1 for N big enough. Let f : C — X

be an algebraically non-degenerate holomorphic curve. Then, for every e > 0,
| ms(r.D) < ( max (L, D) +¢) Ty.e(r),
1<i=<q

({H »”

where means the inequality holds for all r outside a set of finite Lebesque measure.

Ji, Yan and Yu introduced the notion of index of subgeneral position as follows.

Definition 1.2 (see [2]) Let Dy,---, D, be effective (Weil or Cartier) divisors on a pro-
jective variety X of dimension n. Let m > n and k£ < n be two positive integers. We say
Dy, -+, Dg are in m-subgeneral position with index x if Dy,--- , Dy are in m-subgeneral posi-
tion and for any subset J C {1,---,q} with |J| < k,

codim ﬂ Supp D; > |J|.
jedJ

Obviously, the index k is at least one for any divisors in subgeneral position. Ji-Yan-Yu
extended Ru-Vojta’s result to arbitrary effective divisors in subgeneral position.

Theorem 1.2 (see [2]) Let X be a smooth complex projective variety, and let Dy, --- , D,
be effective divisors in m-subgeneral position with index k on X. Let L be a line sheaf on X with
RO(LN) > 1 for N big enough. Let f : C — X be an algebraically non-degenerate holomorphic
curve. Then, for every e > 0,

| ms(r, D) < (2 max 4(£,D;) + ) Tye(r), (1.1)

K 1<j<gq

where D = Dy 4 --- 4+ D,.

The general and subgeneral position condition can be extended to the case of subschemes

as follows.
Definition 1.3 Let Y1, .- ,Y, be closed subschemes on a projective variety X of dimension
n. Let m > n be a positive integer. We say Y1,---,Y, are in m-subgeneral position if for any

subset I C{1,--- ,q} with [I| <m+1,

dim ﬂ SuppY; <m — Zcodiin.
el el
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If m =n, then Y1,--- Y, are called in general position.

When the closed subschemes Y7, - - -, Y, are divisors, this definition is exactly the same with
Definition 1.1.

Definition 1.4 (see [5-6, 10]) Let L be a big line sheaf and let Y be a closed subscheme
on a complete variety X. We define

; hO(LN @ 7)
) = i Ny

where Sy is the ideal sheaf defining Y .

Definition 1.5 (see [6]) Let Yi,---,Y, be closed subschemes on a projective variety X.
We say that Yi,---,Y, intersect properly on X if for any subset I C {1,---,q} such that
() SuppY; # 0, the sequence {¢i1- " Pie;ri € I} is a regular sequence in the local ring Ox x
iel
for x € () SuppYi, where, for each 1 < i < q, ¢i1--ie; are the local functions in Ox x

iel
defining Y;. Therefore, e; > codimY;, and Y €; < dim X.
i€l

Ru and Wang proved the following result for subvarieties.

Theorem 1.3 (see [6]) Let X be a smooth complex projective variety, and let Yi,---,Y,
be closed subschemes intersecting properly. Let L be a big line sheaf on X. Let f : C — X be
an algebraically non-degenerate holomorphic curve. Then, for every e > 0,

q
| Yo voms (i) < (1+ )Tre(r). (1:2)
i=1
We can also extend the index condition for subgeneral position to the case of closed sub-
schemes.
Definition 1.6 Let Y7, .- ,Y, be closed subschemes on a projective variety X of dimension
n. Letm > n and k < n be two positive integers. We say Yy, - , Y, are in m-subgeneral position
with index k if Y1,--- , Yy are in m-subgeneral position and for any subset J C {1,---,q} with
|| < &,
codim ﬂ SuppY; > Z codim Y.
jeJ jed
Remark 1.1 If Y7, - -, Y] are of locally complete intersection closed subschemes intersect-

ing properly on X, then they are in general position. The converse holds if X is Cohen-Macaulay
(this is true if X is nonsingular) by [3, Theorem 17.4]. Thus, if X is a smooth projective variety,
then the subschemes Y7, - - -, Y,, which are of locally complete intersection, are in m-subgeneral
position with index &, if and only if, the subschemes Y7, ---,Y, are in m-subgeneral position
and for any set J C {1,---,q} with |J| < k, Y}, j € J intersect properly.

The purpose of this paper is to extend Theorem 1.2 to the case of closed subschemes. Here
is our main result.

