
Chin. Ann. Math. Ser. B

43(6), 2022, 1033–1048
DOI: 10.1007/s11401-022-0376-8

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2022

Recent Progress in Applications of the Conditional

Nonlinear Optimal Perturbation Approach to

Atmosphere-Ocean Sciences∗

Mu MU1 Kun ZHANG2 Qiang WANG3

Abstract The conditional nonlinear optimal perturbation (CNOP for short) approach
is a powerful tool for predictability and targeted observation studies in atmosphere-ocean
sciences. By fully considering nonlinearity under appropriate physical constraints, the
CNOP approach can reveal the optimal perturbations of initial conditions, boundary con-
ditions, model parameters, and model tendencies that cause the largest simulation or
prediction uncertainties. This paper reviews the progress of applying the CNOP approach
to atmosphere-ocean sciences during the past five years. Following an introduction of
the CNOP approach, the algorithm developments for solving the CNOP are discussed.
Then, recent CNOP applications, including predictability studies of some high-impact
ocean-atmospheric environmental events, ensemble forecast, parameter sensitivity analy-
sis, uncertainty estimation caused by errors of model tendency or boundary condition, are
reviewed. Finally, a summary and discussion on future applications and challenges of the
CNOP approach are presented.
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1 Introduction

Spatial-temporal evolutions of atmospheric and oceanic motions are governed by a group

of nonlinear partial differential equations. These nonlinear equations are established on the

Navier-Stokes equations in the frame of Geophysical Fluid Dynamics (see [1–2]). Regarding

specific issues, various equations are obtained via scale analysis and other simplification, such

as quasi-geostrophic approximation, β-plane approximation, etc. Numerical models are exe-
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cutable codes obtained by discretizing the above analytical equations, which can quantitatively

simulate the states, motions, and dynamical processes of the focused phenomena. Since the

first atmospheric model in the early 1950s (see [3]) and the first oceanic model in the late 1960s

(see [4]), numerical models have been widely utilized and currently play a critical role in the

atmospheric-oceanic sciences (see [5]). On one hand, meteorological and oceanic forecasts now

greatly rely on numerical modeling. On the other hand, model data, as complementary to

observational data, have comprehensively deepened the understanding of the motions in the

atmospheric and oceanic fluids.

In general, to perform simulations or predictions with numerical models, initial and bound-

ary conditions are necessary, as well as appropriate values of model parameters that correspond

to parameterizations of various physical processes (e.g., bottom drag, vertical mixing). However,

true states of initial and boundary conditions can never be acquired due to inadequate obser-

vations and measurement errors. Besides, inaccuracies also commonly exist in model parame-

ters. Owing to uncertainties of initial conditions, boundary conditions and model parameters,

numerical simulations or predictions inevitably exist uncertainties (see [6–7]). Predictability

study aims to reveal the sources causing the uncertainties of model results, uncover the related

mechanisms, and further seek potential ways to reduce these uncertainties (see [8–9]). It is a

fundamental issue in atmosphere-ocean sciences. With more and more concerns on predict-

ing weather, ocean and climate, atmospheric and oceanic predictability studies have achieved

significant progress during the past several decades (see [10–12]).

Since the first investigation in atmospheric predictability conducted by Thompson [13],

several methods, like the ensemble approach (see [14]), predictive power (see [15]), and singular

vector (SV for short) (see [16]), have been utilized in atmospheric and oceanic predictability

studies. Among them, the SVs that represent the optimal perturbations showing the largest

transient growth in linear frameworks have been widely used (see [17]). For instance, the

impacts of initial perturbations on atmospheric motions were examined with the SV method by

Lorenz [18] and Farrell [19]. By combining the SV with oceanic general circulation models, [20]

and [21] explored the predictabilities of the Kuroshio large meander formation and the Atlantic

meridional overturning circulation, respectively. Notably, the SV approach is only applicable to

the systems that linear approximation holds. Since most atmospheric and oceanic models are

nonlinear ones, to apply the SV approach, the perturbations need to be small enough and the

corresponding tangent linear model should be capable of simulating the temporal evolutions

of the perturbations. It is clear that these conditions limit the ability of the SV approach to

investigate nonlinear physical processes, especially when nonlinearity has remarkable effects on

simulating or forecasting ocean-atmospheric motions (see [22–23]).

