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Abstract In this paper, the authors propose a novel smoothing descent type algorithm
with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,
where the nonconvex term is possibly nonsmooth. Their algorithm adopts the proximal
gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed
objective function for better practical and theoretical performance. Moreover, the algo-
rithm uses a easily checking rule to update the smoothing parameter to ensure that any
accumulation point of the generated sequence is an (affine-scaled) Clarke stationary point
of the original nonsmooth and nonconvex problem. Their experimental results indicate the
effectiveness of the proposed algorithm.
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1 Introduction

Nonconvex and nonsmooth composite problems have been receiving much attention in mod-

ern science and technology, such as signal processing (see [9, 17, 51]), image restoration (see [19,

32, 34, 49]) and image reconstruction (see [2, 15, 33, 39–40]). This is mainly because of their

superior ability to produce sparser solutions and recover images with neater edges (see [11, 22,

32–34, 49]). In particular, compared to unconstrained nonconvex models, the corresponding

constrained models can achieve reasonable improvements when most pixel intensities of an im-

age are around the boundary of a closed convex set (see [3–6, 10, 12, 24, 41, 51]). In this paper,

we focus on the following constrained nonconvex nonsmooth composite minimization

min
u∈Ω

F (u) = r(u) + h(u), (1.1)

where Ω is a closed convex set, r(u) is a nonconvex possibly non-Lipschitz function and h(u)

is a smooth function and possibly nonconvex. In image processing problems, r(u) in (1.1) can

be considered as the regularization term dependent on the prior knowledge of images, such as
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ℓp regularization (0 ≤ p < 1) (see [2, 12, 19, 22, 45, 48–49, 51]), h(u) can be considered as the

fidelity term for measuring the deviation of a solution from the observation, such as the least

squares data fitting term (see [2, 37, 43]) and Ω is usually a box constrained set.

Algorithms for solving the nonsmooth and nonconvex problems of form (1.1) have been s-

tudied extensively, due to their wide range of applications. If h is smooth (possibly nonconvex)

and r is simple (i.e., its proximal operator has a closed form solution or the proximal point is

easy to compute), the proximal gradient method (also known as the forward-backward splitting)

is very effective (see [1, 7, 18, 29]). An abstract convergence result for nonconvex descent meth-

ods including proximal gradient and gradient descent algorithms under a sufficient decrease

condition and a relative inexact optimality condition has been presented in [1]. For non-simple

r, several inexact proximal gradient and gradient descent algorithms have developed to reduce

computational cost while still ensuring convergence under certain conditions (see [1, 21, 24–25,

28, 30, 38, 47]). Moreover, a number of works were proposed to integrate the Nesterov’s accel-

erated gradient descent algorithm into the proximal gradient algorithm for improved iteration

efficiency while maintaining convergence guarantee for nonconvex programming (see [20, 27–28,

39, 42]). The iPiano algorithm combined proximal gradient method with an inertial force has

better performance and nice convergence properties (see [35, 44]). However, most of standard

or accelerated and/or inexact proximal gradient algorithms for nonconvex programming require

r to be smooth or satisfy the Kurdyka- Lojasiewicz (KL for short) inequality for global conver-

gence (see [1, 27, 44, 46]). In this work we consider more general nonconvex nonsmooth problem

composed of gradient operators, which may not satisfy these conditions.

For more general nonconvex and nonsmooth optimization problems, especially for the non-

convex component being also nonsmooth, a natural choice is to use the smoothing strategy (see

[4–6, 11–14, 22, 26, 33–34, 36]). Smoothing methods construct a sequence of smooth nonconvex

problems to approximate the original nonsmooth problem, and each smooth problem with the

fixed smoothing parameter can be solved by efficient algorithms such as the gradient descent

method combined with line search (see [11]), the nonlinear conjugate gradient method (see

[14]) and the trust region Newton method (see [13]). By updating the smoothing parameter, s-

moothing algorithms are able to solve the original nonsmooth nonconvex optimizations and any

accumulation point of the generated sequence is a Clarke stationary point when the gradient

consistency of subdifferential associated with a smoothing function is proved (see [4–6, 11–14]).

For instance, [4] discussed the first order necessary optimality condition for local minimizers

and defined the generalized stationary point for a class of constrained nonsmooth nonconvex

problems where the feasible set is a closed convex set. Recently, to accelerate the smooth-

ing method for nonconvex problems, [39] introduced a convergent smoothing gradient descent

type algorithm with extrapolation technique. It can not only guarantee that any accumulation

point is an (affine-scaled) Clarke stationary point, but also obtain better experimental results

compared to the standard smoothing gradient descent method. Instead of directly converting

the nonsmooth function into parameterized smooth function, iterative support shrinking with

proximal linearization algorithms (see [19, 30, 40–41, 48]) obtained a nonconvex smooth objec-

tive function by putting nondifferentiable points of the nonsmooth function into constraints.

These methods were easy to produce piecewise constant regions and thus were not suitable for

recovering smooth parts of images.

In this paper, we propose an accelerated smoothing descent algorithm for solving a general

class of constrained nonsmooth nonconvex optimization problems, where the nonconvex term is

a potential function composed with the L2 norm of the gradient of the unknown function. Our

algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy

to minimize the smoothed objective function to guarantee a better practical and theoretical
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performance. The smoothing method is inspired by [11], which is equivalent to Nesterov’s

smoothing technique for non-smooth optimization (see [31]). Moreover, the algorithm uses a

rule that is easy to implement to adoptively reduce the smoothing parameter. We can prove

that any accumulation point of the generated sequence is an (affine-scaled) Clarke stationary

point of the nonsmooth nonconvex problem (1.1). The main contributions are summarized as

follows:

•We propose an extrapolated smoothing descent algorithm for constrained nonconvex non-

smooth minimization problems, where the nonconvex part is also nonsmooth and may not be

simple or satisfy KL property. Our algorithm adopts the proximal gradient algorithm with

extrapolation and a safe-guarding policy to minimize the smoothed objective function. The

algorithm can also adaptively reduce the smoothing level to approach a stationary point of the

original problem.

