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Abstract In this paper, the author discusses the deformations of compact complex mani-

folds with ample canonical bundles. It is known that a complex manifold has unobstructed

deformations when it has a trivial canonical bundle or an ample anti-canonical bundle.

When the complex manifold has an ample canonical bundle, the author can prove that

this manifold also has unobstructed deformations under an extra condition.
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1 Introduction

Let (X,ω) be a compact Kähler manifold with dimension dimCX = n, and we denote its

canonical bundle by KX . In the last several decades, there have been a large amount of results

about the deformations of complex structures on compact complex manifolds, for example

[11, 16]. The most fundamental theorem established by Kodaira and Spencer states that on a

compact complex manifold X , an element ϕ ∈ A0,1(X,T 1,0X), which we usually call a Beltrami

differential, determines a new complex structure once it solves the Maurer-Cartan equation




∂ϕ =

1

2
[ϕ, ϕ],

ϕ(0) = 0.
(1.1)

They also showed that the obstruction of the deformations lies in the cohomology group

H2(X,T 1,0X). Consequently, when X is a Fano manifold, i.e., K−1

X is ample, by the Kodaira

vanishing theorem, we see that

H2(X,T 1,0X) ∼= Hn−2(X,Ω1(KX)) = 0

because of the negativity of the line bundle KX , which yields that all Fano manifolds have

unobstructed deformations.

When the manifold X is Calabi-Yau, i.e., the canonical bundle KX is trivial, the deforma-

tions are also unobstructed according to Bogomolov, Tian and Todorov, which is now widely

known as the Bogomolov-Tian-Todorov theorem (see [2, 24–25]). Besides, there are also many
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noteworthy results concerning the deformations of logarithmic Calabi-Yau pairs, for example,

[9, 13]. It is worth pointing out that the research concerning the deformations of other interest-

ing structures in complex geometry also have a lot of breakthrough in recent years, for example

[19–21]. Note that in [15] there is a more global method to deal with the deformation theory.

When KX is ample, it is much more complicated. There are examples that the deformations

may be obstructed. For example, Horikawa [8, Section 10] constructed an example as follows.

First, by studying the deformations of holomorphic maps, he got that the monoidal transforma-

tion Y of the complex projective space CP3 has obstructed deformations, where the center C is

a curve of degree 14 and of genus 24 in CP
3 which was constructed by Mumford [17]. Horikawa

then showed that if X is a general element of a sufficiently ample linear system on Y , then X is

non-singular, irreducible, and has an ample canonical bundle, and then he showed that X has

obstructed deformations by showing that its Kodaira-Spencer map is not surjective.

However, there are also examples that some certain compact complex manifolds with ample

canonical bundles have unobstructed deformations, such as ample hypersurfaces in an Abelian

variety (see [4]) and surfaces of type IIb, which are birational to the quintic hypersurface in

CP
3 (see [7]).

Thus, it is natural to ask what the obstruction of the deformations is and whether it has a

Hodge theoretic characterization when the canonical bundle is ample.

In this paper, we use the Hodge theory and the iteration method to explore the obstruction.

We will solve (1.1) and express the solution as a formal power series

ϕ(t) =

∞∑

i=1

ϕit
i,

when KX is ample.

Explicitly speaking, we begin with an arbitrary harmonic initial value ϕ1 ∈ H0,1(X,T 1,0X)

and solve the reduced equations (2.8) by induction with an extra condition that the essential

obstruction vanishes:

H(∇′ ◦ iϕ ◦ iϕΩ0) = 0. (1.2)

The solution at step 2 (which means the coefficient of t2 in ϕ(t)) is expressed as

ϕ2 = Ω∗
0y∂

∗
G

(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)
.

Here H is the orthogonal projection of differential forms to their harmonic parts, G is the Green

operator of ∂, ∇′ is the (1,0)-component of the Chern connection on the anticanonical bundle

and Ω0 is a globally defined and nowhere vanishing element in An,0(X,K−1

X ), which can be

written as

Ω0 = dz ⊗ ∂

∂z
:= dz1 ∧ · · · ∧ dzn ⊗ ∂

∂z1
∧ · · · ∧ ∂

∂zn
(1.3)

under a local coordinate (z1, · · · , zn).
The notion •yΩ0 denotes the contraction between elements in A0,q(X,T 1,0X) and Ω0, which

induces an isomorphism

•yΩ0 : A
0,q(X,T 1,0X) → An−1,q(X,K−1

X ).
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And we denote the inverse by Ω∗
0y• .

