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Abstract Given a bounded symmetric domain Ω the author considers the geometry

of its totally geodesic complex submanifolds S ⊂ Ω. In terms of the Harish-Chandra

realization Ω ⋐ C
n and taking S to pass through the origin 0 ∈ Ω, so that S = E ∩ Ω

for some complex vector subspace of Cn, the author shows that the orthogonal projection

ρ : Ω → E maps Ω onto S, and deduces that S ⊂ Ω is a holomorphic isometry with respect

to the Carathéodory metric. His first theorem gives a new derivation of a result of Yeung’s

deduced from the classification theory by Satake and Ihara in the special case of totally

geodesic complex submanifolds of rank 1 and of complex dimension ≥ 2 in the Siegel upper

half plane Hg, a result which was crucial for proving the nonexistence of totally geodesic

complex suborbifolds of dimension ≥ 2 on the open Torelli locus of the Siegel modular

variety Ag by the same author. The proof relies on the characterization of totally geodesic

submanifolds of Riemannian symmetric spaces in terms of Lie triple systems and a variant

of the Hermann Convexity Theorem giving a new characterization of the Harish-Chandra

realization in terms of bisectional curvatures.
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1 Introduction

Let Ω ⋐ C
n be a bounded symmetric domain in its Harish-Chandra realization (cf. Theorem

2.3). Denote by ds2Ω the G0-invariant Kähler metric on Ω such that minimal disks on each

irreducible factor of Ω are of constant Gaussian curvature −2. When Ω is irreducible, ds2Ω is a

complete Kähler-Einstein metric. In general, the choice of a G0-invariant Kähler metric on Ω

depends on normalizing scalar constants, one for each irreducible factor.

In this article we consider complex linear slices S of Ω which are totally geodesic with respect

to ds2Ω and prove the following theorem yielding a holomorphic retraction of Ω onto S.

Theorem 1.1 Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-Chandra realiza-

tion. Let E ⊂ Cn be a complex vector subspace such that S := E ∩ Ω ⊂ Ω is a totally geodesic

complex submanifold with respect to ds2Ω. Let ρ : Cn → E be the orthogonal projection. Then,

ρ(Ω) = S.
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We observe that any totally geodesic complex submanifold of (Ω, ds2Ω) passing through the

origin 0 ∈ Ω is necessarily of the form S = E ∩ Ω for a complex vector subspace E ⊂ Cn

satisfying additional conditions (cf. Proposition 2.1), hence Theorem 1.1 yields a holomorphic

retraction of Ω onto any given totally geodesic complex submanifold of Ω with respect to one

and hence all G0-invariant Kähler metrics.

Theorem 1.1 in the special case where Ω is the type-III domain DIII
g := {Z ∈ M(g, g;C) :

Zt = Z and I − ZZ > 0}, g ≥ 2, and S is biholomorphic to the complex unit ball Bm of

dimension m, where M(a, b;C) stands for the complex vector space of a-by-b matrices with

complex coefficients and Zt denotes the transposed matrix of Z, was established in Yeung [12,

Theorem 1] by explicitly checking according to the classification of such embeddings due to

Satake [10] and Ihara [2]. Theorem 1.1 in these special cases are crucial for the establishment

of the following theorem in [12] concerning the open Torelli locus. For the understanding of the

statement, note first of all that the type-III domain DIII
g is biholomorphic via the inverse Cayley

transform τ = λ(Z) := −ı(Z + ıIg)(Z − ıIg)
−1, where Ig stands for the g-by-g identity matrix,

to the Siegel upper half plane Hg := {τ : Im(τ) : τ t = τ, Im(τ) > 0} defined by the Riemann

bilinear relations, so that Ag := Hg/PSp(g;Z) is the Siegel modular variety, the classification

space of principally polarized abelian varieties.

The Torelli map tg : Mg → Ag, where Mg is the Teichmüller modular variety, i.e., the

moduli space of compact Riemann surfaces C of genus g ≥ 2, is the holomorphic map defined

for a compact Riemann surface C of genus g ≥ 2 by tg([C]) = [Jac(C)], where Jac(C) stands for

the Jacobian variety of C in its natural principal polarization, and [· · · ] is here and henceforth

a notation for the class of an object in some classification space. Denote by Mg ⊂ Mg the

Deligne-Mumford compactification, and by Ag ⊂ Ag the Satake-Baily-Borel compactification,

then it is known that tg : Mg → Ag extends holomorphically to τg : Mg → Ag. The set

T 0
g := tg(Mg) is called the open Torelli locus, which is a Zariski open subset of the Zariski

closed subset τg(Mg) ⊂ Ag. Denoting by Hg ⊂ Mg the locus of hyperelliptic curves, then

Hg ⊂ Mg is Zariski closed. It is well-known that the Torelli map tg : Mg → Ag is injective

and that tg|Mg−Hg
: Mg −Hg → Ag is immersive. The principal result of [12] is the following

theorem.

Theorem 1.2 (cf. [12, Theorem 2]) The set T 0
g − tg(Hg) ⊂ Ag for g > 2 does not contain

any complex hyperbolic complex ball quotient, compact or non-compact with finite volume, of

complex dimension at least 2 as a totally geodesic complex suborbifold of Ag.

The above result of Yeung, in conjunction with known rigidity results in the higher rank case

and existence results of Shimura curves on the open Torelli locus, yielded Yeung [12, Theorem

3], related to Oort’s Conjecture, which described all Shimura varieties (necessarily of dimension

1) contained in the open Torelli locus T 0
g − tg(Hg). (For the statement of [12, Theorem 3] and

related background and references cf. [12, §1].)
We give in this article a proof of Theorem 1.1 in the general situation, where the target

bounded symmetric domain Ω may contain direct factors which are exceptional domains, and

where the complex submanifold S = E ∩ Ω is of arbitrary rank as a Hermitian symmetric

manifold of the semisimple and noncompact type. Our proof is free from classification theory.

It exploits the Harish-Chandra realization and a variant of the Hermann Convexity Theorem

defining Ω in terms of inequalities involving bisectional curvatures. In Section 2 we collect basic
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materials on Riemannian symmetric spaces and bounded symmetric domains. In Section 3 we

give in Theorem 3.1 a new description of independent interest of the Harish-Chandra realization

of a bounded symmetric domain in terms of bisectional curvatures. In Section 4 we give the proof

of Theorem 1.1 together with the immediate implication (Theorem 4.1) that totally geodesic

complex submanifolds of Ω are holomorphic deformation retracts of Ω. In Section 5 we give in

Theorem 5.1 an application of Theorem 1.1 to the geometry of the complex submanifold S ⊂ Ω

in terms of the Carathéodory metric and equivalently the Kobayashi metric, which are equal on

weakly convex bounded domains according to the celebrated work of Lempert [3] and a theorem

of Royden-Wong (cf. Section 5 for remarks and references). In the Appendix we give a self-

contained proof that the (infinitesimal) Carathéodory metric and the (infinitesimal) Kobayashi

metrics agree with each other on a bounded symmetric domain Ω by means of Theorem 1.1.

The article has been written in a somewhat expository style, supplied sometimes with more

details than those are absolutely necessary, in order to make it more accessible to non-experts.

2 Background Materials

2.1 Basic materials in Lie theory and on Riemannian symmetric spaces

On a Riemannian symmetric space (M,ds2M ) denote by G the identity component of the

isometry group of (M,ds2M ), and by e ∈ G its identity element. We have Te(G) := g. Here and

in what follows, for real Lie groups in Roman letters we denote by the corresponding Gothic

letters their associated Lie algebras, and vice versa. Let K ⊂ G be the isotropy subgroup at

a reference point 0 ∈ M , so that M = G/K as a homogeneous space, and 0 = eK. Let s be

the involution of (M,ds2M ) as a Riemannian symmetric space at 0, s = s−1, and σ : G→ G be

defined by σ(g) = sgs = s−1gs, so that dσ(e) : g → g, and we have the Cartan decomposition

g = k ⊕ m where k (resp. m) is the eigenspace of dσ(e) associated to the eigenvalue +1 (resp.

−1), from which we have an identification T0(M) ∼= m. We have the following characterization

of totally geodesic submanifolds of Riemannian symmetric spaces (cf. Helgason [1, Chapter IV,

Theorem 7.2]).