Theorem 1.4 (Main Theorem) Let X be a smooth complex projective variety, and let
Yi,---, Yy be closed subschemes, which are of locally complete intersection, in m-subgeneral
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position with index k on X. Let L be a big line sheaf on X. Let f: C — X be an algebraically
non-degenerate holomorphic curve. Then, for every e > 0,

q
| Yo Yoms(rY) < (2 +¢)Trelr). (1.3)

i=1
Remark 1.2 We assume that X is smooth and the closed subschemes Y7, - - -, Y] are of lo-

cally complete intersection in Theorem 1.4, because we use the filtration which is valid for prop-
erly intersecting closed subschemes. If the closed subschemes Y, ---,Y, are in m-subgeneral
position and for any set J C {1,---,¢} with |J| < &, Yj,j € J intersect properly, then we
do not need these assumptions. When the closed subschemes intersect proplerly, we can take
m = k = dim X, thus our main theorem recovers Ru-Wang’s result in [6].

2 Preliminaries on Nevanlinna Theory

In this section, we briefly recall some definitions and facts in Nevanlinna theory.

2.1 Welil functions

We briefly recall the basic definition of Weil functions, one can refer to [7] for more details.
Let Y be a closed subscheme of a projective variety X. One can associate a Weil function
Ay : X \ SuppY — R, well-defined up to O(1), which satisfies the following properties: If Y’
and Z are two closed subschemes of X, and ¢ : X’ — X is a morphism of projective varieties,

(1) )\YQZ = min{/\y,)\z};

(i) Ay+z = Ay + Az;

(i) Ay <Az, Y C Z;

(iv) Ay (6(x)) = Apry ().

In particular, let D be a Cartier divisor on a complex projective variety X. A Weil function
with respect to D is a function Ap : (X \ Supp D) — R such that for all x € X there is an
open neighborhood U of x in X, a nonzero rational function f on X with D|y = (f), and a
continuous function a : U — R such that

Ap(x) = —log|f ()| + a(x)

for all x € (U \ Supp D). Note that a continuous fiber metric || - || on the line sheaf Ox (D)
determines a Weil function for D given by Ap(x) = — log||s(x)|| where s is the rational section
of Ox (D) such that D = (s).

The Weil functions with respect to divisors satisfy the following properties:

(a) Functoriality: If X\ is a Weil function for a Cartier divisor D on X, and if ¢ : X/ — X
is a morphism such that ¢(X’) ¢ Supp D, then x — A(¢p(x)) is a Weil function for the Cartier
divisor ¢*D on X'.

(b) Additivity: If A\; and X2 are Weil functions for Cartier divisors D; and Dy on X,
respectively, then A\; + Ao is a Weil function for Dy + Ds.

(¢) Uniqueness: If both A\; and A2 are Weil functions for a Cartier divisor on X, then
A=A+ O(1).

(d) Boundedness from below: If D is an effective divisor and A is a Weil function for D,
then A is bounded from below.
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Let X be a projective variety, and let Y C X be a closed subscheme.

Lemma 2.1 (see [7, Lemma 2.2]) There exist effective Cartier divisors Dy,--- , Dy such
that
¢
Y = (D
i=1
By Lemma 2.1, we can assume that ¥ = Dy N --- N Dy, where Dq,---, D, are effective

Cartier divisors. This means that %y = p, +--- + Fp,, where Sy, Ip,,---, Ip, are the
defining ideal sheaves in Ox. We set

Ay :min{)\Dl,--- ,)\Dl}—f—O(l). (21)
Then we have Ay : X \ SuppY — R, which does not depend on the choice of Cartier divisors.

2.2 Characteristic function

Let X be a complex projective variety and f : C — X be a holomorphic map. Let £ — X
be an ample line sheaf and w be its Chern form. We define the characteristic function of f with

Tf"L(T):/l g f*w.

t |z|<t

respect to £ by

Since any line sheaf £ can be written as £ = £1 ® 52_1 with £, Lo being both ample, we
define Ty 2 (r) = Ty, (r) — Ty 2, (). A divisor D on X defines a line bundle O(D), we denote
by Tt.p(r) = Trompy(r). If X =P*(C) and L = Opn(c)(1), then we simply write Tf,opn(@(l)(r)
as Ty(r).

The characteristic function satisfies the following properties:

(a) Functoriality: If ¢ : X — X’ is a morphism and if £ is a line sheaf on X', then
T¢£(r) = Tyoy.c(r) + O(1).
(b) Additivity: If £1 and Ly are line sheaves on X, then
Trerocs(r) = Tre,(r) + Tre,(r) + O(1).
(c) Positivity. If £ is ample and f : C — X is non-constant, then
Tto(r) = +oo asr — +oo.

(d) Base locus: If the image of f is not contained in the base locus of |D|, then T p(r) is
bounded from below.