By running induction, the solution we obtain at the N -th step can be expressed as

ϕN = Ω∗
0y

[
∂
∗
G

(
− 1

2

∑

i+j=N

∇′ ◦ iϕi
◦ iϕj

Ω0

)]

for any positive integer N .

The solutions we have obtained till the N -th step can be put together and written as

ϕN = Ω∗
0y

{
∂
∗
G

(
− 1

2

∑

2≤K≤N

∑

i+j=K

∇′ ◦ iϕi
◦ iϕj

Ω0

)
titj + (iϕ1

Ω0)t
1

}
,

where ϕi is the solution at step i (which means the coefficient of ti in ϕ(t)), 1 ≤ i ≤ N − 1.

Here ϕN = ϕ1t+ · · ·+ ϕN t
N .

By doing so, the solution ϕ(t) can eventually be expressed as





ϕ = Ω∗
0y

{
∂
∗
G

(
− 1

2
∇′ ◦ iϕ ◦ iϕΩ0

)
+ iϕ1

Ω0

}
,

∂ϕ

∂t

∣∣∣∣
t=0

= ϕ1,

ϕ(0) = 0,

(1.4)

which is uniquely determined by the harmonic initial value ϕ1.

Note that at each step the condition (1.2) means H(∇′◦iϕi
◦iϕj

Ω0) = 0 for the corresponding

i, j.

In conclusion, we obtain the following theorem.

Theorem 1.1 Let X be a compact complex manifold with an ample canonical bundle KX.

If H(∇′ ◦ iϕ ◦ iϕΩ0) = 0, where ϕ is defined by (1.4), then X has unobstructed deformations.

Here Ω0 is a nowhere vanishing element in An,0(X,K−1

X ) defined in (1.3).

Remark 1.1 There are examples satisfying our condition H(∇′ ◦ iϕ ◦ iϕΩ0) = 0, e.g.

(1) Compact Riemann surfaces with genus at least 2.

(2) The manifolds like X = X1×· · ·×Xm for any integer m ≥ 2 where each Xi is a compact

Riemann surface with genus at least 2, i = 1, · · · ,m.
Both of them have ample canonical bundles and thus by Theorem 1.1 they have unobstructed

deformations.

In addition, we need to point out that our method also works when c1(X) = 0, i.e., when

KX is a torsion line bundle.

Corollary 1.1 (see [24–25]) If c1(X) = 0, i.e., KX is a torsion line bundle, then X has

unobstructed deformations.

This paper is organized as follows. In Section 2, we present some basic notions and reduce

the Maurer-Cartan equation (1.1) into two equations (2.8). In Section 3, we solve the reduced

equations when the canonical bundle is ample and discuss some examples about the obstruction.

Besides, we also show that our method still works when KX is a torsion line bundle.
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2 Reduction of the Equation

Inspired by the work of Liu, Rao and Wan [13], we first reduce the Maurer-Cartan equation

(1.1) into two equations.

Let (X,ω) be a compact Kähler manifold. In terms of a local coordinate,

ω =
√
−1gijdz

i ∧ dzj .

Selecting a nowhere vanishing section Ω of An,0(X,K−1

X ), we have an isomorphism obtained by

contraction:

•yΩ : A0,1(X,T 1,0X) → An−1,1(X,K−1

X ).

And we denote the inverse by

Ω∗
y• : An−1,1(X,K−1

X ) → A0,1(X,T 1,0X).

Here the notion ϕy(•) denotes the contraction between tangent vectors and differential forms

that dual to each other. Sometimes we also use the notion iϕ(•) to denote the same operation.

Throughout this paper, we need the following technical lemma.

Lemma 2.1 For any ϕ, ψ ∈ A0,1(X,T 1,0X) and Ω ∈ An,q(X), we have

[ϕ, ψ]yΩ = −∂(ψyϕyΩ) + ψy∂(ϕyΩ) + ϕy∂(ψyΩ).