Theorem 2.1 On the Riemannian symmetric space (M,ds2M ) and in the notation above, let

m1 ⊂ m ∼= T0(M) be a vector subspace. Then, denoting by Exp0 : T0(M) → M the exponential

map in the sense of Riemannian geometry, S := Exp0(m1) ⊂M is a totally geodesic submanifold

if and only if m1 ⊂ g is a Lie triple system, i.e., if and only if [m1, [m1,m1]] ⊂ m1 for the Lie

bracket [·, ·] on g. Moreover, in the notation above, writing k1 = [m1,m1] ⊂ [m,m] ⊂ k and

defining g1 := m1⊕ k1 ⊂ m⊕ k = g, g1 ⊂ g is a Lie subalgebra, and, denoting by G1 ⊂ G the Lie

subgroup corresponding to the Lie subalgebra g1 ⊂ g, K1 ⊂ K the Lie subgroup corresponding

to the Lie subalgebra k1 ⊂ k, (S, ds2M |S) is a Riemannian symmetric space on which G1 acts

transitively, and S = G1/K1 as a homogeneous space.

For a Cartesian product of Riemannian manifolds (N1, ds
2
N1

)×· · ·×(Np, ds
2
Np

) =: (N, ds2N ),

the Riemannian connection ∇ is unchanged if the background metric ds2Nk
of each Cartesian

factor is replaced by λkds
2
Nk

for some λk > 0. Since a smooth submanifold Z ⊂ N is totally

geodesic if and only if its tangent bundle T (Z) is parallel along Z, which depends only on ∇, the

latter occurs if and only if Z is totally geodesic with respect to any of the Riemannian metric h
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thus obtained by scaling. It is therefore not surprising that the necessary and sufficient condition

in Theorem 2.1 in terms of Lie triple systems is a purely Lie-theoretic condition independent of

the choice of the background metric ds2M rendering (M,ds2M ) Riemannian symmetric, noting

also that the subset S = Exp0(m1), which is the union of geodesics emanating from 0, also

remains unchanged by introducing the scaling constants.

2.2 Basic materials on bounded symmetric domains

Consider now the case where (M,ds2M ) = (X0, g) is a Hermitian symmetric space of the

noncompact type, so that X0 is biholomorphic to a bounded symmetric domain. Here and

henceforth by a Hermitian symmetric space of the noncompact (resp. compact) type we will

mean one with negative (resp. positive) Ricci curvature, i.e., it is implicitly assumed that the

Hermitian symmetric space is of the semisimple type.

Write G0 for the identity component of the isometry group of X0, which is equivalently

the identity component of the group Aut(X0) of biholomorphic automorphisms of X0. Write

K ⊂ G0 for the isotropy subgroup at 0 ∈ X0, 0 = eK. Denote by Xc := Gc/K the Hermitian

symmetric space of the compact type dual to X0. Denote by GC the identity component of

Aut(Xc) and by P ⊂ GC the isotropy (parabolic) subgroup at 0, so that Xc = GC/P as a

complex homogeneous space. Write X0 = G0/K →֒ GC/P = Xc for the Borel embedding

identifying X0 as an open subset of its compact dual Xc. Whenever appropriate, we write

V C = V ⊗RC for the complexification of a real vector space V . Write g0 = k+m for the Cartan

decomposition of g0 with respect to the involution at 0. Then, gc = k +
√
−1m stands for the

corresponding Cartan decomposition of gc.

For u, v ∈ gc we write ad(u)(w) := [u,w], for ad(u) ∈ End(gc), etc. and denote by B(u, v) :=

Tr ad(u)ad(v) the Killing form B(·, ·) on gc. Since gc is a compact real form of a semisimple

complex Lie algebra, B(·, ·) is negative definite. Extend B(·, ·) to the complexification gC of gc

by complex bilinearity so that B(·, ·) is a nondegenerate complex bilinear form on gC. Denote

by (·, ·) the Hermitian bilinear pairing defined by (u, v) = B(u,−τc(v)), where τc stands for the
conjugation on gC with respect to the real form gc ⊂ gC, and write ‖u‖ =

√

(u, u). The isotropy

subgroupK ⊂ Gc is reductive, and the complex structure on Xc is induced by the adjoint action

of some element z belonging to the center z of k. We have the Harish-Chandra decomposition

gC = m+⊕ kC⊕m− which is eigenspace decomposition of ad(z) ∈ End(gC) corresponding to the

eigenvalues
√
−1, 0 and−

√
−1, respectively. By considering the action of ad(z) it follows readily

that [m+,m+] = [m−,m−] = 0, [kC, kC] ⊂ kC, [kC,m+] ⊂ m+, [kC,m−] ⊂ m− and [m+,m−] ⊂ kC.

In particular, the complex vector subspaces m+,m− ⊂ gC are abelian subalgebras. We have

m+ ⊕ m− = mC and m+ = m−. Here and in what follows, for u ∈ gC, u will be taken with

respect to the conjugation τ0 on the noncompact real form g0 ⊂ gC. We have τ0|kC = τc|kC and

τ0|mC = −τc|mC .

The Hermitian symmetric space X0 of the noncompact type can be identified as a bounded

symmetric domain by means of the Harish-Chandra embedding, as follows (cf. Wolf [11]).

For its formulation given the Harish-Chandra decomposition gC = m+ ⊕ kC ⊕ m−, we have

correspondingly the abelian subgroups M+,M− ⊂ GC, and the reductive subgroup KC ⊂ GC.

Theorem 2.2 (Harish-Chandra Embedding Theorem) The holomorphic map F : M+ ×
KC ×M− → GC defined by F (m+, k,m−) = m+km− is a biholomorphism of M+ ×KC ×M−
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onto a dense open subset of the complex Lie group GC containing G0. In particular, the map

η : m+ → GC/P = Xc defined by η(m+) = exp(m+)P is a biholomorphism onto a dense open

subset of Xc containing G0/K = X0. Furthermore, η−1(X0) =: Ω is a bounded domain on

m+ ∼= Cn, n = dimCX0.

The bounded symmetric domain Ω ⋐ C
n in its Harish-Chandra realization can be precisely

described in Lie-theoretic terms as the unit ball in m+ ∼= Cn with respect to a Banach norm,

implying in particular its convexity, by the Hermann Convexity Theorem (cf. Wolf [11]), as

follows.

Theorem 2.3 (Hermann Convexity Theorem) Identify C
n with the holomorphic tangent

space T0(Ω). Then, Ω ⋐ Cn is the unit ball in Cn corresponding to the Banach norm ‖ · ‖H on

T0(Ω) defined by
∥

∥ξ‖H := sup{‖ad(Re ξ)(v)‖ : v ∈ gC, (v, v) = 1} for ξ ∈ T0(Ω).

Remark 2.1 Note that in the statement of the Hermann Convexity Theorem, the operator

norm of ad(Re ξ) ∈ End(gC) is unchanged when the Hermitian inner product (·, ·) is rescaled,

i.e., when the Hermitian inner product on each of the simple factors of gC is replaced by a scalar

multiple.

2.3 Characterization of totally geodesic complex submanifolds of bounded sym-

metric domains in Harish-Chandra coordinates

In this subsection, we give a characterization of totally geodesic complex submanifolds S ⊂ Ω

of bounded symmetric domains Ω ⋐ Cn in terms of Harish-Chandra coordinates. From the

homogeneity of Ω under G0 it suffices to characterize those S ⊂ Ω passing through 0.

Since the focus is now on complex manifolds, here and henceforth we adopt a convention

common in complex geometry on the notation for tangent spaces. Given an n-dimensional

complex manifold Z and a point x ∈ Z, we denote by TR
x (Z) the real (2n)-dimensional tangent

space at x of the real (2n)-dimensional smooth manifold underlying Z, while the notation Tx(Z)

is reserved for the complex n-dimensional holomorphic tangent space at x, as opposed to the

meaning of the same notation in (2.1). Writing TC
x (Z) = TR

x (Z)⊗RC and decomposing the (2n)-

dimensional complex vector space TC
x (Z) = T 1,0

x (Z) ⊕ T 0,1
x (Z) as a direct sum of eigenspaces

of the J-operator underlying the integrable almost complex structure of Z, the holomorphic

tangent space Tx(Z) is canonically identified with the complex vector subspace T 1,0
x (Z) ⊂ TC

x (Z)

of complexified tangent vectors of type (1,0). We have the following proposition.