(e) Globally generated line sheaves: If £ is a line sheaf on X, and is generated by its global
sections, then T £(r) is bounded from blow.
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2.3 Proximity functions

Let X be a projective variety and let Y C X be a closed subscheme. For a holomorphic
curve f: C — X with f(C) ¢ Supp Y, the proximity function of f with respect to Y is defined
by

27
9., dO
mar¥) = [ (7o) 5
0 m

The proximity function satisfies the following properties:

(a) Functoriality: If ¢ : X — X’ is a morphism and Y” is a closed subscheme on X’ with
¢o f(C) ¢ SuppY’, then

me(r,¢*Y') = mgor(r,Y') + O(1).
(b) Additivity: If Y7 and Y3 are two closed subschemes on X, then

mf(r, Y1+ Yz) = mf(r, Yl) + mf(r, Yz) + O(l)

(¢) Boundedness from below: If D is an effective divisor, then m¢(r, D) is bounded from
below.

2.4 A general form of Cartan’s second main theorem

To prove our main theorem, we need the following general form of Cartan’s second main
theorem given by Ru and Vojta [4].

Theorem 2.1 (see [4, Theorem 2.8] Let X be a complex projective variety, and let L be a
line sheaf on X. Let V be a linear subspace of H°(X, L) with dimV > 1, and let s, - - ,8q be
nonzero elements of V.. For each j =1,--- ,q, let D; be the Cartier divisor (s;). Let f : C - X
be an algebraically non-degenerate holomorphic curve. Then, for every e > 0,

2m
N
H / max Y Ap, (f(re'®))5= < (dim V + &) Ty (), (2.2)
0 KK« J 2 ’
JjeK
where max is taken over all subsets K of {1,---,q} such that the sections {s;};ex are linearly

independent.

3 Proof of Main Theorem

Given z € C, we arrange so that

BL Y1), L (f(2)) 2 B(L, Y2.2) Ay, (f(2)) = -+ = B(L, Vi 2) Ay, . (f(2))
Z 2 B(L Yim ) Ay, (f(2)) = - 2 B(L, Yy )y, . (f(2). (3.1)

Since Y7, - .-, Y, are in m-subgeneral position, we have

q

> BLY )Ny, (f(2) <

Jj=1

B(L,Y2)Ay; . (F(2)) +0O(1)

NE

1

> B(L.Y2)y,  (f()) + O1). (3.2)
j=1

<.
Il

IA
% |3
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Note that Yj ., - -, Y, . are located in general position and X is smooth, then we know that
Yi.,--+,Y, . intersect properly on X. Thus, we can use the filtration constructed in [1, 4, 6].
Now we consider the following filtration of H°(X, L") with respect to {Y ., -+, Y, .}, where
N > 0 is an integer to be specified.

Denote 8; := B(L,Y;).

Let A, = {az = (a;.) € H B;. N| Z Bi 2ty = b} where b > 0 is an integer to be specified.

Fora, € A, and z € ]R>0, 1et

N(a,,z) = {bz = (bi») € N*| iai,zbi,z > 33}

i=1

and

I(as,2) = Y. (@A) (3.3)
b.€N (a,,bx)

be an ideal of Ox. Set

Fla,), = H(X, LN @ I(a,,z))
and

1 Foo
F(a,) = m/{) (dim F(a,),)dz.

Then (F(a.)s)eers, is a filtration of H(X, L") and for any basis B. ., of H(X, L") with
respect to the above filtration (F(a.)s)zers,, we have

1
F(a,) = (LY > pa(s),
SEB- a.
where fia, (s) = sup{p € R>o | s € ]:(az)u}'
We note that it suffices to use only the leading terms in (3.3). The union of the sets of
leading terms as x ranges over the interval [0, pa. ()] is finite, and each such b, occurs in the
sum (3.3) for a closed set of x. Therefore the supremum in the definition of pa, (s) is actually

a maximum, i.e.,

o, (5) = max{p € Rz | 5 € Fla,), ). (3.4)
Then we have
5 € F(az) . (s) (3.5)
and
LN O (A pa () = Y (D), (3.6)
b.€Ka, s

where K, s is the set of minimal elements of N(a., p1a,(s)) relative to the product partial
ordering on N*. This set is finite. Hence, using the properties of Weil functions, we get

Ao (f(2)) > min Zbu/\y” )) +O(1). (3.7)

b.€Ka. o £
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By [6, Proposition 3.8], we know

b
> S O .
F(a,) 1I<nglgq(ﬂjh0 ) ;h (L ®fy)) (3.8)
which implies
> — o(cN :
> ta.(s) = min th (LN @ 752). (3.9)

SEB: a,

Note that there are only finitely many choice of {Y7 ,,--- , Y, .} C {Y1,-- ,Y,}anda, € A,,
the number of basis B, is finite, write

{B.a.|2€C,a, € A} ={B1, -+ ,Bn,}
and
BiU---UBp = {51, ,81,}
For each i =1,--- Ty, let J; C {1,---, T} be the subset such that B; = {s; : j € J;}.