For the proof, the generalizations and further applications of this lemma, one can refer to

[12, 14].

There is a unique Chern connection∇ = ∇′+∂ on the Hermitian line bundle (K−1

X , det(gij)).

Therefore, similar to Lemma 2.1, we have the following Tian-Todorov lemma (e.g. in [12,

Theorem 3.4])

[ϕ, ψ]yΩ = −∇′(ψyϕyΩ) + ψy∇′(ϕyΩ) + ϕy∇′(ψyΩ). (2.1)

Before reducing the Maurer-Cartan equation, we need some preparations.

Definition 2.1 For an element ϕ ∈ A0,1(X,T 1,0X), the divergence operator is defined by

div = tr ◦ ∇ : A0,1(X,T 1,0X) → A0,1(X).

In terms of a local coordinate (z1, · · · , zn) , we write ϕ = ϕi
j
dzj ⊗ ∂

∂zi . Thus

div(ϕ) = (∂iϕ
i
j
+ ϕi

j
∂i log det(g))dzj .

Since div(ϕ) is a (0,1)-form, it is obvious that

ϕy(div(ϕ) ∧ Ω) = div(ϕ) ∧ (ϕyΩ). (2.2)

Proposition 2.1 Let ϕ be an element in A0,1(X,T 1,0X) and Ω be a nowhere vanishing

element in An,0(X,K−1

X ).
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If





(
∂ +

1

2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ = 0,

(∂ +∇′ ◦ iϕ + div(ϕ))Ω = 0,
(2.3)

then

∂ϕ =
1

2
[ϕ, ϕ].

Proof We assume that the equations in (2.3) hold. Note that

∂(ϕyΩ) = ∂ϕyΩ+ ϕy∂Ω. (2.4)

By the assumption, the left-hand side of (2.4) is

LHS = −1

2
∇′ ◦ iϕ ◦ iϕΩ− div(ϕ) ∧ iϕΩ

=
1

2
[ϕ, ϕ]yΩ− iϕ ◦ ∇′ ◦ iϕΩ− ϕy(div(ϕ) ∧ Ω),

and the right-hand side of (2.4) is

RHS = ∂ϕyΩ− ϕy(∇′ ◦ iϕΩ+ div(ϕ) ∧ Ω)

= ∂ϕyΩ− iϕ ◦ ∇′ ◦ iϕΩ− ϕy(div(ϕ) ∧ Ω).

Comparing the two sides of (2.4) we have

(
∂ϕ− 1

2
[ϕ, ϕ]

)
yΩ = 0,

and we get

∂ϕ =
1

2
[ϕ, ϕ]

since the operation •yΩ is an isomorphism.

In order to simplify the subsequent calculations, we need the following lemma.

Lemma 2.2 Denote

Φ = Φ(z)dz ⊗ ∂

∂z
= −∇′ ◦ iϕΩ− div(ϕ) ∧Ω,

where Φ(z) ∈ A0,1(X) and

Ω = Ω(z)dz ⊗ ∂

∂z
,

where Ω(z) is a smooth function on X. Then we have

Φ(z) = iϕ∂Ω(z).

Here the notions dz and ∂
∂z

can be locally written as

dz = dz1 ∧ · · · ∧ dzn,
∂

∂z
=

∂

∂z1
∧ · · · ∧ ∂

∂zn
.
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Proof On one hand, we know that

∇′ ◦ iϕΩ = ∇′ ◦ iϕ
(
Ω(z)dz ⊗ ∂

∂z

)

= ∇′(ϕi
j
)dzj ∧ Ω(z)(−1)i−1dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ⊗ ∂

∂z

= −∇i(ϕ
i
j
Ω(z))dzj ∧ dz ⊗ ∂

∂z
.

On the other hand,

div(ϕ) ∧ Ω = (∇iϕ
i
j
)Ω(z)dzj ∧ dz ⊗ ∂

∂z
.

Hence

−∇′ ◦ iϕΩ− div(ϕ) ∧ Ω = ϕi
j
∂iΩ(z)dz

j ∧ dz ⊗ ∂

∂z

= (ϕy∂Ω(z)) ∧ dz ⊗ ∂

∂z
,

which implies the conclusion.