Regarding this, Mu et al. [24] proposed an innovative approach to investigate the optimal

initial perturbation that causes the largest perturbation growth at a future time under a given

physical constraint. This approach fully considers nonlinearity without any linear approxima-

tion and is named the conditional nonlinear optimal perturbation (CNOP for short). Seven
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years later, when investigating the transition from laminar to turbulent states in fluid mechan-

ics, an optimal initial perturbation method that is the same as the CNOP presented in [24] is

reported (see [25–26]). According to its physical meaning, the CNOP can not only help to iden-

tify the optimal precursor (OPR for short) of an anomalous atmospheric or oceanic event and

uncover the triggering mechanism, but also reveal the optimally growing initial error (OGIE for

short) related to the forecast of the concerned event. Moreover, the spatial distribution of the

CNOP can be used to determine sensitive areas for targeted observation (see [27–28]). The C-

NOP was first proposed to deal with initial perturbations (denoted as CNOP-I hereinafter) (see

[24]). During the past decade, to consider the other aspects causing prediction uncertainties, we

have extended the CNOP approach to deal with perturbations of model parameters (CNOP-P)

(see [29]), model tendency or forcing (nonlinear forcing singular vector, i.e., NFSV, also named

CNOP-F) (see [30]) and boundary conditions (CNOP-B) (see [31]). A detailed mathematical

description of the extended CNOP approach is presented in Section 2.

To date, the CNOP approach has been widely applied to explore the predictabilities of

high-impact ocean-atmospheric environmental events. In detail, the CNOP-I approach has

been used to address the predictabilities of the thermohaline circulation in the ocean (see

[32–33]), the El Niño Southern Oscillation (ENSO for short) (see [34–38]), the double-gyre

ocean circulation (see [39]), blocking (see [40–41]), tropical cyclone (see [42]), variations of the

Kuroshio (see [22, 43–44]), etc. Simultaneously, the CNOP-I has been utilized in determining

sensitive areas of targeted observations (see [45–47]) and generating initial perturbations for

ensemble prediction (see [48–50]). Moreover, the extended CNOP approaches are attracting

more and more attention. For instance, the CNOP-P was successfully employed to examine

parameter sensitivities in both land models (see [51–53]) and ocean ecosystem models (see

[54]). The CNOP-F was employed to identify the most disturbing tendency error for El Niño

predictions in the Zebiak–Cane (ZC for short) model (see [55]).

The CNOP applications before 2016 have been reviewed in several papers (see [12, 56]). This

paper primarily reviews the CNOP-related works during the past five years, which is arranged

as follows: Section 2 presents a description of the CNOP approach. Section 3 addresses the

algorithm developments for solving CNOP. Section 4 highlights the progress of applying the

CNOP in atmosphere-ocean sciences, including the recent applications of CNOP-I, CNOP-P,

CNOP-F and CNOP-B, respectively. Finally, a summary and discussion are given in Section 5.

2 Theoretical Frameworks of the CNOP Approach

Following [57], this section will describe the CNOP approach in a uniform form, including

CNOP-I, CNOP-P, CNOP-F and CNOP-B. A numerical model can be written as follows:





∂U(x, t)

∂t
= F (U(x, t),P(t)),

U(x, t)|t=0 = U0(x),

B(U(x, t))|Γ = G(x, t),

(2.1)
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where U(x, t) is the state vector in the model with U0(x) representing the initial condition,

and t is the time with t = 0 representing the initial time. x ∈ Ω is the spatial variable, where

Ω denotes the model domain. F is the nonlinear partial differential operator and P(t) is the

parameter vector. B is the boundary condition operator with Γ denoting the boundary of Ω

and G(x, t) is the time-varying boundary condition.

Supposing u0(x), g(x, t), p(t) and f(x, t) are the perturbations of initial conditions, bound-

ary conditions, model parameters and model tendencies, respectively, (2.1) then is changed

as:




∂(U(x, t) + u(x, t))

∂t
= F (U(x, t) + u(x, t),P(t) + p(t)) + f(x, t),

(U(x, t) + u(x, t))|t=0 = U0(x) + u0(x),

B(U(x, t) + u(x, t))|Γ = G(x, t) + g(x, t),

(2.2)

where u(x, t) denotes the state vector change caused by the perturbations. To estimate the

maximal impact of the perturbations, a constrained optimization problem is established:

J(u0δ(x),pε(t), fγ(x, t),gσ(x, t)) = max J(u(x, τ)), (2.3)

where J is the cost function that evaluates the evolution of u(x) at a forecast time τ . Various

perturbations are limited by the constraint conditions of u0(x) ∈ Cδ,p(t) ∈ Cε, f(x, t) ∈ Cγ

and g(x, t) ∈ Cσ, where Cδ, Cε, Cε and Cγ are determined by physical considerations.