•We prove that the sequence generated by the proposed algorithm has at least an accumu-

lation point, and any accumulation point of the sequence is an (affine-scaled) Clarke stationary

point of the nonconvex and nonsmooth problem. Moreover, the total number of iterations

required to terminate our algorithm with a given tolerance is also studied.

•We conduct a series of numerical experiments with comparisons to several existing descent

type of algorithms with or without box constraints and with or without extrapolation for sparse-

view CT reconstruction. The experimental results demonstrate the effectiveness of the proposed

algorithm.

The paper is organized as follows. In Section 2, we identify a class of constrained nonconvex

and nonsmooth optimization problems, and present an extrapolated smoothing descent algo-

rithm (ESDA for short) for solving the problem. In the meantime the smoothing method and

properties of the smoothed objective function are studied. In Section 3, we provide convergence

and iteration complexity analyses of the proposed algorithm. Experimental results are given in

Section 4. At last, conclusions are summarized in Section 5.

2 The Problem and the Algorithm

2.1 Preliminaries

In this paper, we use R
n to denote the n-dimensional Euclidean space with inner product

〈·, ·〉 and Euclidean norm ‖ · ‖p (p > 0). For p = 2, we simply denote it by ‖ · ‖. Denote by

Ω a compact convex subset of Rn. ΠΩ(u) represents the projection of a vector u ∈ Rn to Ω

defined by ΠΩ(u) = arg min
v∈Ω
‖v − u‖. For a real-valued matrix A, ‖A‖2 denotes its spectral

norm that is the largest singular value of A. For a vectored 2-dimensional image u ∈ R
n,

diu = (dxi u; dyi u) ∈ R
2 represents du at pixel i, and di = (dxi , d

y
i ) ∈ R

2×n is the discrete

gradient operator at pixel i. In our notation R+ = [0,∞) and N+ is the set of non-negative

integers.

Using the definition of Clarke generalized directional derivative (see [8, 16]) we give the

following definitions.

Definition 2.1 Assume that g : Rn → (−∞,+∞] is a locally Lipschitz continuous function.

The Clarke subdifferential of g at x ∈ R
n is defined as

∂◦g(x) =
{
w ∈ R

n : 〈w,v〉 ≤ lim sup
z→x

t↓0

g(z + tv)− g(z)

t
, ∀v ∈ R

n
}
.
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Definition 2.2 (Clarke stationary point) For a locally Lipschitz function g : R
n →

(−∞,+∞], a point x∗ ∈ Ω, where Ω is a compact subset of Rn, is said to be a Clarke sta-

tionary point, if there exists a d ∈ ∂◦g(x), such that 〈d, x− x∗〉 ≥ 0 for all x ∈ Ω.

Definition 2.3 (see [16]) A function g : Rn → R is said to be regular at x provided the

following hold:

(i) For all v, the usual one-sided directional derivative g′(x;v) = lim
t↓0

g(x+tv)−g(x)
t

exists.

(ii) For all v, g′(x;v) = lim sup
y→x

t↓0

g(y+tv)−g(y)
t

.

Remark 2.1 (see [16]) Suppose that gi : Rn → R, i = 1, 2, · · · ,m, are Lipschitz continuous

and regular near x. Then, their sum g =
m∑
i=1

gi is also Lipschitz continuous near x and

∂̊g(x) =
m∑

i=1

∂̊gi(x).

2.2 The problem and basic assumptions

We consider the following type of regularized inverse problem

(P) min
u∈Ω

F (u) = r(u) + h(u) :=

n∑

i=1

ϕ(‖diu‖) +
α

2
‖Hu− f‖2, (2.1)

where ‖diu‖ =
√

(dxi u)2 + (dyi u)2; ϕ : [0,+∞) → [0,+∞) is a potential function; α > 0 is a

model parameter to balance the data fitting term and the regularization term.

Assumption 2.1 We assume that

(a) ϕ(t) is C2 on (0,+∞), and ϕ(0) = 0. Specifically, for any fixed η, ϕ and ϕ′ are

Lipschitz continuous on
[
η
2 , ∞

)
with constants L0,ϕη

−b0,ϕ and L1,ϕη
−b1,ϕ , respectively, where

L0,ϕ, L1,ϕ, b0,ϕ, b1,ϕ ≥ 0 and independent of η.

(b) ϕ′(t)|(0,+∞) ≥ 0 and lim
t→0+

ϕ′(t) = ϕ′(0+) > 0.

(c) ϕ′′(t) is increasing on (0,+∞) with ϕ′′(t)|(0,+∞) ≤ 0.

Many widely used regularizations in image deblurring and reconstruction problems meet

these assumptions. In Table 1, we list some nonconvex nonsmooth potential functions (see [11,

14, 32–33]).

Remark 2.2 (1) If ϕ′(0+) is finite, ϕ(‖diu‖) is Lipschitz at ‖diu‖ = 0. For example, ϕ1(t)

and ϕ2(t) in Table 1.

(2) If ϕ′(0+) = +∞, ϕ(‖diu‖) is non-Lipschitz at ‖diu‖ = 0. For example, ϕ3(t) and ϕ4(t)

in Table 1.

(3) Assumption 2.1(a) and (b) show that 0 is the strict minimizer of ϕ(t).

(4) Assumption 2.1(c) implies that ϕ(t) is a concave function.

2.3 The algorithm

Before we present the proposed algorithm, we first define a smooth approximation problem

for the nonsmooth and nonconvex problem (2.1).

The function ϕ(‖diu‖) is nonsmooth and possibly also non-Lipschitz at ‖diu‖ = 0 when

ϕ′(0+) = +∞. Inspired by the approximation technique for |t| in [11], we approximate ϕ(‖diu‖)
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Table 1 Nonconvex nonsmooth potential functions with a parameter β > 0.