From now on, our aim is to solve equations (2.3) by using the Hodge theory and the iteration

method. To do this, following the approach of Kodaira and Spencer [11, 16], we expand the

terms ϕ and Ω into power series

ϕ(t) =
∞∑

i=1

ϕit
i, Ω(t) = Ω0 +

∞∑

i=1

Ωit
i.

Thus the terms Φ(z) and Ω(z) defined in Lemma 2.2 can also be expanded into power series in

t.

Throughout this paper, we usually choose a harmonic ϕ1 as the initial value, i.e., ∂ϕ1 = 0

and ∂
∗
ϕ1 = 0.

The following proposition reveals the legality of the iteration method in the study of defor-

mation theory.

Proposition 2.2 If for any k ≤ N − 1 we have





[(
∂ +

1

2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ

]
k+1

= 0,

[(∂ +∇′ ◦ iϕ + div(ϕ))Ω]k = 0,
(2.5)

we then derive that




∂[(∇′ ◦ iϕ + div(ϕ))Ω]N = 0,

∂
[(1

2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ

]
N+1

= 0.
(2.6)

Here the subscript [•]k denotes the coefficient of tk once we expand both equations in (2.3)

into power series of the variant t.

Proof According to Proposition 2.1, the condition implies that

[
∂ϕ− 1

2
[ϕ, ϕ]

]
≤k+1

= 0



Deformations of Compact Complex Manifolds with Ample Canonical Bundles 7

for any k ≤ N − 1.

Note that the first equation in (2.6) to be proved is equivalent to ∂Φ(z)N = 0 while the

second one in (2.5) that we assumed is equivalent to (∂Ω(z)−Φ(z))N−1 = 0. Then by explicit

calculations we have

∂Φ(z)N = ∂[iϕ∂Ω(z)]N

=
[1
2
[ϕ, ϕ]y∂Ω(z)− ϕy∂∂Ω(z)

]
N

= [ϕy∂(ϕy∂Ω(z))− ϕy∂(ϕy∂Ω(z))]N

= 0,

where in the third equality we used the Tian-Todorov lemma.

Meanwhile, we have

[(1
2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ

]
N+1

= [ϕy(∇′ ◦ iϕΩ + div(ϕ) ∧ Ω)− i∂ϕΩ]N+1,

and then

∂
[(1

2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ

]
N+1

= [∂ϕy(∇′ ◦ iϕΩ + div(ϕ) ∧ Ω) + i∂ϕ∂Ω]N+1

= [∂ϕy(∇′ ◦ iϕΩ + div(ϕ) ∧ Ω+ ∂Ω)]N+1

= 0,

where in the first equality we used the Tian-Todorov lemma and in the third equality we used

the assumption that the equations in (2.5) hold in lower degrees and the fact that the initial

value ϕ1 is harmonic so that ∂ϕ1 = 0.

Although Proposition 2.2 enables us to solve the equations (2.3) by induction and then solve

the Maurer-Cartan equation

∂ϕ =
1

2
[ϕ, ϕ],

there is a straightforward way to deal with the problem. Indeed, as we pointed out in the proof

of Proposition 2.2, the second equation in (2.3) is equivalent to

∂Ω(z) = Φ(z) = iϕ∂Ω(z),

which has a trivial solution. Then the original equation also has a trivial solution

Ω(t) = Ω0 = dz ⊗ ∂

∂z
,

where dz and ∂
∂z

are defined in Lemma 2.2.

Then it suffices to solve the equation

(
∂ +

1

2
∇′ ◦ iϕ + div(ϕ)

)
iϕΩ0 = 0.

By direct calculations, we have

∇′(ϕyΩ0) = (−1)i∇′
(
ϕi
j
dzj ⊗ dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ⊗ ∂

∂z

)
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= −∇iϕ
i
j
dzj ∧ dz ⊗ ∂

∂z

= −div(ϕ) ∧ Ω0. (2.7)

Then by (2.2) we have

div(ϕ) ∧ iϕΩ0 = iϕ(div(ϕ) ∧Ω0) = −iϕ ◦ ∇′(iϕΩ0).

In conclusion, the equations that we need to solve can be reduced to the following equations




(
∂ +

1

2
∇′ ◦ iϕ

)
iϕΩ0 = 0,

∇′(iϕΩ0) = 0.
(2.8)

3 Solving the Equations

In this section, we solve the equations (2.8) on a compact Kähler manifold (X,ω) when the

canonical bundle KX is ample or a torsion line bundle separately.