The solution of (2.3), referring to the optimal combination mode of u0δ(x),pε(t),fγ(x, t)

and gσ(x, t) is called the CNOP. If only the initial condition perturbation is considered, the

solution of (2.3) is CNOP-I. Similarly, we can also obtain CNOP-P, CNOP-F or CNOP-B by

only considering the perturbations of model parameters, model tendency or boundary condition,

respectively.

3 Recent Algorithm Developments for Solving CNOPs

Determining the increasing direction of the cost function is one critical step to solve the opti-

mization problem in (2.3). One common way to obtain this direction is through the gradient of

the cost function to variables by integrating adjoint models (see [39, 47]). However, the adjoint

models of many models have not been implemented yet. Under such circumstances, adjoint-free

methods, including the gradient definition-based method (see [58]), ensemble methods (see [59–

60]), and intelligent optimization methods (see [61–62]), were developed to calculate CNOPs.

In earlier times, the adjoint-free methods were primarily utilized in simple models with

small optimization dimensions, which are usually less than O(103). One main reason is that

the adjoint-free methodology requires a great number of nonlinear model integrations. When

the optimization dimension becomes large, the repeated nonlinear model integrations limit the

calculation efficiencies of these methods. To solve this, a methodology combining dimension-

reduction techniques with adjoint-free methods has been proposed.
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[63] first combined the dimension-reduction approach of singular vector decomposition (SVD

for short) and the ensemble technique to compute the CNOP in the ZC model. Subsequent-

ly, the CNOPs for double-gyre regime transitions modeled by the Regional Ocean Modeling

System (ROMS for short) were obtained via the principal component analysis (PCA for short)

dimension-reduction and the intelligent optimization method of simulated annealing (see [64]).

The CNOPs for typhoons simulated by the Fifth-Generation Mesoscale Model (MM5 for short)

model and ENSO Events simulated by an intermediate coupled model (ICM for short) were

successfully calculated by combining dimension reduction of the PCA-based or SVD-based with

gradient definition approaches (see [65–66]). It is worth mentioning that the optimal solutions

obtained in these studies were acceptable and similar to those obtained by the adjoint methods.

Table 1 Summary of the algorithms for solving CNOPs that combine dimension-reduction techniques

with the adjoint-free optimization methods.

Model
Optimization Optimization Optimization dimension

Reference
algorithm dimension after post-treatment)

ZC model
SVD− basedensemble
projectionalgorithm

1080 10-100 [63]

ICM model
SVD− basedgradient
definitionalgorithm

8174 48 [66]

ROMS
PCA− basedsimulated
annealingalgorithm

54667 70 [64]

MM5
PCA− basedgradient
definitionalgorithm

202675 60 [65]

CAM4
REOF− basedparticle
swarmalgorithm

64800 20 [67]

GFDL
CM2p1

PCA− basedparticle
swarmalgorithm

289800 330 [68]

One encouraging benefit of using the dimension-reduction technique in adjoint-free opti-

mization approaches is the improved capability to calculate CNOPs with higher optimization

dimensions. As listed in Table 1, with the help of the dimension-reduction technique, the

optimized dimensions have improved from 1080 in the ZC model to 54667 in the ROMS. Re-

cently, using the rotated empirical orthogonal function (REOF for short)-based particle swarm

optimization algorithm, the CNOP-B is calculated in the atmosphere model of Community At-

mosphere Model, version 4 (CAM4 for short) to identify the optimally growing boundary errors

(OGBE for short) in the extended-range prediction of strong and long-lasting Ural blocking

(UB for short) events (see [67]). In this study, the optimization dimension is reduced from

64800 to 20. Besides, the optimal precursor of El Niño was investigated in the coupled model

of GFDL CM2p1 (see [68]), of which the optimization dimension was reduced from 289800 to

330. With increased computing power and more efficient adjoint-free optimization methods,

the dimension-reduction technique will be a promising way to solve the CNOP computation in

operational models without adjoint components.