Proposition 2.1 Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-Chandra re-

alization, Ω = G0/K as a homogeneous space in the notation above, and S ⊂ Ω be a complex

submanifold passing through the origin 0 ∈ Ω. Then, identifying T0(S) ⊂ T0(Ω) ∼= m+ as an

abelian complex Lie subalgebra m+
1 ⊂ m+ ⊂ gC, S ⊂ Ω is totally geodesic with respect to a given

invariant Kähler metric g on Ω if and only if [m+
1 , [m

+
1 ,m

−
1 ]] ⊂ m+

1 . Furthermore, S = E ∩ Ω

for the complex vector subspace E ⊂ Cn corresponding to m+
1 ⊂ m+ whenever S ⊂ Ω is totally

geodesic.

Proof Let S ⊂ Ω be a totally geodesic complex submanifold passing through 0 ∈ Ω. Under

the identification T0(Ω) ∼= m+, we identify T0(S) with a complex vector subspacem+
1 ⊂ m+. The

real tangent space TR
0 (S) is given by Re(m+

1 ) =: m1 ⊂ m = TR
0 (Ω). By Theorem 2.1, m1 ⊂ g0



1130 N. M. Mok

is a Lie triple system, i.e., (†) [m1, [m1,m1]] ⊂ m1 holds. We claim that (†) is equivalent to

(††) [m+
1 , [m

+
1 ,m

−
1 ]] ⊂ m+

1 .

Starting with (†) and complexifying, we have [mC
1 , [m

C
1 ,m

C
1 ]] ⊂ mC

1 . Since mC
1 = m+

1 ⊕
m−

1 , where m−
1 = m+

1 , and [m+
1 ,m

+
1 ] = [m−

1 ,m
−
1 ] = 0, (†) is equivalent to [m+

1 , [m
+,m−

1 ]] +

[m−
1 , [m

−
1 ,m

+
1 ]] ⊂ m+

1 ⊕ m−
1 . Noting that [m−

1 , [m
−
1 ,m

+
1 ]] = [m+

1 , [m
+
1 ,m

−
1 ]] and that [m+

1 , [m
+
1 ,

m−
1 ]] ⊂ [m+, [m+,m−]] ⊂ [m+, kC] ⊂ m+, we conclude that (†) is equivalent to (††) [m+

1 , [m
+
1 ,m

−
1 ]]

⊂ m+
1 , as claimed.

We have deduced from Theorem 2.1 that S = Exp0(m
+
1 ) ⊂ Ω is a totally geodesic complex

submanifold if and only if (††) holds. To complete the proof of Proposition 2.1 it remains to

show that S ⊂ Ω must be given by S = E ∩ Ω for the complex vector subspace E ⊂ Cn

corresponding to m+
1 ⊂ m, whenever the complex submanifold S ⊂ Ω is totally geodesic with

respect to (Ω.g) and it passes through the origin 0 ∈ Ω.

For θ ∈ R define µθ ∈ GL(n;C) by µθ(z) = eiθz. Consider now the circle group S1 = {µθ :
θ ∈ R} ⊂ K, which acts on Ω by scalar multiplication, so that Ω is a circular domain. Write

Sθ := µθ(S). We have 0 ∈ Sθ and T0(Sθ) = eiθ · S = S. Since there is exactly one totally

geodesic submanifold (Z, g|Z) of (Ω, g) passing through 0 such that TR
0 (Z) = TR

0 (S), we have

Sθ = S. Thus, for any point x ∈ S, eiθx ∈ S for any θ ∈ R, hence for x 6= 0, the complex

analytic subset Cx ∩ S of the open disk Cx ∩ Ω must be the whole disk as it contains the real

analytic curve S1 · x, so that S ⊂ Ω is a union of open disks centered at 0 on complex lines ℓ

passing through 0. Thus, writing λ : Cn − {0} → Pn−1 for the canonical projection, there is a

complex analytic subvariety A ⊂ Pn−1 such that S = (λ−1(A) ∪ {0})∩Ω. Finally, since S ⊂ Ω

is smooth at 0, as is well-known the subvariety A ⊂ Pn−1 must necessarily be a projective linear

subspace, i.e., S must be of the form E ∩ Ω for some complex linear subspace E ⊂ Ω (noting

that E ∩ Ω is connected as Ω is convex). Clearly E ⊂ Cn corresponds to m+
1 , as desired. The

proof of Proposition 2.1 is complete.

3 Characterization of Harish-Chandra Realizations of Bounded

Symmetric Domains in Terms of Bisectional Curvatures

Recall that the G0-invariant Kähler metric ds2Ω on the bounded symmetric domain Ω has

been chosen so that the minimal disks of each irreducible Cartesian factor Ω are of constant

Gaussian curvature −2. For an irreducible bounded symmetric domain Ω = G0/K, we give a

brief description of the root space decomposition of the complex simple Lie group gC relevant

to the study of bisectional curvatures, and refer the reader to [4, 11] and references therein for

details. Here and in what follows we use the notation of the first two paragraphs in (2.2).

Writing ks = [k, k] for the semisimple part of k, we have k = ks ⊕ z, where z ⊂ k is the

1-dimensional center, containing an element z such that ad(z) defines the underlying integrable

almost complex structure on Ω. Writing hs ⊂ ks for a Cartan subalgebra and defining h := hs⊕z,

hC ⊂ gC is a Cartan subalgebra. Denoting by Φ the space of hC-roots of gC , we have Φ ⊂ ıh∗,

where h∗ := Hom(h,R). Recall the Harish-Chandra decomposition gC = m+ ⊕ kC ⊕ m−. For

the (complex 1-dimensional) root space gϕ associated to ϕ ∈ Φ, gϕ is also an eigenspace of

ad(z), and it follows that gϕ ⊂ m+, kC or m−. We denote by Φc ⊂ Φ the set of compact roots

ϕ, i.e., those for which gϕ ⊂ kC, and the set Φ0 of noncompact roots, i.e., those for which

gϕ ⊂ mC = m+ ⊕m−. With respect to a choice of the positive Weyl chamber in ıh∗ determined
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by ad(z), we decompose Φ into the disjoint union of the set Φ+ of positive roots and the set

Φ− of negative roots, so that, writing Φ+
0 = Φ0 ∩ Φ+ for the set of positive noncompact roots,

we have m+ = SpanC{gϕ : ϕ ∈ Φ+
0 }, and, Φ−

0 = Φ0 ∩ Φ− for the set of negative noncompact

roots, Φ−
0 = −Φ+

0 . We have m− = SpanC{g−ϕ : ϕ ∈ Φ+
0 }, hence the direct sum decomposition

gC = m+ ⊕ kC ⊕m− =
⊕

ϕ∈Φ+
0

gϕ ⊕
(

hC ⊕
⊕

ρ∈Φc

gρ

)

⊕
⊕

ϕ∈Φ+
0

g−ϕ.

In what follows, we will fix a lexicographic ordering of the roots compatible with the choice of

positive Weyl chamber so that there is a unique highest root µ of g, and µ ∈ Φ+0 is always a

long root. When gC is of type A, D or E, all roots in Φ are of equal length.

From now on, for Ω irreducible, we will replace the Killing form B(·, ·) on gC in the definition

of the Hermitian inner product (·; ·) and the Hermitian norm ‖ · ‖ by B′(·, ·) = cB(·, ·) for some

constant c = cg > 0 such that the induced Hermitian inner product (u; v) := B′(u,−τc(v))
is the standard Euclidean Hermitian inner product for u, v ∈ T0(Ω), i.e., for the G0-invariant

Kähler metric g we have gij(0) = δij , and g is precisely our choice of ds2Ω when Ω is irreducible.

The restriction B′|ıh is positive definite, and it defines a real linear isomorphism form h∗
R
:= ıh∗

to ıh =: hR, and we identify ϕ ∈ Φ in this way with an element Hϕ ∈ hR.

In the general case for gC = gC1 ⊕ · · · ⊕ gCs we rescale the Killing form on each simple direct

factor gCi , 1 ≤ i ≤ s, accordingly. Observe that the operator Banach norm ‖ad(u)‖H such

as that appearing in the statement of the Hermann Convexity Theorem for u ∈ gC remains

unchanged by such a replacement of B by B′ (cf. Remark 2.1).