First, we state a technical lemma about the divergence of the Beltrami differential div(ϕ)

which is known to experts in this area (see [22–23, 28]). For the readers’ convenience, we present

the proof here.

Lemma 3.1 (see [22, 28]) Let (X,ω) be a compact Kähler manifold. Let ϕ ∈ A0,1(X,T 1,0X)

and ∆′′ be the Laplacian operator of ∂. Then we have

(1) If ∂
∗
ϕ = 0, then ∂

∗
(ϕyω) =

√
−1div(ϕ).

(2) If ∂(ϕyω) = 0 and ∂
∗
ϕ = 0, then

∆′′(ϕyω) =
√
−1div(∂ϕ) + ϕyRic(ω).

Proof Locally we write ϕ = ϕi
j
dzj ⊗ ∂

∂zi and ω =
√
−1gkldz

k ∧ dzl. The lemma can be

proved by direct calculations.

(1) For the first term, we have

∂
∗
(ϕyω) =

√
−1∂l[(ϕ

m
p gmj − ϕm

j
gmp)g

kp]gljgkidz
i

=
√
−1[∂l(ϕ

m
i
gmj − ϕm

j
gmi)g

lj + (ϕm
p gmj − ϕm

j
gmp)∂lg

kpgljgki]dz
i

=
√
−1[∂l(ϕ

m
i
gmj)g

lj − ∂l(ϕ
m
j
gmi)g

lj + ϕm
p ∂mg

kpgki + ϕm
j
∂lgmpg

kpgljgki]dz
i

=
√
−1div(ϕ),

where in the last equality we used the condition ∂
∗
ϕ = 0, i.e., ∂k(ϕ

i
l
gij)g

kl = 0.

(2) For the second term, we have

∆′′(ϕyω) = (∂ ∂
∗
+ ∂

∗
∂)(ϕyω)

= ∂ ∂
∗
(ϕyω)

= ∂(
√
−1div(ϕ))

=
√
−1∂[(∂iϕ

i
j
+ ϕi

j
∂i log g)dz

i]

=
√
−1[∂k(∂iϕ

i
j
) + (∂ϕi

j)∂i log g + ϕi
j
∂k∂i log g]dz

k ∧ dzj

=
√
−1div(∂ϕ) + ϕyRic(ω).
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3.1 When KX is ample

Let X be a compact Kähler manifold with an ample canonical bundle KX . Since KX is

ample, there is a Hermitian metric h on KX such that its curvature form gives rise to a Kähler

metric

ω =
√
−1 ∂∂ log h

on X . For any harmonic initial value ϕ1 ∈ H0,1(X,T 1,0X), we try to construct a power series

ϕ(t) = ϕ1t+ ϕ2t
2 + · · · ∈ A0,1(X,T 1,0X)

satisfying the Maurer-Cartan equation

∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)].

As we did in the last section, we denote

Ω0 := dz ⊗ ∂

∂z
∈ An,0(X,K−1

X ),

which gives rise to an isomorphism between A0,q(X,T 1,0X) and An−1,q(X,K−1

X ) through con-

traction •yΩ0. The inverse is denoted by Ω∗
0y•. Clearly, for any elements α, β ∈ A0,q(X,T 1,0X),

we have the following equalities

∂(αyΩ0) = (∂α)yΩ0, ∂
∗
(αyΩ0) = (∂

∗
α)yΩ0, 〈αyΩ0, βyΩ0〉 = 〈α, β〉,

where 〈·, ·〉 denotes the inner product on the space of (bundle-valued) differential forms. Then

the operation •yΩ0 preserves the inner product and the Hodge decomposition

I = H+∆′′
G,

where H is the orthogonal projection of a (bundle valued) differential form to its harmonic part,

∆′′ is the Laplacian operator of ∂ and G is the Green operator of ∆′′.

In other words, we have an isomorphism between two spaces of harmonic forms

•yΩ0 : H0,q(X,T 1,0X) → H
n−1,q(X,K−1

X ).

The following lemma wonderfully reflects the spirit of the iteration method and is of signif-

icant importance in the proof of the main theorem.