1038 M. Mu, K. Zhang and Q. Wang

4 Recent Progresses in Applications of the CNOP Approach

4.1 Progress in applications of CNOP-I

The CNOP-I represents the most unstable nonlinear non-normal mode in initial conditions.

Recent applications of the CNOP-I focus on estimating the largest prediction uncertainties

caused by OGIEs, and further improving prediction skills by determining sensitive areas for

targeted observations.

Figure 1 Sensitive areas determined by the CNOP-Is in targeted observations for predicting

the seasonal transport reduction of the upstream Kuroshio (SR1), the Kuroshio intrusion

into the South China Sea (SR2), the formation of the Kuroshio large meander (SR3), and

the decadal state transition of the Kuroshio Extension (SR4). The shaded color and vectors

represent mean absolute dynamic topography (unit: meters) and geostrophic flow derived

from AVISO. The figure is from [73]. However, as OSSEs treat model outputs as pseudo’ ob-

servations, no realistic in-field observations were conducted. To realistically test the impacts

of the CNOP-I based targeted observations, observing system experiments (OSEs for short),

which assimilate real observations in sensitive areas, are thereby needed.

In the ocean, our group has employed the CNOP-I approach to investigate the predictabil-

ities and improve the corresponding predictions of some phenomena in the Kuroshio current,

including the seasonal transport reduction of the upstream Kuroshio (see [69]), the Kuroshio

intrusion into the South China Sea (see [70]), the formation of the Kuroshio large meander (see

[71]), and the decadal state transition of the Kuroshio Extension (see [23]). Using both simple

and operational models, the impacts of initial errors on predicting these phenomena were first

studied. Then, as depicted in Figure 1, the sensitive areas were identified in targeted observa-
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tion studies for predicting these anomalous events. Observing system simulation experiments

(OSSEs for short), which use model outputs as the synthetic or pseudo’ observations, were

conducted to validate the sensitive areas determined by the CNOP-Is. The results of OSSEs

indicate that reducing or eliminating initial errors in these sensitive areas can lead to prominent

prediction improvements of 22.0% to 51.0%. In fact, we care about not only the Kuroshio but

also other strong currents. For instance, the OPR triggering dramatic transport fluctuations of

the Antarctic circumpolar current transport is investigated in 2021 (see [72]).

Regarding this, [74] determined the sensitive area for improving the thermal structure pre-

dictions in the Yellow Sea. As shown in Figure 2(a), the sensitive area is located to the northwest

of the verification area, and three time-varying Z-type stations were designed in this region (Fig-

ure 2(b)). At the same time, for comparison, three mirrored observation networks were built

in the verification area. The effectiveness of the CNOP-identified sensitive area was validated

through a field campaign in the summer of 2019. As shown in Figure 2(c)–(g), at the predic-

tion time, assimilating in-field observational data in the sensitive area always exhibit the best

performance. This study first highlights the feasibility and effectiveness of the field-deployed

targeted observation guided by the CNOP-I to decrease forecast uncertainty of oceanic motions.

Figure 2 (a) Sensitive area (blue color) and Verification area (dotted region); (b) targeted

observation stations (triangles) with mirror stations inside the verification region (circles);

(c)–(g) RMSEs of temperature profiles at the prediction time (day 7), where W1–W5 refers

five buoys in the verification area. Red lines are the results from the experiment without data

assimilation, whereas the purple and green lines are the results of assimilating observations

in the verification area and the sensitive area, respectively. The figure is reproduced from

[74].

In the atmosphere, the CNOP-I approach has long been used in predictability and targeted

observation studies of ENSO, typhoon, north Atlantic oscillation, etc. During the past five years,

on one hand, continuous efforts have been paid in these fields and a series of achievements have
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Figure 3 (a) CNOP-Is for triggering primary MJO events, adapted from [78]; (b) the simu-

lated SWV, with color shading and vectors representing potential vorticity and wind fields

(unit: ms
−1) at 700 hPa; (c) the sensitive areas determined by CNOP-I. Note Figures (b)

and (c) are reproduced from [79].

been obtained. For instance, the CNOP-Is are further used to explore the optimal precursors

and initial errors of El Niño events in operational coupled models (see [68, 75]). Simultaneously,

targeted observations and ensemble forecasts of ENSO also make remarkable progress (see [76–

77]).