For a positive noncompact root ϕ we write g[ϕ] := gϕ ⊕ g−ϕ ⊕ [gϕ, g−ϕ], where [gϕ, g−ϕ] =

CHϕ. Writing eϕ ∈ gϕ for a unit root vector, e−ϕ = eϕ ∈ g−ϕ, we have [Hϕ, eϕ] = 2eϕ, [Hϕ, e−ϕ]

= −2e−ϕ and [eϕ, e−ϕ] = Hϕ, so that g[ϕ] ∼= sl(2,C).

The orbit of 0 ∈ Ω under the Lie group G[ϕ] ⊂ GC corresponding to g[ϕ] ⊂ gC is a rational

curve ℓϕ := G[ϕ] · 0 on the compact dual Xc of X0
∼= Ω, which is totally geodesic with respect

to the Gc-invariant Kähler metric gc on Ω dual to ds2Ω, Ω ⊂ Xc being the Borel embedding.

When ϕ ∈ Φ+
0 is a long root, ℓϕ ⊂ Xc is a minimal rational curve. Defining g0[ϕ] := g[ϕ] ∩ g0,

we have g0[ϕ] ∼= su(1, 1). The orbit of 0 ∈ Ω under the corresponding Lie subgroup G0[ϕ] ⊂ G0

is a totally geodesic holomorphic disk Dϕ := G0[ϕ] · 0 on Ω. When ϕ ∈ Φ+
0 is a long root,

Dα = ℓϕ ∩ Ω is a minimal disk on Ω.

We say that two roots ϕ1, ϕ2 ∈ Φ are strongly orthogonal if and only if neither ϕ1 +ϕ2 nor

ϕ1 − ϕ2 is a root. Let Ψ = {ψ1, · · · , ψs} ⊂ Φ+
0 be a maximal strongly orthogonal subset, i.e.,

a subset of maximal cardinality of mutually strongly orthogonal positive noncompact roots.

Then, s = r := rank(Ω). Note that ψ1, ψ2 ∈ Φ+
0 are strongly orthogonal to each other if and

only if ψ1 − ψ2 /∈ Φ, since ψ1 + ψ2 is never a root, observing that [m+,m+] = 0.

For a strongly orthogonal set of positive noncompact roots Θ ⊂ Φ+
0 we write

g[Θ] :=
⊕

θ∈Θ

(gθ ⊕ g−θ ⊕ [gθ, g−θ]) =
⊕

θ∈Θ

g[θ].

Then, g[Θ] is a semisimple complex Lie algebra, g[Θ] ∼= sl(2,C)|Θ|. Writing g0[Θ] = g[Θ] ∩ g0,

then g0[Θ] ⊂ g[Θ] is a semisimple Lie algebra which is a noncompact real form of g[Θ] without

compact factors, g0[Θ] ∼= su(1, 1)|Θ|, and the G0[Θ]-orbit of 0 ∈ Ω is a Euclidean polydisk.
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To extract a maximal strongly orthogonal subset Ψ ⊂ Φ+
0 , we may start with choosing

ψ1 = µ ∈ Φ+
0 being the highest root and consider the subset Σ ⊂ Φ+

0 consisting of roots ϕ

strongly orthogonal to ψ1. Then there exists a simple Lie subalgebra g′0 ⊂ g0 such that, putting

k′ = k ∩ g′0, G
′
0/K

′
0 ⊂ G0/K = X0

∼= Ω is an irreducible Hermitian symmetric space of the

noncompact type embedded as a totally geodesic complex submanifold of Ω′ ⊂ Ω, and such

that T0(Ω
′) is spanned by

{

gσ : σ ∈ Σ}. Writing h′ := h ∩ k, h′C ⊂ g′C is a Cartan subalgebra,

and the restriction σ′ := σ|h′ for all σ ∈ Σ gives the set of positive noncompact roots of g′.

We have a totally geodesic complex submanifold ∆ × Ω′ →֒ Ω such that T0(∆) = Cgµ and

T0(Ω
′) = Span{g′σ′ : σ ∈ Σ}, g′σ′ = gσ. Repeating the same procedure with Ω′ in place of Ω,

we obtain inductively a maximal strongly orthogonal subset Ψ ⊂ Φ+
0 of positive noncompact

roots, Ψ = {ψ1, · · · , ψr}.
Since all roots ψ ∈ Ψ are long roots, each direct factor Dψ := G0[ψ] · 0 is the unit disk

on Ceϕ ∼= T0(DΨ), and Π0 = G0[Ψ] · 0 is a maximal polydisk of polyradius (1, · · · , 1), i.e.,
Π0 = ∆r × {0} ⊂ Ω in terms of Harish-Chandra coordinates corresponding to an orthonormal

basis consisting of unit root vectors eϕ arranged in a suitable order. In fact, there is more

symmetry among the disksDψ : ψ ∈ Ψ. From the Restricted Root Theorem one can deduce that

the full automorphism group Aut(Π0) (generated by Aut0(Π0) ∼= Aut(∆)r , and the permutation

group on the r Cartesian factors) embeds into G0 := Aut0(Ω) (cf. [11]), so that for each

pair (ψ1, ψ2) of distinct elements of Ψ, there exists k ∈ K such that Dψ2
= k(Dψ), and k

stabilizes Π0. The polydisk Π0 := G0[Ψ] · 0 ⊂ Ω is a maximal polydisk on Ω passing through 0,

where by a maximal polydisk in Ω we mean a totally geodesic complex submanifold of (Ω, ds2Ω)

biholomorphic to ∆r. All maximal polydisks in Ω passing through 0 are equivalent to each

other (hence to Π0) under conjugation by K. By the Polydisk Theorem (cf. [11]) we have

Ω =
⋃

k∈K
k(Π0), i.e., every ν ∈ T0(Ω) is tangent to some maximal polydisk Π := k(Π0).

Given any ξ ∈ T0(Ω), there exists k ∈ K such that η := k(ξ) is tangent to the reference

maximal polydisk Π0 ⊂ Ω. Since Aut(Π0) embeds into G0, composing with the action of (S1)r

for the circle group S1, acting according to (eiθ1 , · · · , eiθr) · (z1, · · · , zr) 7→ (eiθ1z1, · · · , eiθrzr)
and with permutations of the r Cartesian factors, we obtain some element k′ ∈ K such that

k′(ξ) = (a1, · · · , ar; 0, · · · , 0) such that all ai, 1 ≤ i ≤ r are real and nonnegative, and such that

a1 ≥ · · · ≥ ar ≥ 0. We call (a1, · · · , ar; 0, · · · , 0), or simply (a1, · · · , ar), the normal form of ξ

under the action of K.

Lemma 3.1 For any irreducible bounded symmetric domain Ω0 ⋐ Cn0 , there exists an

irreducible bounded symmetric domain Ω ⋐ Cn such that Ω0 ⊂ Ω as a totally geodesic complex

submanifold passing through 0, and such that, writing Ω = G0/K, gC is of type A, D or E.

Hence, writing Φ for the set of all roots of gC with respect to a Cartan subalgebra hC ⊂ gC, all

roots ϕ ∈ Φ are of equal length.

Proof Up to biholomorphisms, the only irreducible bounded symmetric domains Ω not of

these types are those of types B or C. These include type II domains DII
n where n ≥ 5 is odd,

type III domains DIII
n of rank n, n ≥ 3, and type IV domains of odd dimension n ≥ 3. For

Ω0 = DII
2m+1, m ≥ 2, it suffices to take Ω = DII

2m+2. For Ω0 = DIII
n , it suffices to take Ω = DI

n,n.

For Ω0 = DIV
2m+1,m ≥ 1, it suffices to take Ω = DIV

2m+2. All notations for bounded symmetric

domains are standard ones and the embedding Ω0 ⊂ Ω are also standard embeddings.
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We will need the following lemma on the combinatorics relating the space of positive non-

compact roots Φ+
0 with a maximal strongly orthogonal set Ψ of positive noncompact roots.

Lemma 3.2 Let Ω ⋐ Cn be an irreducible bounded symmetric domain of type A, D or E.

Let Ψ = {ψ1, · · · , ψr} be a maximal strongly orthogonal set of positive noncompact roots and

pick ϕ ∈ Φ+
0 −Ψ. Then either

(a) there exist exactly two distinct roots ψi1 , ψi2 ∈ Ψ such that ϕ − ψj ∈ Φ if and only if

j = i1 or j = i2; or

(b) there is exactly one root ψ ∈ Ψ such that ϕ− ψ ∈ Φ.