Claim 3.1 (Key inequality)

Zﬁj,z)\Yj,z (f(Z))
j=1
b+ n ﬁz
< 2 1r21<q{ SV E ja } . 112%)%1 Z M) (f(2)) +0O(1). (3.10)
a>1
For j=1,--- K, let
bz == % M. (7)) ; (3.11)
Zl BjzAy;. (f(2))
j=

then Z Bj.2tj. = 1. Choose a, = (aj.) € A, such that

Qj,z S (b+n)t3,za .] = 17 kR (312)

Then (3.7), (3.11)—(3.12) and the definition of K, s imply

min Ea
btk , 2 4 b,

D By h, () € D2 By, () - 0(1)

K

min b+ n)t;.b;
SR 50l

< ; BizAy; . (f(2)) - ;az &) +0(1)

min E bj,:Ay;. (f(2))

b.€Ka, s /=1

=(b+n) +0(1)

Ha. (8)
MU, o,

Sbrn= o
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Combining the above inequality with (3.9), we have

> A (f(2)

S Biady, (F(2)) < (b+n) -
j=1

<b+n Bi

- b 11151?3}2{ S RO(LN ® f{})} 1<1<T1 Z Ay (f(2)) + O1).

a>1 JETi

Thus the claim is proved.
Combining (3.2) and (3.10), we obtain that

> By, (f(2)

m b+n Bi
Kb gl%xqc{ > hO(LN @ ) } 1<z<T1 Z M) (£(2)) + O(1).

a>1

< (3.13)

By using Theorem 2.1 with V = H°(X, LV), we have, for every £; > 0,

H / max Y7 A ‘;ﬁ < (RO(LN) + £1)T; o (1), (3.14)

Jjex

where max is taken over all subsets IC of {1,--- ,T»} such that the sections {s;},cx are linearly

independent. From the property of characteristic function, Ty on (1) = NTy £(r).
Choose €1 > 0, and positive integers IV and b such that
b+n {ﬁiN(hO(EN)—FEl)}
max
b 1<i<q Z hO(EN ® f)%)

a>1

Then, it follows from (3.13)—(3.15) that

K€
14+ —. 3.15
<1+ (3.15)

q
m
| > yoms ) < (2 + ) Tye(r).
i=1
Thus the main theorem is proved.

4 Schmidt’s Subspace Theorems

In this section, we introduce the counterpart in number theory of our main theorem accord-
ing to Vojta’s dictionary which gives an analogue between Nevanlinna theory and Diophantine
approximation (see [8-9]).

Let k be a number field. Denote by M}, the set of places (i.e., equivalence classes of absolute
values) of k& and write M° for the set of archimedean places of k.

Let X be a projective variety defined over k, let £ be a line sheaf on X and let Y be a closed
subscheme. For every place v € M}, we can associate the Weil functions (or local heights) Az,
and Ay, with respect to v, which have similar properties as the Weil function introduced in
Section 2 (see [7]). Define

= Z Aew(x) forxe X
vE My
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and
s(x,Y) = Z Ayp(x) for x € X\ Supp?,
veSs
where S is a finite subset of M), containing M*.
Instead of Theorem 2.1, we shall use the following general form of Schmidt’s subspace
theorem given by Ru and Vojta [4].

Theorem 4.1 (see [4, Theorem 2.7] Let X be a projective variety defined over k, and let £
be a line sheaf on X. Let V be a linear subspace of H(X, L) with dimV > 1, and let s1,--- , s,
be nonzero elements of V.. For each j =1,--- ,q, let D; be the Cartier divisor (s;). Let S be a
finite subset of My, containing M°, let € > 0 and c € R. Then there is a proper Zariski-closed
subset Z of X such that

> max > Ap, (%) < (dimV +&)he(x) + O(1)

vES JjEK
holds for all x € (X \ Z)(k). Here max is taken over all subsets K of {1,---,q} such that the

sections {s;j}jex are linearly independent.

Now, we state the counterpart of Theorem 1.4, whose proof is similar and is therefore
omitted here.

Theorem 4.2 Let X be a smooth projective variety defined over k, and let Yi,---,Y, be
closed subschemes, which are of locally complete intersection, in m-subgeneral position with
index k on X. Let L be a big line sheaf on X. Let S be a finite subset of My, containing M.
Then, for every e > 0,

q
m
Z B(‘Cv }/i)mS(Xa }/z) < (; + E) h/;(X)
i=1
holds for all k-rational points outside a proper Zariski-closed subset of X.
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