ϕ(t) ϕ′(t)|(0,+∞) ϕ′′(t)|(0,+∞)

ϕ1(t) = βt
1+βt

β
(1+βt)2

−2β2

(1+βt)3

ϕ2(t) = ln(1 + βt) β
(1+βt)

−β2

(1+βt)2

ϕ3(t) = tp, 0 < p < 1 ptp−1 p(p− 1)tp−2

ϕ4(t) = ln(1 + βtp), 0 < p < 1 βptp−1

1+βtp
−βptp−2(βtp+1−p)

(1+βtp)2

by

ϕη(‖diu‖) =




ϕ(‖diu‖), if ‖diu‖ > η,

ϕ
(‖diu‖2

2η
+

η

2

)
, if ‖diu‖ ≤ η,

(2.2)

where η > 0 is a smoothing parameter. For this smoothed ϕη(·), we have the following propo-

sition.

Proposition 2.1 If ϕη(‖diu‖) is a smoothing approximation function of ϕ(‖diu‖) in (2.2),

the following statements hold:

(i) For any fixed η > 0, we have ϕ(‖diu‖) ≤ ϕη(‖diu‖) ≤ ϕ(‖diu‖) + ϕ(η2 ).

(ii) lim
η→0

ϕη(‖diu‖) = ϕ(‖diu‖).

(iii) For any fixed η ∈ (0, 1], ∇
( n∑
i=1

ϕη(‖diu‖)
)
is Lη-Lipschitz continuous, where

Lη = Cϕη
−bϕ (2.3)

for some constants Cϕ > 0 and bϕ > 0 that depend on ϕ, but independent of η.

Proof From the definition of ϕη(‖diu‖) in (2.2), it is easy to get Parts (i)–(ii). To show

Part (iii), we let

κi(u) :=





‖diu‖, if ‖diu‖ > η;

‖diu‖2
2η

+
η

2
, if ‖diu‖ ≤ η.

Apparently, κi(u) ≥ η
2 . In the next, we first to show that κi(u) admits Lipschitz continuous

gradient with constant

Lκ,i := η−1‖di‖22, (2.4)

where ‖di‖2 is the spectral norm of the matrix di ∈ R
2×n.

Notice that κi(u) can be rewritten as

κi(u) =
η

2
+ arg max

v∈V

{
〈diu,v〉 −

η

2
‖v‖2

}
, (2.5)

where V = {v ∈ R
2 | ‖v‖ ≤ 1}.

For any u1,u2 ∈ Ω, define v1 and v2 as follows,

v1 =
η

2
+ arg max

v∈V

{
〈diu1, v〉 −

η

2
‖v‖2

}
, (2.6)
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v2 =
η

2
+ arg max

v∈V

{
〈diu2, v〉 −

η

2
‖v‖2

}
, (2.7)

which are well defined since the maximization problems have unique solutions. Also using the

concavity of the set (V ) constrained problems above in v, the optimality conditions of v1 and

v2 lead to

〈diu1 − ηv1, v2 − v1〉 ≤ 0,

〈diu2 − ηv2, v1 − v2〉 ≤ 0.

Adding the two inequalities above yields

〈diu1 − diu2 − η(v1 − v2), v2 − v1〉 ≤ 0,

which, together with the Cauchy-Schwarz inequality, implies

‖diu1 − diu2‖ ≥ η‖v1 − v2‖. (2.8)

From (2.5)–(2.6), it is easy to see that ∇κi(uj) = ∇〈uj , d
T
i vj〉 = dTi vj for j = 1, 2, where

dTi ∈ R
n×2. Therefore,

‖∇κi(u1)−∇κi(u2)‖ = ‖dTi (v1 − v2)‖
≤ ‖di‖2‖(v1 − v2)‖
≤ η−1‖di‖2‖diu1 − diu2‖
≤ η−1‖di‖22‖u1 − u2‖,

in the last inequality we used (2.8). The claim (2.4) is proved.

Observe that ∇ϕ(κi(u)) = dϕ(x)
dx

∣∣∣
x=κi(u)

· dκi(u)
du

= ϕ′(κi(u))∇κi(u) and thus,

‖∇ϕ(κi(u1))−∇ϕ(κi(u2))‖
= ‖ϕ′(κi(u1))∇κi(u1)− ϕ′(κi(u2))∇κi(u2)‖
≤ ‖ϕ′(κi(u1))∇κi(u1)− ϕ′(κi(u1))∇κi(u2)‖

+ ‖ϕ′(κi(u1))∇κi(u2)− ϕ′(κi(u2))∇κi(u2)‖
≤ sup

u∈Ω
‖ϕ′(κi(u))‖ · ‖∇κi(u1)−∇κi(u2)‖

+ ‖ϕ′(κi(u1))− ϕ′(κi(u2))‖ · sup
u∈Ω
‖∇κi(u)‖

≤ L0,ϕ · η−b0,ϕ · Lκ,i‖u1 − u2‖+ L1,ϕη
−b1,ϕ · ‖κi(u1)− κi(u2)‖ ·max{1, η}

≤ (L0,ϕη
−b0,ϕ + L1,ϕη

−b1,ϕ) · Lκ,i · ‖u1 − u2‖.

Here, the last second inequality is due to (a) the Lipschitz continuity of ϕ with constant

L0,ϕ, (b) the Lipschitz continuity of the gradient of ϕ with constant L1,ϕ from Assumption 2.1,

(c) the facts that η ≤ η0 = 1 from algorithm ESDA and hence ‖∇κi(u)‖ ≤ max{1, η} = 1, (d)

(2.4). Meanwhile, the last inequality is due to again sup
u

‖∇κi(u)‖ ≤ 1 and ‖κi(u1)−κi(u2)‖ ≤
sup
u∈Ω
‖∇κi(u)‖ · ‖u1 − u2‖. Combining the above with (2.4), we immediately have the desired

result in Theorem 3.2 with Cϕ = (L0,ϕ +L1,ϕ) · |Ω|
n∑

i=1

‖di‖22, where |Ω| represents the diameter

of Ω, and bϕ = 1 + max{b0,ϕ, b1,ϕ}.
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The function α
2 ‖Hu − f‖2 also has Lipschitz continuous gradient, we denote its Lipschitz

constant by Lh. Define a smoothing approximation problem of (2.1) as

min
u∈Ω

Fη(u) := rη(u) + h(u) =
n∑

i=1

ϕη(‖diu‖) +
α

2
‖Hu− f‖2. (2.9)

Clearly, Fη(u) has Lipschitz continuous gradient with the Lipschitz continuous gradient Lη+Lh.