Proof We use standard notation for irreducible bounded symmetric domains. For Ω = DI
p,q,

1 ≤ p ≤ q, and for DII
2m, m ≥ 2, the lemma is obvious by using the standard representation

of T0(Ω) as a complex vector space of matrices and the root vectors of ϕ ∈ Φ+
0 as a standard

basis of such a vector space. For example, take in the case of a type I domain DI
p,q, 1 ≤ p ≤ q

the standard choice of the Cartan subalgebra hC ⊂ gC so that each of the 1-dimensional root

spaces gϕ, ϕ ∈ Φ+
0 , is spanned by an elementary matrix Eij , with (i, j)-entry being 1, and all

other entries being 0, where 1 ≤ i ≤ p, 1 ≤ j ≤ q, and choose the maximal polydisk Π to be

such that T0(Π) = SpanC{Ekk : 1 ≤ k ≤ p}. Then, case (a) occurs if and only if gϕ = CEij ,

1 ≤ i ≤ p, 1 ≤ j ≤ p. and case (b) occurs if and only if gϕ = CEij , 1 ≤ i ≤ p, p + 1 ≤ j ≤ q.

The case of type II domains DII
2m is very similar to the case of type I domains, except that only

case (a) occurs. Since type-IV domains DIV
2m, m ≥ 2 are of rank 2, the lemma is vacuous in

that case. The same is true for DV, which is also of rank 2.

It remains to check the case of Ω = DVI, which is of type E7 and of rank 3. We will make

use of the labeling of roots as in Zhong [13]. In the standard notation used in [13], a maximal

set of strongly orthogonal positive noncompact roots Ψ ⊂ Φ+
0 is given by Ψ = {ψ1, ψ2, ψ3}, in

which ψ1 = x1 − x2, ψ2 = x1 + x2 + x3, ψ3 = d− x3, where d = x1 + · · ·+ x7. For each ν ∈ Φ+
0

we define Hν := {ϕ ∈ Φ+
0 : ν−ϕ ∈ Φ}. To complete the proof of the lemma, it suffices to show

that Hψ1
∩Hψ2

∩Hψ3
= ∅. Any root ν ∈ Φ+

0 is a long root, so that [eν ] ∈ C0(Xc), the various of

minimal rational tangents (VMRT for short) on the irreducible Hermitian symmetric space Xc

of the compact type, and we have a decomposition of T0(Ω) into a direct sum of eigenspaces of

the Hermitian bilinear form Heν (u, v) = Θeνeνuv, given by T0(Ω) = Ceν⊕Heν⊕Neν , where Ceν ,

Heν andNeν are the eigenspaces ofHeν corresponding to the eigenvalues 2, 1 and 0, respectively,

and Heν = Span{eϕ : ϕ ∈ Hν}. Now for each unit vector α such that [α] ∈ C0(Xc), Hα can

be identified with T[α](C0(Xc)). In the case of Xc dual to X0
∼= DVI, C0(Xc) is dual to DV,

hence dimC Hα = 16, |Hν | = 16 for each ν ∈ Φ+
0 . Now Hψi

⊂ Φ+
0 −Ψ, |Φ+

0 − Ψ| = 24 and the

maximal possible cardinality of Hψ1
∩ Hψ2

is 16 + 16 − 24 = 8. By direct checking we have

Hψ1
∩Hψ2

= {x1−x4, x1−x5, x1−x6, x1−x7, x1+x3+x4, x1+x3+x5, x1+x3+x6, x1+x3+x7}.
Finally, ψ3 = d − x3, and none of the 8 elements of the set ψ3 − (Hψ1

∩Hψ2
) = {x2 + 2x4 +

x5 + x6 + x7, x2 + x4 + 2x5 + x6 + x7, x2 + x4 + x5 + 2x6 + x7, x2 + x4 + x5 + x6 + 2x7, x2 −
x3 + x5 + x6 + x7, x2 − x3 + x4 + x6 + x7, x2 − x3 + x4 + x5 + x7, x2 − x3 + x4 + x5 + x6} ⊂ h∗

R

is a root, hence Hψ1
∩Hψ2

∩Hψ3
= ∅, as desired. The proof of Lemma 3.2 is complete.

The given proof of Lemma 3.2 relies on some direct checking on roots. While that has the

advantage of being straightforward, it is also desirable to give a more conceptual proof of the

lemma. We give here such a proof which relies on some knowledge of the VMRT C0(Xc) of
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an irreducible Hermitian symmetric space Xc of the compact type, and on a curvature formula

for C0(Xc) ⊂ PT0(Ω) as a Kähler submanifold, PT0(Ω) being endowed with the Fubini-study

metric induced by ds2Ω(0) on T0(Ω). Let gc be the Gc-invariant Kähler metric on Xc such that

gc agrees with ds
2
Ω at 0. (Xc, gc) is of nonnegative bisectional curvature, and, denoting by R0

(resp. Rc) the curvature tensor of (Ω, ds2Ω) (resp. (Xc, gc)), we have R
c

αβγδ
(0) = −R0

αβγδ
(0) for

α, β, γ, δ ∈ T0(Ω). For convenience we write Θαβγδ = Rc
αβγδ

(0). We recall the following result

from [4, Appendix (III.2)]. Here we will write (X, g) for (Xc, gc).

Proposition 3.1 Let (X, g) be an irreducible Hermitian symmetric space of the compact

type, and denote by h the Fubini-study metric on PT0(Ω) induced by g. Then (C0(X), h|C0(X)) →֒
(PT0(Ω, h)) is a Hermitian symmetric space of the compact type of rank ≤ 2. Moreover, de-

noting by S the curvature tensor of (C0(X), h|C0(X)), and identifying at each [α] ∈ C0(X),

T[α](PT0(Ω)) with the orthogonal complement of Cα with respect to ds2Ω(0) for a unit charac-

teristic vector α, S is the restriction of the curvature tensor Θ of (X, g) at 0 to T[α](C0(X)),

which corresponds under the aforementioned identification with Hα, the eigenspace belonging to

the eigenvalue 1 of the Hermitian bilinear form Hα(u, v) = Θααuv. In particular, for bisectional

curvatures we have

Sξξηη = Θξξηη

for all ξ, η ∈ Hα.

Using Proposition 3.1 we prove the following statement, without requiring g to be of type

A, D or E, which implies Lemma 3.2.

Proposition 3.2 Let X be an irreducible Hermitian symmetric space of the compact type,

h ⊂ k be a Cartan subalgebra of k ⊂ g0, and Φ be the set of all hC-roots of gC. Let Ψ =

{ψ1, · · · , ψr} ⊂ Φ+
0 be a maximal set of strongly orthogonal positive noncompact roots, and

ρ ∈ Φ+
0 be a long root. Then, there are at most two distinct elements ψ of Ψ such that

ρ− ψ ∈ Φ.

Proof Since ρ ∈ Φ+
0 is a long root, the unit root vector eρ is a minimal rational tangent,

i.e., α := [eρ] ∈ C0(X). Suppose there exist distinct positive integers i, j and k such that

ρ − ψi, ρ − ψj and ρ − ψk are roots. ξψ := eψ mod Cα ∈ T0(X)/Cα are unit tangent vectors

of type (1, 0) at [α] for ψ = ψi, ψj , ψk. For brevity we write also ξℓ for ξψℓ
, 1 ≤ ℓ ≤ r.

By the definition of Ψ, we have Θξiξiξjξj = Θξjξjξkξk = Θξkξkξiξi = 0. By Proposition 3.1,

for the curvature tensor of C0(X) ⊂ PT0(X), we have Sξiξiξjξj = Sξjξjξkξk = Sξkξkξiξi = 0. It

follows that SpanR{Re ξi,Re ξj ,Re ξk} is a real 3-dimensional abelian subalgebra in TR
0 (C0(X)).

Exponentiating, we get a real 3-dimensional totally geodesic flat submanifold Σ ⊂ C0(X), so

that the latter must be of rank ≥ 3 as a Riemannian symmetric space, which contradicts with

the fact that rank(C0(X)) ≤ 2 as given in [4, Appendix III.2], proving the proposition.

On a complex affine line Λ ⊂ C
n and x ∈ Λ, Tx(Λ) = Cα, where α is a unit vector, for r > 0

we denote by ∆α(x; r) the open disk on Λ centered at x of radius r, i.e., ∆α(x; r) := Bn(x; r)∩Λ.