Lemma 3.2 Assume that for ϕν ∈ A0,1(X,T 1,0X), ν = 2, · · · ,K,

∂ϕν =
1

2

∑

α+β=ν

[ϕα, ϕβ ], ∂ϕ1 = 0.

Then one has

∂
( ∑

ν+γ=K+1

[ϕν , ϕγ ]
)
= 0.

The readers who are interested in the proof can refer to [14, Lemma 4.2].

Now we are ready to solve the reduced equations (2.8) when KX is ample with an extra

condition which is an essential obstruction in this case.
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Theorem 3.1 Let X be a compact complex manifold with an ample canonical bundle. If

H(∇′ ◦ iϕ ◦ iϕΩ0) = 0 for any ϕ1 ∈ H0,1(X,T 1,0X), where ϕ is defined by (1.4), then there

exists a power series solving (2.8). Therefore, X has unobstructed deformations.

Proof As we are going to solve the equations (2.8) upward from ϕ1 with respect to the

degree of the formal variant t, the condition H(∇′ ◦ iϕ ◦ iϕΩ0) = 0 means

H(∇′ ◦ iϕi
◦ iϕj

Ω0) = 0

for any positive integers i and j, where ϕi is what we get at the i-th step of the iteration process

as the coefficient of ti.

For any α ∈ Ap,q(X,K−1

X ), the Bochner-Kodaira identity states that

∆′′ = ∆′ + [
√
−1RK−1

X ,Λ]

= ∆′ − [L,Λ]

= ∆′ − (p+ q − n)Id, (3.1)

where ∆′ is the Laplacian operator of ∇′.

Since ϕ1 ∈ H0,1(X,T 1,0X), so ϕ1yΩ0 ∈ Hn−1,1(X,K−1

X ). By (3.1), we have

ϕ1yΩ0 ∈ Ker∆′,

i.e., ∇′(ϕ1yΩ0) = 0 and ∇′∗(ϕ1yΩ0) = 0. Then by the Tian-Todorov lemma, we have

1

2
∇′(ϕ1yϕ1yΩ0) = −1

2
[ϕ1, ϕ1]yΩ0 + ϕ1y∇′(ϕ1yΩ0)

= −1

2
[ϕ1, ϕ1]yΩ0.

Thus

∂
(1
2
∇′(ϕ1yϕ1yΩ0)

)
= ∂

(
− 1

2
[ϕ1, ϕ1]yΩ0

)

= −[∂ϕ1, ϕ1]yΩ0

= 0. (3.2)

According to the Hodge theorem [6, p. 84], the condition H(∇′ ◦ iϕ1
◦ iϕ1

Ω0) = 0 implies

that we can take the solution ϕ2 as

iϕ2
Ω0 = ∂

∗
G

(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)

= G∂
∗
(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)
. (3.3)

This is the solution of the first equation in (2.8) at the second step.

Note that ∂
∗(− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)
∈ An−1,1(X,K−1

X ), then the Bochner-Kodaira identity

(3.1) implies that when acting on it, the two Laplacian operators ∆′ and ∆′′ coincide, so do

the two Green operators, i.e., G = G′.

As a consequence, we have

∇′(iϕ2
Ω0) = ∇′

G∂
∗
(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)
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= ∇′
G

′∂
∗
(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)

= G
′∇′∂

∗
(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)

= G
′∂

∗∇′
(1
2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)

= 0, (3.4)

where in the fourth equality we used the fact that [∂
∗
,∇′] = 0. This is the second equation of

(2.8) at the second step.

By running induction, we assume that we have obtained the solutions up to the N -th step,

i.e., we have already constructed ϕk, 1 ≤ k ≤ N . The proof will be accomplished as soon as we

construct the solution ϕN+1.

As the ϕ′
ks are assumed to be constructed (k ≤ N), by the Tian-Todorov lemma again we

have

1

2
∇′(ϕiyϕjyΩ0) = −1

2
[ϕi, ϕj ]yΩ0 + ϕiy∇′(ϕjyΩ0)

= −1

2
[ϕi, ϕj ]yΩ0 (3.5)

for any positive integers i, j such that i+ j = N + 1.