Now we propose the following extrapolated smoothing decent algorithm (ESDA for short)

for (2.1).

Algorithm 1: Extrapolated Smoothing Decent Algorithm (ESDA for short) for (2.1)

Step 0: Input (ρ, δ, τ1)∈(0, 1), τ > 0, Maximum number of iterations K or tolerance εtol > 0;
Initialize u−1 = u0 ∈ Ω, θ0 = 1, and η−1 = η0 > 0.

Step 1: For k = 0, 1, 2, · · · ,

Step 1.1: Set θk+1 =
1+
√

1+4θ2
k

2 .

Step 1.2: Let wk+1 = uk +
(
θk−1
θk+1

)
(uk − uk−1).

Step 1.3: Define qk+1:

qk+1 =

{
wk+1, if Fηk

(wk+1) ≤ Fηk
(uk) and wk+1 ∈ Ω,

uk, otherwise.
(2.10)

Step 1.4: Compute ûk+1:

zk+1 = qk+1 − s0∇h(qk+1), (2.11)

ûk+1 = ΠΩ(zk+1 − sk+1∇rηk
(zk+1)), (2.12)

Step 1.5: Compute uk+1:

uk+1 = ΠΩ(uk − αk+1∇Fηk
(uk)), if (2.13)

Fηk
(uk+1)− Fηk

(uk) ≤ −δ‖uk+1 − uk‖2. (2.14)

Otherwise, αk+1 ← ραk+1 and go back to (2.13). (2.15)

Step 1.6: Choose uk+1:

uk+1 =

{
ûk+1, if Fηk

(ûk+1) ≤ Fηk
(uk+1),

uk+1, otherwise.
(2.16)

Step 2: Update ηk+1

ηk+1 =

{
τ1ηk, if ‖uk+1 − uk‖ < τηkαk+1,

ηk, otherwise.
(2.17)

Step 3: If τηkαk+1 < εtol, terminate and output uk+1.

Note that in ESDA the generation of ûk+1 in (2.11) can be viewed as using the proximal

gradient algorithm with extrapolation, where s0 and sk+1 are stepsizes determined by user.

The ûk+1 plays a role in ESDA to attain better efficiency than the standard gradient descent
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method. Our experimental results confirmed this. However, due to the nonconvexity and

nonsmoothness of problem (2.1), the sequence {ûk+1} may not converge. The uk+1 in (2.13)

is obtained by the standard gradient descent to safeguard the convergence of the ESDA. The

stepsize αk+1 is determined by a simple line search strategy in (2.14). We set uk+1 being ûk+1

or uk+1 whichever has lower value of Fηk
to encourage reduction of the objective function.

3 Convergence and Complexity Analysis

In this section, we will discuss the convergence of ESDA and the bound for the number of the

iterations required to terminate the algorithm with the prescribed accuracy εtol for ‖uk+1−uk‖.
First, we give the following lemma that has been proved in [39].

Lemma 3.1 For ϕηk
(·) defined in (2.2), we have ϕηk+1

(‖diu‖) ≤ ϕηk
(‖diu‖) for any i ∈

{1, 2, · · · , n}, if ηk+1 ≤ ηk. Consequently, Fηk+1
(u) ≤ Fηk

(u), where Fη(u) is defined in (2.9).

Theorem 3.1 Let {uk} be the sequence generated by ESDA with any fixed η = ηk > 0 (that

is by Step 1 of the algorithm). Then for any u0 ∈ Ω and δ > 0, we have

1. the condition (2.14) in Step 1.5 can be met by finitely many times of line search.

2. ‖uk+1 − uk‖ → 0 as k →∞.

3. For any ε > 0, let kε := min{k ∈ N
+ : ‖uk+1 − uk‖ ≤ ε}. Then

kε ≤ Fη(u0)δ−1ε−2 ≤
(
F (u0) + ϕ

(η0
2

))
· δ−1ε−2. (3.1)

Proof To prove Part 1. By the optimality conditions for uk+1, we have

〈uk+1 − uk + αk+1∇Fηk
(uk), u− uk+1〉 ≥ 0, ∀u ∈ Ω. (3.2)

And thus

〈∇Fηk
(uk), uk+1 − u〉 ≤ − 1

αk+1
‖uk+1 − u‖ · ‖uk+1 − uk‖, ∀u ∈ Ω. (3.3)

If we let u = uk, we then obtain

〈∇Fη(uk), uk+1 − uk〉 ≤ −
1

αk+1
‖uk+1 − uk‖2. (3.4)

By the last statement of Proposition 2.1, ∇Fη is (Lη +Lh)-Lipschitz, where Lη is given in (2.3)

with η = ηk, and Lh is the Lipschitz continuous for α
2∇(‖Hu− f‖2) = α

2 σ(H), where σ(H) is

the largest singular value of H . Hence, we have

Fη(uk+1) ≤ Fη(uk) + 〈∇Fη(uk), uk+1 − uk〉+
Lη + Lh

2
· ‖uk+1 − uk‖2. (3.5)

Combining (3.4) and (3.5) we get

Fη(uk+1)− Fη(uk) ≤
(
− 1

αk+1
+

Lη + Lh

2

)
· ‖uk+1 − uk‖2 ≤ −δ‖uk+1 − uk‖2, (3.6)

if αk+1 ≤
(
δ+

Lη+Lh

2

)−1
. Hence, the condition (2.14) in Step 1.5 can be met after finitely many

line search steps. This proves Part 1. Notice that the smallest αk+1 for having (2.14) can be

chosen as αk+1 =
(
δ +

Lη+Lh

2

)−1
. The purpose of the line search is to search a better stepsize

αk+1, which makes the condition (2.14) met and

αk+1 ≥
(
δ +

Lη + Lh

2

)−1

. (3.7)
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Moreover, even the αk+1 satisfying (3.7), it is able to find a s ∈ N+, such that

ρsαk+1 ≤
(
δ +

Lη + Lh

2

)−1

. (3.8)

From (3.6) and the choice for uk+1 in Step 1.6, we have that for any η = ηk,

Fη(uk+1) ≤ Fη(uk+1) ≤ Fη(uk) ≤ · · · ≤ Fη(u0), k = 0, 1, · · · (3.9)

For any positive integer K, summing up over k from k = 0 to k = K on the both sides of

(3.6). By using (3.9) and the fact that Fη(u) ≥ 0 due to Assumption 2.1, we obtain

K∑

k=0

‖uk+1 − uk‖2 ≤ δ−1
K∑

k=0

[Fη(uk)− Fη(uk+1)]

= δ−1(Fη(u0)− Fη(uK+1)) ≤ δ−1Fη(u0). (3.10)

Because K is arbitrary, we have ‖uk+1 − uk‖ → 0 as k →∞. This then proves Part 2.