Theorem 3.1 Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-Chandra realiza-

tion. Then, Ω is the union of open disks ∆α(0; rα) ⊂ Λα on the complex lines Λα := Cα, as α
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ranges over unit vectors on C
n, where

2

r2α
:= sup{Θαανν : ν ∈ T0(Ω), ‖ν‖ = 1}.

In other words, ξ ∈ Ω if and only if Θξξνν < 2 for any unit vector ν ∈ T0(Ω).

Proof By Lemma 3.1 without loss of generality, we may assume that writing Ω = G0/K,

each irreducible factor of the semisimple complex Lie algebra gC is of type A, D or E. Let

α ∈ T0(Ω) be a unit vector. For simplicity in the ensuing arguments we will assume also that Ω

is irreducible. The theorem for the general case where Ω = Ω1 × · · · × Ωs and each irreducible

factor Ω, 1 ≤ k ≤ s is of A, D or E type follows readily from the arguments in the special case

where Ω is irreducible.

Writing Ψ = {ψ1, · · · , ψr} ⊂ Φ+
0 for a maximal set of strongly orthogonal positive noncom-

pact roots, and writing eϕ for a unit root vector associated to a root ϕ ∈ Ψ, there is a reference

maximal polydisk Π0 ⊂ Ω passing through 0, such that T0(Π0) = Ceψ1
⊕ · · · ⊕ Ceψr

, and, for

any α ∈ T0(Ω) there exists k ∈ K such that k(α) ∈ T0(Π0). An element c1eψ1
+ · · · + eψ1

will be denoted as (c1, · · · , cr). Choosing k properly, we may take k(α) to be the normal form

(a1, · · · , ar) such that each ai is real and nonnegative, and furthermore a1 ≥ · · · ≥ ar−1 ≥ ar.

For the proof of Theorem 3.1 without loss of generality we consider α to be the normal form

(a1, · · · , ar) itself.
For the tangent space T0(Ω), we write

T0(Ω) ∼= m+ =
⊕

{gϕ : ϕ ∈ Φ+
0 } =

(

⊕

ψ∈Ψ

Ceψ

)

⊕
(

⊕

ρ∈Φ+
0 −Ψ

Ceρ

)

.

Let now ν ∈ T0(Ω) be a unit vector and write

ν =
∑

ϕ∈Φ+
0

cϕeϕ =

r
∑

i=1

cieψi
+

∑

ρ∈Φ+
0 −Ψ

cρeρ,

where for Ψ = {ψ1, · · · , ψr} we write ci for cψi
, 1 ≤ i ≤ r. We have

Θαανν =

r
∑

i=1

a2i |ci|2Θiiii +
r

∑

i=1

∑

ρ∈Φ+
0 −Ψ

a2i |cρ|2Θiieρeρ ,

where for brevity here and in what follows Θiieρeρ stands for Θ(eψi
, eψi

; eρ, eρ), etc. Here we

have made use of the fact that Θijuv = 0 for i 6= j, 1 ≤ i, j ≤ r, and for u, v ∈ T0(Ω), which

follows from [eψ1
, eψj

] = 0 as ψi − ψj /∈ Φ. Now we rewrite the curvature expression of Θαανν
in the above as

Θαανν =
r

∑

i=1

a2i |ci|2Θiiii +
∑

ρ∈Φ+
0 −Ψ

|cρ|2
(

∑

ρ−ψi∈Φ

a2iΘiieρeρ

)

= 2

r
∑

i=1

a2i |ci|2 +
∑

ρ∈Φ+
0 −Ψ

|cρ|2
(

∑

{a2i : ρ− ψi ∈ Φ}
)

.

Noting that for 1 ≤ i ≤ r we have Θiiii = 2, and that for ρ ∈ Φ+
0 satisfying ρ−ψi ∈ Φ we have

eψi
∈ Heρ , so that Θiieρeρ = 1.
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By Lemma 3.2, given ρ ∈ Φ+
0 −Ψ, there exist at most 2 elements in Ψ such that ρ−ψ ∈ Φ.

Together with the ordering a1 ≥ · · · ≥ ar ≥ 0, we have the curvature estimate

0 ≤ Θαανν ≤ 2a21(|c1|2 + · · ·+ |cr|2) + 2a21

(

∑

ρ∈Φ+
0 −Ψ

|cρ|2
)

= 2a21

(

∑

ϕ∈Φ+
0

|cϕ|2
)

= 2a21,

where the last equality holds since ν =
∑{cϕeϕ : ϕ ∈ Φ+

0 } is a unit vector. Note that equality

holds in the first line when ν = eiθeψ1
, θ ∈ R, so that c1 = eiθ and cϕ = 0 any other root

ϕ ∈ Φ+
0 (although equality may also hold for some other unit vectors ν).

To determine rα in another way, note that Π0 ∩ CΛα consists of all u = t(a1, · · · , ar) such
that t ∈ C and |tai| < 1 for 1 ≤ i ≤ r, and it follows that u ∈ Π0 if and only if |t| < 1

a1
, i.e.,

rα = 1
a1

. Combining with the curvature estimate in the above, we have

2a21 =
2

r2α
:= sup{Θαανν : ν ∈ T0(Ω), ‖ν‖ = 1}

as desired. Finally, for ξ nonzero, ξ ∈ Ω if and only if ‖ξ‖ < rα, α = ξ
‖ξ‖ being a unit vector.

Thus, ξ ∈ Ω if and only if Θξξνν < 2 for any unit vector ν ∈ T0(Ω). The proof of Theorem 3.1

is complete.

Corollary 3.1 The bounded domain Ω ⋐ Cn in its Harish-Chandra realization is a convex

domain.

Proof Suppose α, β ∈ Ω and write γ = tα+ (1− t)β, 0 ≤ t ≤ 1. To prove the convexity of

Ω it suffices to show that γ ∈ Ω, i.e, Θγγνν < 2 for any vector ν ∈ T0(Ω). Now the Hermitian

form Hν given by Hα(u, v) := Θuvνν is positive semidefinite, thus defining ‖u‖Hν
:=

√

Hν(u, u)

for u ∈ T0(Ω) ∼= Cn, ‖ · ‖Hν
is a semi-norm. We have ‖α‖Hν

, ‖β‖Hν
<

√
2 and by the triangular

inequality

Θγγνν = Hν(tα+ (1− t)β, tα + (1− t)β) = ‖tα+ (1− t)β‖2Hν

≤ (t‖α‖Hν
+ (1− t)‖β‖)Hν

)2 <
√
2
2
= 2

as desired.

Remark 3.1 (a) The identification of each C0(X) ⊂ PT0(Ω) as a Hermitian symmetric

space of the compact type and of rank ≤ 2 can be read off from the Dynkin diagram D(g),

g = gC. If the Hermitian symmetric space (X, ds2X) is of type (g, αk) in standard notation,

and Σ is the set of simple positive roots adjacent to αk, then each connected component of

D(g) − {αk}, with a marking at σ ∈ Σ, corresponds to an ireducible factor of the Hermitian

symmetric space C0(X).

(b) Theorem 3.1 can be reformulated by stating that ξ ∈ Ω if and only if ‖ad(ξ)(ν)‖ <
√
2

for any unit vector ν ∈ m+, from which the convexity of Ω follows immediately. As such,

Theorem 3.1 may be regarded as a variant of the Hermann Convexity Theorem. Here we

prefer to formulate Theorem 3.1 as a statement concerning bisectional curvatures Θξξνν , with

an essentially geometric and self-contained proof.
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(c) One can prove Theorem 3.1 by geometric means free from classification results. As given

here, Theorem 3.1 is deduced from the Polydisk Theorem and the combinatorial Lemma 3.2.

The main feature of the Polydisk Theorem relevant to us is that each Cartesian factor is of

radius 1, which can be derived without using any classification theory. The alternative proof

of Lemma 3.2 given here relies on identifying the VMRT of X as a Hermitian symmetric space

(C0(X), s) of rank ≤ 2, which follows from the pinching condition 1 ≤ Sηηηη ≤ 2 on holomorphic

sectional curvatures for unit vectors η ∈ T[α](C0(X)) established in [4, Appendix III.2] by

elementary means, and which by Ros [7] implies the parallelism of the second fundamental

form of C0(X) ⊂ PT0(Ω) and hence the Hermitian symmetry of (C0(X), s), as its curvature

tensor S must then necessarily be parallel. By considering maximal polyspheres, the fact that

(C0(X), s) must be of rank ≤ 2 follows by observing that the Segre embedding of (P1)3 into P7

does not have parallel second fundamental form.