On the other hand, researchers seek to apply the CNOP-I to deal with new scientific prob-

lems. For example, the optimal perturbations of moisture that trigger primary Madden-Julian

Oscillation (MJO for short) events were first explored (see [78]). Compared to the eastern

Indian Ocean, the CNOP-Is show stronger signals in the western one (see Figure 3(a)), which

can trigger the MJO with a lead time of more than 15 days. Moreover, as southwest vortices

(SWVs for short) in China could cause heavy rainfall and even floods, [79] used the CNOP-I to

identify sensitive areas for a typical non-moving SWV (see Figure 3(b)). Figure 3(c) indicates

that three sensitive areas were determined, with two located on the Eastern Tibetan Plateau

and the third in the Eastern Sichuan Basin near the SWV center. Further adding observations

in the sensitive areas can benefit the forecasts of SWVs.

4.2 Progress in applications of CNOP-P

In addition to uncertainties of initial conditions, model errors also severely affect the inaccu-

racies of numerical prediction. One primary source of model errors arises from the uncertainties

of model parameters. In models, some parameters cannot be determined by observations, such
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as the parameters related to the stability of numerical schemes. However, some other param-

eters can be better determined by direct or indirect observations. In most numerical models,

the number of such parameters is quite large. The CNOP-P approach is a powerful tool to

estimate the sensitivity or importance of different parameters, which further guides on how to

effectively improve forecast skills via observations of critical parameters. So far, the CNOP-P

approach has been employed to analyze the parameter sensitivities in land models (see [80–81])

and an oceanic ecosystem model (see [54]). Since conducting additional observation for sensitive

parameters is more possible to improve forecast skills, targeted observation studies of model

parameters are also investigated by using the CNOP-P approach (see [82]).

Besides, new possible applications of the CNOP-P approach are being explored. By using a

convection-allowing ensemble prediction system (CAEPS for short), the CNOP-P approach is

innovatively used in ensemble prediction of strong convective events in South China (see [83]).

In their study, to design a more reasonable formulation of model uncertainty, the most sensitive

parameters that result in the largest prediction errors were first detected. Subsequently, a new

formulation of model uncertainty was built by superimposing random perturbations on these

sensitive parameters. Compared to the well-utilized Stochastic Perturbed Parameterization

Tendencies (SPPT for short) scheme, the CNOP-P based method can potentially improve

the under-dispersive problem of current CAEPSs, which brings larger spreads of humidity

and temperature over the troposphere (Figure 4). As a result, the CNOP-P based method

tends to cause better forecasting skills of 2-m temperature, 2-m specific humidity and hourly

precipitation.

Figure 4 Vertical profiles of ensemble spread for the 24-h forecasts of 13 cases: (a) Temper-

ature and (b) specific humidity. EXP1 and EXP2 refer to the ensemble forecasts using the

SPPT scheme and the CNOP-P approach, respectively. The figure is reproduced from [83].
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4.3 Progress in applications of CNOP-F

The CNOP-F seeks the optimal tendency perturbation that describes the largest combined

effect of model errors (see [30]). This approach was used to investigate the prediction of El Niño

and its “spring predictability barrier” (see [55, 84]). Lately, a new application of CNOP-F was

proposed to reduce model errors and further improve forecasts of El Niño (see [85–86]). To date,

most models cannot well simulate the occurrence and evolution of the CP-El Niño. Following

this direction, an ENSO forecast system named NFSV-ICM by combining an intermediate-

complexity ENSO model with the NFSV-based perturbation forecast model was established

(see [86]). When this system was employed to forecast the El Niño after the mid-1970s, it well

captures the distribution of sea surface temperature anomalies of the two types of El Niño (EP-

and CP- Niño) events during their mature phases, although the original ICM hardly predicts

the CP- Niño events. This reveals the potential application of the NFSV to data assimilation

for climate prediction.

4.4 Progress in applications of CNOP-B

Uncertainties in boundary conditions also inevitably have impacts on the accuracy of nu-

merical simulation and prediction. Exploring the uncertainties caused by boundary conditions

is very important. So far, there are few predictability studies related to boundary conditions

compared to predictability studies of initial conditions and model parameters. One reason is

the lack of feasible methods. The CNOP-B is one useful method that can be used to conduct

such studies.