As for Part 3, we observe that, for any k < kε, ‖uk+1−uk‖ > ε. From (3.10) with K = kε−1,

it must hold that

kε · ε2 ≤ δ−1Fη(u0) ≤ δ−1
(
F (u0) + ϕ

(η0
2

))
.

Here, the last inequality is due to Part (i) of Proposition 2.1. Then, (3.1) follows immediately

and Part 3 is proved.

Now we are ready to discuss the iteration complexity for the ESDA for any εtol > 0.

Note that Part 3 of the Theorem 3.1 implies that the reduction criterion in Step 2 of ESDA

can be met within finitely many iterations of Step 1 (Steps 1.1–1.6). Let kl be the counter of

iteration when the criterion for reduction of ηk in (2.17) is met for the l-th time (we set k0 = −1),

then we can partition the iteration counters k = 0, 1, 2, · · · , into segments accordingly, such

that in the l-th segment k = kl + 1, · · · , kl+1 and ηk = ηkl
= η0τ

l
1. The following theorem will

provide the bound for the length of each segment, from which we can get the total iteration

number required to terminate the algorithm with εtol tolerance.

Theorem 3.2 Let {uk} be the sequence generated by ESDA with any u0 ∈ Ω and δ > 0.

Then we have

1. the number of iterations required for the l-th segment

kl+1 − kl ≤ C1τ
−2l
1 + C2τ

−2l(1+bϕ)
1 , (3.11)

where

C1 = 2δ−1
(
F (u0) + ϕ

(η0
2

))
· τ−2η−2

0

(
δ +

Lh

2

)2

and

C2 = 2δ−1
(
F (u0) + ϕ

(η0
2

))
· τ−2η

−2(1+bϕ)
0 C2

ϕ,

and the constants Cϕ and bϕ are given in (2.3).

2. The total number of iterations L for ESDA to terminate with the tolerance εtol > 0 is

bounded by

L−1∑

l=0

(kl+1 − kl) ≤ C1
τ
−2(L−1)
1 − τ21

1− τ21
+ C2

τ
−2(L−1)(1+bϕ)
1 − τ

2(1+bϕ)
1

1− τ
2(1+bϕ)
1

= O(ε−2
tol ). (3.12)
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Proof Applying Part 3 of Theorem 3.1 to the l-th segment with the initial u0 = ukl+1 and

hyper-parameter ε = τηkl
αk+1, where αk+1 is the stepsize used in the l-th segment to minimize

Fηkl
(u). From (3.1) we obtain

kl+1 − kl ≤ δ−1 · Fηkl
(ukl+1) · (τηkl

αk+1)−2. (3.13)

Next we estimate each term in the RHS of (3.13) in terms of the order of τ1.

By the combination of Lemma 3.1 and (3.9), for all k ≥ 0, it holds that

Fηk+1
(uk+1) ≤ Fηk

(uk+1) ≤ Fηk
(uk) ≤ · · · ≤ Fη0(u0) ≤ F (u0) + ϕ

(η0
2

)
. (3.14)

From (3.7) with η = ηkl
and (2.3), we have

α−2
k+1 ≤

[(
δ +

Lηkl
+ Lh

2

)]2
=

[(
δ +

Lh

2

)
+

1

2
Cϕη

−bϕ
kl

]2
. (3.15)

Combining (3.13)–(3.15), also noticing that ηkl
= η0τ

l
1, we obtain

kl+1 − kl ≤ δ−1
(
F (u0) + ϕ

(η0
2

))
τ−2η−2

kl

[(
δ +

Lh

2

)
+

1

2
Cϕη

−bϕ
kl

]2

≤ C1τ
−2l
1 + C2τ

−2l(1+bϕ)
1 , (3.16)

where

C1 = 2δ−1
(
F (u0) + ϕ

(η0
2

))
· τ−2η−2

0

(
δ +

Lh

2

)2

and

C2 = 2δ−1
(
F (u0) + ϕ

(η0
2

))
· τ−2η

−2(1+bϕ)
0 C2

ϕ.

To show Part 2, let L be the number of times the reduction of η is satisfied before the

algorithm is terminated in Step 3 with the tolarence εtol. Then τηkL−1αk+1 ≥ εtol, where αk+1

is the stepsize used in the (L− 1)-th segment to minimize FηkL−1
(u). Hence,

τηkL−1αk+1 ≥ εtol. (3.17)

From (3.8) and (2.3) with η = ηkL−1 it holds that

αk+1 ≤ ρ−s
(
δ +

LηkL−1
+ Lh

2

)−1

≤ ρ−s
(LηkL−1

2

)−1

≤ 2ρ−sC−1
ϕ η

bϕ
kL−1

. (3.18)

Noticing that ηkL−1 = η0τ
L−1
1 , then the combination of (3.17) and (3.18) yields that

2ρ−sτ(η0τ
L−1
1 )C−1

ϕ (η0τ
L−1
1 )bϕ ≥ εtol.

Rearranging the above inequality, we have

τ
(L−1)(1+bϕ)
1 ≥ ρs

Cϕεtol

2τη
(1+bϕ)
0

=: C3εtol, (3.19)

where C3 = ρs
Cϕ

2τη
(1+bϕ)

0

.