(d) The result of [7] was accompanied by a complete listing of Kähler submanifolds satisfying

the aforementioned pinching condition of the projective space (Pm, ds2FS) equipped with the

Fubini-study metric of constant holomorphic sectional curvature +2, according to Nakagawa-

Takagi [6, Theorem 7.4], which miraculously corresponds exactly to the listing of VMRTs of

(X, gc) for irreducible Hermitian symmetric spaces of the compact type (cf. [4]).

4 Proof of Theorem 1.1

We will continue to adopt notation with the meaning of symbols as defined in Section 3.

For the proof of Theorem 1.1 using results of Section 4 we will need furthermore a couple of

preliminary results, as follows.

Proposition 4.1 Let S ⊂ Ω be a totally geodesic complex submanifold passing through

0 ∈ Ω, so that S = E ∩ Ω for E ⊂ Ω corresponding to T0(S) ⊂ T0(Ω). Then,

2

r2α
:= sup{Θαανν : ν ∈ T0(S), ‖ν‖ = 1}.

Proof By Theorem 3.1 we have

2

r2α
:= sup{Θαανν : ν ∈ T0(Ω), ‖ν‖ = 1},

hence the key point of Proposition 4.1 is that we can compute rα by restricting to unit vectors

ν ∈ T0(S), for an arbitrary totally geodesic complex submanifold S ⊂ Ω passing through 0 such

that α ∈ T0(S). Noting that the set of totally geodesic complex submanifolds passing through

0 such that α ∈ T0(S) is closed under intersection (of an arbitrary family of such manifolds),

there is a unique minimal totally geodesic complex submanifold S0 passing through 0 such that

T0(S0). For α ∈ T0(Ω) with normal form (a1, · · · , ar), a1 ≥ · · · ≥ ar, we say that α is a general

tangent vector if and only if all ai, 1 ≤ i ≤ r, are distinct and positive. Replacing without loss

of generality α by (a1, · · · , ar) ∈ T0(Π0), the smallest totally geodesic complex submanifold S

passing through 0 such that α ∈ T0(S) is precisely given by S = Π0, the reference maximal

polydisk as defined in Section 3. Thus, to prove Proposition 4.1 for the case of a general

tangent vector α ∈ T0(Ω), it suffices to show the validity of the formula for rα for the special

case where α ∈ T0(Π0), S = Π0. But this already follows from the proof of Theorem 3.1, in
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which we showed that, writing ηk := eψ1
for 1 ≤ k ≤ r, for any unit vector ν ∈ T0(Ω) we have

Θαανν ≤ Θααη1η1 = 2a21, so that rα = 1
a1
. Since η1 ∈ T0(Π0), Proposition 4.1 for the case of a

general unit tangent vector α follows.

Consider now the case where the normal form (a1, · · · , ar) of the unit vector α ∈ T0 (Ω is

arbitrary). Writing

a1 = · · · = am1
> am1+1 = · · · = am1+m2

> · · · > · · ·
> am1+···+mℓ

= · · · = am1+···+mℓ
≥ 0,

wherem1+· · ·+mℓ, then the smallest totally geodesic complex submanifold S passing through 0

such that α ∈ T0(S) is an ℓ-dimensional polydisk given by S = diag(∆m1)× · · · × diag(∆mℓ) ⊂
∆r =: S0, where ∆r ⊂ Cr is identified with Π0 by the isomorphism (z1, . . . , zr) 7→ z1eψ1

+

· · · zreψr
, T0(Ω) being equated with Cn. In this case, take ν0 = 1√

m1
(eψ1

+ · · ·+ eψm1
), we have

ν0 ∈ T0(S0) and

Θααν0ν0 =
1

m1
a21(Rη1η1η1η1 + · · ·+Rηm1

ηm1
ηm1

ηm1
)

=
1

m1
(2m1a

2
1) = 2a21 = sup{Θαανν : ν ∈ T0(Ω), ‖ν‖ = 1},

where the last equation follows from rα = 1
a1

as given in the proof of Theorem 3.1. Thus,

Proposition 4.1 holds for any totally geodesic complex submanifold S ⊂ Ω passing through 0,

and for any unit vector α ∈ T0(S), as desired.

Lemma 4.1 Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-Chandra realization,

and S ⊂ Ω be a totally geodesic complex submanifold with respect to ds2Ω passing through the

origin 0 ∈ Ω, so that S is an open subset of a complex vector subspace E ⊂ Cn corresponding

to m+
1 ⊂ m+, S = E ∩ Ω. Let µ ∈ T0(S) ∼= m+

1 . Then, for any ξ1 ∈ m+
1 and η ∈ m+ ∼= T0(Ω)

orthogonal to m+
1 with respect to the Euclidean metric ds2Ω(0), we have Θξ1ηµµ = 0.

Proof Recall that

Θξ1ηµµ = Θµµξ1η = ([[µ, µ]; ξ1]; η),

where (·; ·) stands for the Hermitian inner product corresponding to ds2Ω(0). By Theorem 2.1,

S = E ∩ Ω is a totally geodesic complex submanifold if and only if [[m+
1 ,m

−
1 ],m

+
1 ] ⊂ m+

1 . It

follows readily that [[µ, µ], ξ1] =: γ ∈ m+
1 . Since η ⊥ m+

1 , we have

Θξ1ηµµ = ([[µ, µ], ξ1], η) = (γ; η) = 0

as desired.

We are now ready to give a proof of the main result Theorem 1.1.

Proof Recall that S ⊂ Ω ⋐ Cn is a totally geodesic complex submanifold passing through 0,

S = E ∩Ω, in which E ⊂ Cn is a complex vector subspace identified with T0(S) ⊂ T0(Ω) ∼= Cn,

and that ρ : Ω → E is the orthogonal projection with respect to the Euclidean metric ds20(0)

on T0(Ω) ∼= Cn. Let ξ ∈ Ω. Write ξ = ξ1 + η according to the orthogonal decomposition

T0(Ω) = T0(S)⊕ T0(S)
⊥, in which ξ1 ∈ T0(S) and η ∈ T0(S)

⊥, where A⊥ for a complex vector

subspace A ⊂ T0(Ω) denotes its orthogonal complement with respect to ds2Ω(0). By Theorem
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3.1, we have Θξξνν < 2 for any unit vector ν ∈ T0(Ω). For µ ∈ T0(S), by Lemma 4.1 we

have Θξ1ηµµ = 0. Together with the orthogonal decomposition ξ = ξ1 + η we deduce that for

µ ∈ T0(S) we have

2 > Θξξµµ = Θξ1ξ1µµ +Θηηµµ ≥ Θξ1ξ1µµ,

where the last inequality follows from the nonnegativity of bisectional curvatures of (Xc, gc).

On the other hand, by Proposition 4.1 we know that for any unit vector ν ∈ T0(Ω) we have

Θξ1ξ1νν ≤ sup{Θξ1ξ1µµ : µ ∈ T0(S), ‖µ‖ = 1},

so that

Θξ1ξ1νν < 2

for any unit vector ν ∈ T0(Ω), hence ξ1 ∈ Ω by Theorem 3.1. In other words, ρ(ξ) = ξ1 ∈
Ω ∩ E = S, so that ρ(Ω) = S, as desired. The proof of Theorem 1.1 is complete.

Remark 4.1 With an aim towards a specific application, the special case of Theorem 1.1

where the bounded symmetric domain Ω ⋐ Cn is irreducible and S ⊂ Ω is a minimal (totally

geodesic) disk was proved in Mok-Ng [5]. The proof there relied on the Hermann Convexity

Theorem.

From Theorem 1.1, we readily have the following theorem.

Theorem 4.1 Let (X, g) be a Hermitian symmetric manifold of the noncompact type, and

(Y, g|Y ) →֒ (X, g) be a totally geodesic complex submanifold. Then, Y ⊂ X is a holomorphic

retract of X, i.e., there exists a holomorphic mapping r : X → Y such that r|Y = idY .