By using a one-dimensional with the optimization dimension less than O(103), the CNOP-

B is first used to access the effects of boundary condition uncertainties on modeling the deep

chlorophyll maximum (see [31]). Subsequently, the CNOP-B was used in a complex atmosphere

model. In detail, using the CAM4 model, the CNOP-B method is utilized to investigate the

impacts of Arctic sea ice concentration on extended-range prediction of strong and long-lasting

UB events in winter (see [67]). The UB events are usually followed by amplification of the

Siberian High (see [87]) and subsequent outbreaks of cold air in East Asia during the winter

(see [88]). The UB frequency has shown an increasing trend in recent decades, which may be

affected by sea ice changes in the Arctic (see [89]). Boundary conditions like Arctic sea ice may

play an important role in the UB formation. The Arctic sea ice concentration (SIC for short)

is crucial for extended-range prediction of strong and long-lasting UB formation.

By applying the REOF-based particle swarm optimization algorithm, the conditional non-

linear optimal perturbation is calculated to identify the OGBE in the extended-range prediction

of strong and long-lasting UB formation. It is noted that SIC perturbations in the Greenland

Sea (GS for short), Barents Sea (BS for short) and Okhotsk Sea (OKS for short) are important

for strong and long-lasting UB formation prediction in four pentads. Moreover, the SIC per-
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Figure 5 (a)–(b) OGBEs in two cases and (c)–(d) corresponding evolutions of UB index

changes caused by the OGBEs. The figure is reproduced from [67].

turbations are mainly positive, which causes the UB events to be weakened (see Figure 5). The

local characteristics of the SIC perturbations indicate that the GS, BS and OKS may be sen-

sitive areas regarding the extended-range prediction of strong and long-lasting UB formation,

which can provide scientific support for the SIC target observations in the future.

5 Summary and Discussion

Mathematically, the CNOP is the solution to a nonlinear optimization problem with an

appropriate physical constraint. In essence, The CNOP-type perturbation refers to the most

unstable non-normal mode, which causes the largest simulation or prediction uncertainties

within a finite period and an appropriate constraint. Compared to linear approaches, the

CNOP approach can well reveal the impacts of nonlinear processes, which cannot be ignored in

high-impact ocean-atmospheric environmental events. The CNOP approach was first proposed

to deal with uncertainties caused by initial perturbations (CNOP-I) and now has been extended

to investigate the impacts of perturbations of model parameters (CNOP-P), model tendencies

(CNOP-F) and boundary conditions (CNOP-B).

In this paper, the full theoretical framework of the CNOP approach is described. Subse-

quently, recent applications of the CNOP approach to motions of atmosphere and ocean fluids

during the past five years are reviewed. Regarding the CNOP calculation, the algorithms com-
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bining dimension-reduction techniques with adjoint-free optimization techniques are becoming

more and more popular. By reducing optimization dimensions, this methodology allows solving

the CNOP in those complex models without adjoint models.

Regarding the CNOP applications, on one hand, the CNOP-I and the CNOP-P have been

continuously employed to explore the effects of uncertainties in initial conditions and model pa-

rameters. Moreover, the CNOP-based targeted observation studies for both initial and model

errors are attracting increasing attention. Notably, field-deployed targeted observations guided

by the CNOP have been carried out, which show remarkable superiority compared to conven-

tional observations. On the other hand, the CNOP approach is innovatively used in new fields,

such as the pioneering use of the CNOP-P for ensemble forecasts and the CNOP-F for improving

climate prediction. Besides, the CNOP-B approach, which is relatively new, is first employed

in an operational atmospheric model to reveal the impacts of Arctic sea ice concentration on

forecasting UB events.

So far, although the CNOP approach has been widely applied in atmosphere-ocean sciences

and achieved significant progress, there are still a few challenges regarding its future use. For

example, the model-dependency problem, which cares about the consistency of the CNOPs

obtained in different models. Furthermore, the CNOP-based targeted observations for reducing

model errors and improving forecasts of climatological mean states also require attention. These

challenges have been thoughtfully discussed in Zhang et al. (2020). In addition, with increasing

computing power, the implementation of parallel algorithms is in urgent need to save the time

cost of calculating the CNOP, which is particularly useful for targeted observations of short-

range forecasts. To overcome these difficulties, collaborative efforts from researchers in model

development, high-performance computing, numerical forecast, data assimilation and other

related fields, are required.
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