To terminate with tolerant εtol after L times reduction of η from η0, from (3.16), we then

have

L−1∑

l=0

(kl+1 − kl) ≤
L−1∑

l=0

(C1τ
−2l
1 + C2τ

−2l(1+bϕ)
1 )
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= C1
τ
−2(L−1)
1 − τ21

1− τ21
+ C2

τ
−2(L−1)(1+bϕ)
1 − τ

2(1+bϕ)
1

1− τ
2(1+bϕ)
1

. (3.20)

From this estimate and (3.19), we can see that for fixed τ1 ∈ (0, 1),

L−1∑

l=0

(kl+1 − kl) = O(ε−2
tol ).

The theorem is proved.

If we set εtol = 0 and K = ∞ in the ESDA, the algorithm will never terminate and hence

can generate an infinite sequence {uk}. We focus on the subsequence {ukl+1} as discussed in

Theorem 3.2. That is the reduction criterion in Step 2 being satisfied for k = kl and ηk being

reduced. The next theorem below will show that every accumulation point of this subsequence

is a Clarke stationary point.

We need the following lemma before to prove the convergence result. This lemma has been

proved in [39]. But here we provide more simple proof.

Lemma 3.2 Let ϕη(‖diu‖) be a smooth approximation of ϕ(‖diu‖) defined in (2.2) for any

i = 1, · · · , n. Suppose that ϕ(t) is continuously differentiable in [0,+∞). If {uj} ⊂ Ω is a

sequence that converges to a point u∗ ∈ Ω, then

lim
uj→u∗

ηj↓0

∇ϕηj
(‖diuj‖) ∈ ∂̊ϕ(‖diu∗‖) (3.21)

and

lim
uj→u∗

ηj↓0

∇Fηj
(uj) ∈ ∂̊F (u∗). (3.22)

Proof Firstly, we will show that the Clarke subdifferential ∂̊ϕ(‖diu‖) for any u ∈ Ω and

i = 1, · · · , n is the following:

∂̊ϕ(‖diu‖) =

{
ϕ′(‖diu‖)d

T
i diu

‖diu‖
, if ‖diu‖ 6= 0,

{ϕ′(0+)dTi ξ : ∀ξ ∈ R
2, ‖Piξ‖ ≤ 1}, if ‖diu‖ = 0

(3.23)

can be obtained by using Definition 2.1. Consider following two cases:

Case 1: If ‖diu‖ 6= 0, then there is a small neighborhood of u such that for any z in the

neighborhood it holds ‖diz‖ 6= 0 . Then, for any v ∈ R
n, we have

lim sup
z→u

t↓0

ϕ(‖di(z + tv)‖)− ϕ(‖diz‖)
t

= lim
z→u

ϕ′(‖diz‖)
〈diz, div〉
‖diz‖

= ϕ′(‖diu‖)
〈dTi diu,v〉
‖diu‖

. (3.24)

Case 2: If ‖diu‖ = 0, then diu = 0. Moreover by Assumption 2.1(a), ϕ(0) = 0. Then, for

any v ∈ R
n, we have

lim sup
z→u

t↓0

ϕ(‖di(z + tv)‖)− ϕ(‖diz‖)
t

= lim
t↓0

ϕ(‖tdiv‖)− ϕ(0)

t

= ϕ′(0+)‖div‖ ≥ ϕ′(0+)〈ξ, div〉 = ϕ′(0+)〈Piξ, div〉 (3.25)
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for any ξ ∈ R
2 and ‖Piξ‖ ≤ 1, where Piξ is the projection of ξ onto the column space of d,

which is perpendicular to the null space of dT . The combination of (3.24) and (3.25) gives

(3.23).

Next we compute lim
uj→u∗

ηj↓0

∇ϕηj
(‖diuj‖).

It is easy to compute the maximizer v∗ in (2.5) that yields

v∗ =





diu

‖diu‖
, if ‖diu‖ > η;

diu

η
, if ‖diu‖ ≤ η

(3.26)

and ∇κi(u) = dTi v. Hence we have

∇ϕηj
(‖diuj‖) = ϕ′

ηj
(κi(uj))∇κi(uj) =





ϕ′
ηj

(κi(uj))d
T
i

diuj

‖diuj‖
, if ‖diuj‖ > ηj ;

ϕ′
ηj

(κi(uj))d
T
i

diuj

ηj
, if ‖diuj‖ ≤ ηj .

(3.27)

Let uj → u∗ and ηj ↓ 0 on both sides of (3.27). From (3.23) and the fact
∥∥diuj

ηj

∥∥ ≤ 1, (3.21)

follows immediately.

Next we prove (3.22). From (3.21), we have

lim
uj→u∗

ηj↓0

∇Fηj
(uj) =

n∑

i=1

lim
uj→u∗

ηj↓0

∇ϕηj
(‖diuj‖) + lim

uj→u∗

α

2
∇(‖Huj − f‖2)

∈
n∑

i=1

∂̊ϕ(‖diu∗‖) +
α

2
∇(‖Hu∗ − f‖2). (3.28)

Furthermore, from (3.24)–(3.25) and Definition 2.3, ϕ(‖diu‖) is regular at any u ∈ Ω, in

particular u = u∗. Then, by Remark 2.1 it holds that

n∑

i=1

∂̊ϕ(‖diu∗‖) +
α

2
∇(‖Hu∗ − f‖2)

= ∂̊
( n∑

i=1

ϕ(‖diu∗‖) +
α

2
‖Hu∗ − f‖2

)
= ∂̊F (u∗). (3.29)

The combination of (3.28) and (3.29) gives (3.22).

Now we are ready to present the convergence result for ESDA.

Theorem 3.3 Let {uk} is the sequence generated by the ESDA with any u0 ∈ Ω, δ > 0,

εtol = 0, and the maximum number of iterations K = ∞. Let {ukl+1} be the subsequence of

{uk}, where the reduction criterion in Step 2 is satisfied for k = kl and l = 1, 2, · · · Then the

following statements hold:

1. {ukl+1} has at least one accumulation point on Ω.