Moreover the identity map idX on X is homotopic through a continuous family {Ft : t ∈ [0, 1]}
of holomorphic maps Ft : X → X such that F0(x) = x and F1 = r is a holomorphic retract of

X on Y and such that the continuous map F : X × [0, 1] → X defined by F (x, t) := Ft(x) is

real analytic on X × (0, 1).

Proof Since the total geodesy of Y in X does not depend on the choice of the Aut0(X)-

invariant Kähler metric g on X , without loss of generality we may take g to correspond to

the Kähler metric ds2Ω on Ω ∼= X . Denoting by ξ : X → Ω the Harish-Chandra realization,

define S := ξ(Y ). Then, writing r : X → Y to correspond to the orthogonal projection

ρ : Ω → S, we have r : X → Y and r|Y = idY . Finally, for 0 ≤ t ≤ 1, define ft : Ω → S

by ft = ρ(x) + t(x − ρ(x)), we have ft(x) ∈ Ω. As t ranges over [0, 1], for each point x ∈ Ω,

ft(x) describes the closed interval joining x to ρ(x) ∈ S ⊂ Ω. Hence, writing f(x, t) = ft(x)

we have defined a continuous map f : Ω × [0, 1] → Ω, which corresponds under the inverse of

the Harish-Chandra realization η : X
∼=−→ Ω to a continuous map F : X × [0, 1] → Y yielding a

deformation of the identity map to the holomorphic retract r : X → Y , as desired.

5 Holomorphic Totally Geodesic Isometric Embeddings with

Respect to Carathéodory and Koba-yashi Metrics

For a bounded domain D in a complex Euclidean space CN , we denote by ‖ · ‖CD
its

infinitesimal Carathéodory metric and by ‖ · ‖KD
its infinitesimal Kobayashi metric. On the

unit disk ∆, we denote by ‖ · ‖∆ its Poincaré metric of constant Gaussian curvature −2. By
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convention we have ‖ · ‖∆ = ‖ · ‖C∆
= ‖ · ‖K∆

. Concerning the Carathédory metric and the

Kobayashi metric on bounded symmetric domains and those of their totally geodesic complex

submanifolds (which are themselves biholomorphic to bounded symmetric domains) we have

the following theorem.

Theorem 5.1 Let (X, g) be a Hermitian symmetric manifold of the noncompact type, and

(Y, g|Y ) →֒ (X, g) be a totally geodesic complex submanifold. Then, the inclusion map ı : Y →֒ X

is a holomorphic isometric embedding with respect to the Carathéodory (and equivalently the

Kobayashi) metric.

Proof In this proof for a complex manifold M we denote by ‖ · ‖M the Carathéodory

pseudonorm onM . Write n (resp. m) for the complex dimension of X (resp. Y ). Let χ : X
∼=−→

Ω be the Harish-Chandra realization of X as a bounded domain Ω ⋐ C
n. Since (Y, g|Y ) →֒

(X, g) is a totally geodesic complex manifold, S := χ(Y ) = E ∩ Ω for an m-dimensional

complex vector subspace E ⊂ Cn. By a theorem of Wong-Royden based on Lempert’s theorem

on extremal holomorphic Kobayashi disks on strictly convex bounded domains, we know that

the infinitesimal Carathéodory and Kobayashi metrics on Ω. S = E ∩Ω, being the intersection

of a bounded domain with a complex linear subspace, is itself a weakly convex domain in the

complex vector space E, thus the infinitesimal Carathéodory and Kobayashi metrics agree on

S. To prove the theorem it remains to show that the inclusion ı : S →֒ Ω is an isometric

embedding with respect to the Carathéodory metrics.

Given any point x ∈ S and any vector η of type (1,0) tangent to S at x, among all holomor-

phic maps h : S → ∆ of S into the unit disk ∆ as a consequence of Montel’s theorem and the

homogeneity of ∆ that there exists f : S → ∆ such that ‖∂f(η)‖∆ realizes the supremum of

all ‖∂h(η)‖∆. Let now ρ : Ω → S be the holomorphic retract defined as in Theorem 1.1 as the

orthogonal projection with respect to the Euclidean metric on Cn. Then, F := f ◦ ρ : Ω → ∆

and we have ∂F (η) = ∂f(η) since ρ|S = idS . From the inclusion S ⊂ Ω we have

‖η‖CΩ
≤ ‖η‖CS

.

On the other hand, by the choice of f we have ‖η‖CS
= ‖∂f(η)‖∆, while the extension F : Ω →

∆ yields

‖η‖CΩ
≥ ‖∂F (η)‖∆ = ‖∂f(η)‖∆ = ‖η‖CS

.

Combining the two inequalities we have ‖η‖CΩ
= ‖η‖CS

, as desired. The proof of Theorem 5.1

is complete.

Remark 5.1 Regarding the Theorem of Royden-Wong referred to in the second paragraph

of the proof, the original unpublished manuscript was elaborated and further developed posthu-

mously leading to the published work of Royden-Wong-Krantz [8], and there was also a different

proof by Salinas [9] using operator theory.

6 Appendix

In the proof of Theorem 5.1, in place of quoting the Theorem of Royden-Wong, for the

special case of a bounded symmetric domain in its Harish-Chandra realization Ω ⋐ Cn, one

can assert the equivalence of the infinitesimal Carathéodory metric ‖ · ‖CΩ
and the infinitesimal



Holomorphic Retractions of Bounded Symmetric Domains 1141

Kobayashi metric ‖ · ‖KΩ
by means of Theorem 1.1 itself, thus yielding a self-contained proof

of the equivalence of ‖ · ‖CΩ
and ‖ · ‖KΩ

independent of Lempert’s theorem in [3], as follows.

Proposition 6.1 For any η ∈ TΩ we have ‖η‖CΩ
= ‖η‖KΩ

.

Proof Write r for the rank of Ω as a bounded symmetric domain. Let Π ⊂ Ω be a maximal

polydisk passing through 0 ∈ Ω, Π ∼= ∆r. Π ⊂ Ω is totally geodesic with respect to ds2Ω, and

we have Π = V ∩Ω, where V ⊂ Cn is a complex vector subspace, dimC V = r. By the Polydisk

Theorem, any tangent vector ν ∈ TΩ is equivalent under the action of G0 to a vector η ∈ T0(Π).

Then, by Theorem 1.1, the image of the orthogonal projection ρ : Ω → V is exactly Π. Note

that on the unit disk we have ‖ · ‖C∆
= ‖ · ‖K∆

from the definitions. On Π ∼= ∆r, for any x ∈ Π

and η ∈ Π written as η = (η1, · · · , ηr) in terms of Euclidean coordinates, we have obviously

‖η|CΠ
= max(‖η1‖C∆

, · · · , ‖ηr‖C∆
)

= max(‖η1‖K∆
, · · · , ‖ηr‖K∆

) = ‖η‖KΠ
.

The proof of Theorem 5.1, without quoting the theorem of Royden-Wong, shows that Π ⊂ Ω is

an isometric embedding with respect to the Carathéodory metric. Thus, ‖η‖CΩ
= ‖η‖CΠ

. On

the other hand,

‖η‖KΩ
= inf

{ 1

R
: R > 0, ∃f : ∆

hol.−→ Ω : f(0) = 0, df(0)
( ∂

∂z

)

= Rη
}

.

Write R = Rf . Since ρ : Ω → Π, for any holomorphic map f : ∆ → Ω in the above, we have

F := ρ ◦ f : ∆ → Π such that F (0) = f(0) = 0, and dF (0)
(

∂
∂z

)

= df(0)
(

∂
∂z

)

= Rfη since

ρ|Π = idΠ. Taking infimum of 1
Rf

over all holomorphic maps f : ∆
hol.−→ Ω such that f(0) = 0

and df(0)
(

∂
∂z

)

is a positive multiple of η, we have

‖η‖KΠ
≤ ‖η‖KΩ

.

On the other hand, since Π ⊂ Ω, any holomorphic map F : ∆ → Π is a holomorphic map into

Ω, and it follows from the definition of the infinitesimal Kobayashi metric that ‖η‖KΠ
≥ ‖η‖KΩ

,

forcing therefore ‖η‖KΠ
= ‖η‖KΩ

, and hence

‖η‖KΩ
= ‖η‖KΠ

= ‖η‖CΠ
= ‖η‖CΩ

,

proving ‖ · ‖CΩ
= ‖ · ‖KΩ

on Ω, as desired.
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