Then combining Lemma 3.2 with the calculations above, one has

∂
( ∑

i+j=N+1

1

2
∇′(ϕiyϕjyΩ0)

)
= 0. (3.6)

Since H(∇′ ◦ iϕi
◦ iϕj

Ω0) = 0, we can take ϕN+1 as

iϕN+1
Ω0 = ∂

∗
G

(
− 1

2

∑

i+j=N+1

∇′ ◦ iϕi
◦ iϕj

Ω0

)
. (3.7)

Then, similar to (3.4), it holds that

∇′(iϕN+1
Ω0) = 0. (3.8)

Remark that in the view point of iteration one has

iϕN+1Ω0 = ∂
∗
G

(
− 1

2

∑

2≤K≤N+1

∑

i+j=K

∇′ ◦ iϕi
◦ iϕj

Ω0t
itj

)
+ iϕ1

Ω0t
1, (3.9)

where ϕN = ϕ1t
1 + · · ·+ ϕN t

N can be treated as the truncation of ϕ(t) at the N -th step.

Therefore, we eventually obtain a solution given by





iϕΩ0 = ∂
∗
G

(
− 1

2
∇′ ◦ iϕ ◦ iϕΩ0

)
+ iϕ1

Ω0,

∂ϕ

∂t

∣∣∣∣
t=0

= ϕ1,

ϕ(0) = 0,

(3.10)

which is uniquely determined by the chosen harmonic initial value ϕ1.
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Remark 3.1 Due to (3.3) and (3.7), we have ϕk ∈ Im∂
∗
for k ≥ 2.

Example 3.1 It is clear that on a compact Riemann surface, the condition H(∇′ ◦ iϕ ◦
iϕΩ0) = 0 holds due to the dimension.

Let X = X1 ×X2, where each Xi is a compact Riemann surface of genus gi ≥ 2, i = 1, 2.

Then KX is clearly ample.

We take a local coordinate {z1, z2} on X such that each zi is the local coordinate of Xi,

i = 1, 2. Then we have

Ω = Ω1 ∧Ω2 ∈ A2,0(X,K−1

X ),

where Ωi = dzi ⊗ ∂
∂zi ∈ A1,0(X,K−1

Xi
), i = 1, 2.

From the last example, we know that there is a Beltrami differential ϕ̃i ∈ A0,1(Xi, T
1,0Xi) on

each Xi determining the unobstructed deformations of Xi, i = 1, 2. Under the local coordinate

we can write them as ϕ̃i = ϕ̃i
i
dzi ⊗ ∂

∂zi where ϕ̃i
i
is a smooth function only in zi (i = 1, 2).

Then we have iϕ̃i
Ω2 = iϕ̃2

Ω1 = 0.

Repeating the calculations in Section 2 we have





(
∂ +

1

2
∇′ ◦ iϕ̃i

)
iϕ̃i

Ωi = 0,

∇′(iϕ̃i
Ωi) = 0

(3.11)

on each Xi, i = 1, 2.

We take ϕ = ϕ̃1 + ϕ̃2 which lies in A0,1(X,T 1,0X) and by elementary calculations, we have

iϕ ◦ iϕΩ = (iϕ̃1
+ iϕ̃2

) ◦ (iϕ̃1
+ iϕ̃2

)Ω

= (iϕ̃1
+ iϕ̃2

)[(iϕ̃1
Ω1) ∧ Ω2 +Ω1 ∧ (iϕ̃2

Ω2)]

= (iϕ̃1
◦ iϕ̃1

Ω1) ∧ Ω2 + 2(iϕ̃1
Ω1) ∧ (iϕ̃2

Ω2)

+ Ω1 ∧ (iϕ̃2
◦ iϕ̃2

Ω2). (3.12)

Then

∇′(iϕ ◦ iϕΩ) = ∇′
1(iϕ̃1

◦ iϕ̃1
Ω1) ∧ Ω2 + 2∇′

1(iϕ̃1
Ω1) ∧ (iϕ̃2

Ω2)

+ 2(iϕ̃1
Ω1) ∧ ∇′

2(iϕ̃2
∧Ω2) + Ω1 ∧ ∇′

1(iϕ̃2
◦ iϕ̃2

Ω2)

= ∇′
1(iϕ̃1

◦ iϕ̃1
Ω1) ∧ Ω2 +Ω1 ∧ ∇′

1(iϕ̃2
◦ iϕ̃2

Ω2)

= −2∂(iϕ̃1
Ω1) ∧ Ω2 − 2Ω1 ∧ 2∂(iϕ̃2

Ω2)

= −2∂[(iϕ̃1
Ω1) ∧ Ω2 +Ω1 ∧ (iϕ̃2

Ω2)]

∈ Im(∂), (3.13)

which implies that H(∇′ ◦ iϕ ◦ iϕΩ0) = 0. Then X = X1 ×X2 has unobstructed deformations.