2. If ϕ(t) is continuously differentiable on [0,+∞), every accumulation point of {ukl+1} is
a Clarke stationary point of problem (2.1).

3. If ϕ(t) is continuously differentiable only on (0,+∞), then every accumulation point of

{ukl+1} is an affine-scaled Clarke stationary point of model (2.1), i.e., if u∗ is an accumulation
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point of {ukl+1}, then there is a

d ∈ ZT
u∗ ∂̊

( ∑

i∈Ic
u∗

ϕ(‖diu∗‖) +
α

2
‖Hu∗ − f‖2

)

satisfying

〈d, ZT
u∗(u− u∗)〉 ≥ 0 for all u ∈ Ω ∩ {u : u = Zu∗v for some v}, (3.30)

where Zu∗
is an n × r matrix whose columns are an orthonormal basis for the null space of

{dxi , dyi : i ∈ Iu∗} with r > 0 being its dimension, Iu∗ = {i = 1, · · · , n : ‖diu∗‖ = 0}, and

Icu∗ = {i = 1, · · · , n : ‖diu∗‖ 6= 0}.

Proof The first statement is evident due to the boundedness of Ω and {uk} ⊂ Ω.

To prove Part 2, denote by {ukm+1} the convergent subsequence of {ukl+1} to an accumu-

lation point û ∈ Ω as m→∞. Denote also by ηkm
the corresponding ηkl

used in the iteration

to generate ukm+1 and ukm+1. Since the reduction criterion in Step 2 is satisfied for k = kl and

l = 1, 2, · · · , we have

‖ukm+1 − ukm
‖ < τηkm

αk+1, (3.31)

where αk+1 is the stepsize used for the m-th segment to minimize Fηkm
(u).

By the optimality condition for generating ukm+1, it holds that

〈ukm+1 − ukm
+ αk+1∇Fηkm

(ukm
), u− ukm+1〉 ≥ 0, ∀u ∈ Ω, (3.32)

and thus for any u ∈ Ω,

〈∇Fηkm
(ukm

), u− ukm+1〉 ≥ −
1

αk+1
〈ukm+1 − ukm

,u− ukm+1〉

≥ − 1

αk+1
‖ukm+1 − u‖ · ‖ukm+1 − ukm

‖ ≥ −τηkm
diam(Ω), (3.33)

where diam(Ω) is the diameter of Ω, and the last inequality is from (3.31).

Recall that as m→∞,

ηkm
= η0τ

m
1 ↓ 0, ukm+1 → û.

Denote d := lim
m→∞

∇Fηkm
(ukm

). Now letting m→∞ on both sides of (3.33), we get

〈d, u− û〉 ≥ 0. (3.34)

By Lemma 3.2, d ∈ ∂◦F (û). Hence, by Definion 2.2 û is a Clarke stationary point of problem

(2.1).

To prove the last statement, let u∗ be an accumulation point of {ukl+1} and {ukm+1} is the

subsequence of {ukl+1} converging to u∗ ∈ Ω as m→∞, and ηkm
the corresponding smoothing

parameter to generate ukm+1 and ukm+1. When ϕ(t) is continuously differentiable in (0,+∞)

rather than [0,+∞), from the proof of Lemma 3.2 we have

lim
ukm

→u∗

ηkm
↓0

∇ϕηkm
(‖diukm

‖) ∈ ∂̊ϕ(‖diu∗‖) if ‖diu∗‖ 6= 0.

Now let

d = lim
ukm

→u∗

ηkm
↓0

ZT
u∗∇Fηkm

(ukm
).



1062 Y. M. Chen, H. C. Liu and W. N. Wang

Then

d = lim
ukm

→u∗

ηkm
↓0

n∑

i=1

ZT
u∗∇ϕηkm

(‖diukm
‖) + lim

ukm→u∗

α

2
ZT
u∗∇(‖Hukm

− f‖2)

= ZT
u∗ lim

ukm
→u∗

ηkm
↓0

∑

i∈Ic
u∗

∇ϕηkm
(‖diukm

‖) +
α

2
ZT
u∗∇(‖Hu∗ − f‖2)

∈ ZT
u∗

∑

i∈Ic
u∗

∂̊ϕ(‖diu∗‖) +
α

2
ZT
u∗ ∂̊(‖Hu∗ − f‖2)

= ZT
u∗ ∂̊

( ∑

i∈Ic
u∗

ϕ(‖diu∗‖) +
α

2
‖Hu∗ − f‖2

)
, (3.35)

where the second equality uses (3.27) and ZT
u∗dTi = 0 for all i ∈ Iu∗ , and the last equality can

be obtained by a discussion similar to get (3.29).

Let Zu∗vkm+1 be the Euclidean projection of ukm+1 onto the intersection between Ω and

the null space {u : u = Zu∗v for some v}. Observe that (3.33) and the fact that I = Z⊤
u∗Zu∗

imply that, for any u ∈ Ω ∩ {u : u = Zu∗v for some v},

〈Z⊤
u∗∇Fηkm

(ukm
), v − vkm+1〉 = 〈∇Fηkm

(ukm
), Zu∗(v − vkm+1)〉

= 〈∇Fηkm
(ukm

), u− ukm+1〉 − 〈∇Fηkm
(ukm

), Zu∗vkm+1 − ukm+1〉

≥ − 1

αk+1
‖ukm+1 − u‖ · ‖ukm+1 − ukm

‖ − 〈∇Fηkm
(ukm

), Zu∗vkm+1 − ukm+1〉

≥ −τηkm
diam(Ω)− ‖∇Fηkm

ukm
)‖ · ‖Zu∗vkm+1 − ukm+1‖. (3.36)

Let m → ∞, which implies ukm
→ u∗ ∈ {u : u = Zu∗v for some v}, Zu∗vkm+1 → u∗ and

ηkm
↓ 0. Thus, we have ‖Zu∗vkm+1 − ukm+1‖ → 0. We therefore obtain (3.30) immediately.

This combined with (3.35) leads to the desired.

4 Numerical Experiments

In this section, we consider a class of box constrained problem (2.1), where Ω = {u ∈ R
n :

l1e ≤ u ≤ l2e} and e = (1, 1, · · · , 1)T ∈ R
n in the application of sparse view CT reconstruction.

To exam the performance of the proposed algorithm, we compare it to the standard smoothing

gradient descent method to minimize the same objective function with and without box con-

straints, named as (BSGD for short) and (SGD for short) respectively. The BSGD is the same

as the proposed algorithm without Steps 1.1–1.4. We also compare the proposed algorithm

with accelerated smoothing algorithm (ESA for short) in [39] for corresponding unconstrained

problem. All numerical experiments are conducted in MATLAB R2016a running on a PC with

Intel Core i5 CPU at 1.6GHz and 8G of memory. Besides visual evaluation we also use peak

signal-to-noise ratio (PSNR for short) to evaluate the quality of reconstruction. The PSNR is

defined by

PSNR(u,u) = 10 log10
u2
max ·N1N2

‖u− u‖ dB,

where u and u are restored and original images, N1N2 is the total number of pixels of an image

with the same rows and columns, and umax represents the maximum pixel value of the image.

CT reconstruction problem can be modeled as an inverse problem f = Hu + υ, where u is

the image to be reconstructed, H is the system matrix for CT scanner depending on the beam

geometer, f is the noisy sinogram measurements and υ is the noise with normal distribution.
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Here, we consider 2D parallel-beam CT with an N ×N domain, using p̂ parallel rays for each

angle as in [23]. The regular view CT has angles 0, 1, · · · , 179, whereas the sparse view CT

that we deal with has angles 0, 5, 10, · · · , 175 (i.e., Np̂= 36 rotated projection views). Number

of parallel rays for each angle and the distance from the first ray to the last ray are set to be

the nearest integer to
√

2N and
√

2N , respectively. H is implemented by Radon transform.

The images used in this experiment are the “Shepp-Logan” phantom (128 × 128), “NCAT”

phantom (256 × 256) and the cerebral phantom (512 × 512) (see [50]) shown in Figure 1. The

corresponding noisy sinograms for parallel-beam scanning with Np̂ = 36 are also presented in

this figure.

Figure 1 Test images and the corresponding sinogram observations when Np̂ = 36.

Figure 2 presents the reconstruction results after 100 iterations by using aforementioned

four different algorithms with three potential functions ϕ(t) = t0.8, ϕ(t) = ln(1 + 0.5t) and

ϕ(t) = 0.5t
1+0.5t when the Gaussian noise level is 0.005‖f‖∞. Although the convergence of SGD

and ESA might fail for ϕ(t) = 0.5t
1+0.5t due to the lack of coercivity but they can still work

experimentally. In both SGD and ESA, we fix the parameters η0 = 0.01, δ = 10−3, ρ = 0.25

and τ1 = 0.5 as that in [39], while tune the model parameter α, s0 and τ . In BSGD, we fix

η0 = 0.01, ρ = 0.25, δ = 10−5, τ1 = 0.5 and tune α and τ . In the proposed algorithm, we also

fix η0 = 0.01, ρ = 0.25, δ = 10−5, τ1 = 0.5, and tune α, s0, sk+1 and τ . Moreover, we set

l1 = −5 and l2 = 5 in both BSGD and our algorithm. For a fair comparison, each algorithm is

tuned to get the highest PSNR values. From Figure 2, under all three potential functions, one

can see that BSGD yields higher PSNR values than SGD, while the proposed algorithm always

performs better than BSGD and obtains comparable results with ESA. Similar phenomena

can be found from Figure 3 visually and quantitatively, where all parameters in these four

algorithms are tuned as that in Figure 2.

In Figure 4, we present reconstruction results on “cerebral” after 100 iterations with Np̂ =

36. In this experiment, we adopt same rules as above to tune parameters in all compared algo-

rithms. The PSNR of reconstructed images from SGD, ESA, BSGD and proposed algorithms

for three different regularization functions are shown under the image in this figure. The im-

provement of PSNR by the proposed algorithm is about 1.01dB, 0.20dB, 0.90dB increase on

average for those regularization functions compared to SGD, ESA and BSGD, respectively. To

better visualize the results, the zoomed regions are shown in Figure 5.

Figure 6 gives the PSNR values of reconstruction versus number of iterations on “Shepp-

Logan”, “NCAT” and “cerebral” images obtained by BSGD and the proposed algorithm. One

can observe that for potential functions ϕ(t) = ln(1 + 0.5t) and ϕ(t) = 0.5t
1+0.5t the PSNR values

resulted from BSGD are similar for all of three images, while the PSNR values produced by the

proposed algorithm increase faster than BSGD after 40 iterations in all experiments.
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Figure 2 Results after 100 iterations on “Shepp-Logan”. From the first column to the third column:

Reconstructions by different potential functions. From the first row to the fourth row:

Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.
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Figure 3 Results after 100 iterations on “NCAT”. From the first column to the third column:

Reconstructions by different potential functions. From the first row to the fourth row:

Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.
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Figure 4 Results after 100 iterations on “cerebral”. From the first column to the third column:

Reconstructions by different potential functions. From the first row to the fourth row:

Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.
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Figure 5 The zoomed regions corresponding to results in Figure 4.
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Figure 6 From left to right: The PSNR value of the recovered images by BSGD and the proposed

algorithm versus iteration with three potential functions for “Shepp-Logan”, “NCAT” and “cerebral”.

5 Conclusion

In this paper, we proposed a smoothing inexact projected gradient descent with extrapola-

tion to solve a class of constrained nonsmooth nonconvex minimization problems. The inexact

projected gradient descent with extrapolation is applied to improve the performance of mini-

mizing the corresponding smoothed nonconvex problem. Combined with a safe-guarding policy

and adaptively updating the smoothing parameter, the proposed algorithm guarantees that

any accumulation point of the sequence generated by this algorithm is an (affine-scaled) Clarke

stationary point of the original nonsmooth and nonconvex problem. Numerical experiments

and comparisons indicated that the proposed algorithm performed better visually and quanti-

tatively than nonaccelerated gradient descent algorithms for the same model with or without

box constraints for CT reconstruction problem.
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