Throughout the calculations above, the notion∇′
i denotes the covariant derivative in z

i, i = 1, 2.

By the same arguments, one easily knows that the manifolds of the form X = X1×· · ·×Xm

also have ample canonical bundles and satisfy the condition H(∇′ ◦ iϕ ◦ iϕΩ0) = 0, where each

Xi is a compact Riemann surface with genus gi ≥ 2 (i = 1, · · · ,m). Therefore they have

unobstructed deformations.
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Remark 3.2 The condition H(∇′ ◦ iϕ ◦ iϕΩ0) = 0 is essential in the proof of our main

theorem. It may look a little complicated at first, but it can be improved into a somewhat more

geometric form.

First, we claim that

∂
∗
(iϕΩ0) = (∂

∗
ϕ)yΩ0. (3.14)

Indeed, for any α ∈ An−1,0(X,K−1

X ), one has

〈∂∗(iϕΩ0), α〉 = 〈∂∗(iϕΩ0), V yΩ0〉
= 〈iϕΩ0, ∂(V yΩ0)〉
= 〈iϕΩ0, ∂V yΩ0〉
= 〈ϕ, ∂V 〉 = 〈∂∗ϕ, V 〉
= 〈∂∗ϕyΩ0, V yΩ0〉
= 〈∂∗ϕyΩ0, α〉,

which implies the claim. Here V is some vector field of (1, 0)-type.

Proposition 3.1 If KX is ample, and X satisfies Hn−1,2(X,K−1

X ) ⊂ Ker(∇′∗), then X has

unobstructed deformations.

Proof If Hn−1,2(X,K−1

X ) ⊂ Ker(∇′∗), for any harmonic element γ ∈ H
n−1,2(X,K−1

X ), we

have

〈∇′ ◦ iϕ ◦ iϕΩ0, γ〉 = 〈iϕ ◦ iϕΩ0,∇′∗γ〉 = 0,

which implies H(∇′ ◦ iϕ ◦ iϕΩ0) = 0. By Theorem 3.1, the deformations are unobstructed.

Recall that the contraction •yΩ0 and its inverse Ω∗
0y• give rise to an isomorphism between

harmonic spaces

H
n−1,2(X,K−1

X ) ∼= H
0,2(X,T 1,0X). (3.15)

Locally the operator Λ can be written as

Λ = −
√
−1gkli ∂

∂zl
∧ i ∂

∂zk
. (3.16)

Then we have

Λ : A0,2(X,T 1,0X) → A0,1(X,∧2T 1,0X). (3.17)

Thus the condition Hn−1,2(X,K−1

X ) ⊂ Ker(∇′∗) is equivalent to

H
0,2(X,T 1,0X) ⊂ Ker(∂Λ). (3.18)

The characterization (3.18) seems make more sense in geometry than the original one since

the harmonic space H0,2(X,T 1,0X) is isomorphic to the cohomology group H2(X,T 1,0X), which

contains the obstructions of the deformations (see [11, 16]).
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Remark 3.3 Note that a projective variety X is said to satisfy the Bott vanishing theorem,

if Hi(X,Ωj(L)) = 0 for all the ample line bundles over X , where i > 0, j ≥ 0. Bott showed that

it holds for projective spaces. A good reference about it is [10, Chapter 3.4]. Later this theorem

was generalized to the toric case (the proof can be found in [1, 3, 5, 18]) and some certain Del

Pezzo surfaces and K3 surfaces (see [26]). But they are all beyond our consideration. We

remark that any smooth variety with ample canonical bundle has unobstructed deformations,

once it satisfies the Bott vanishing theorem.

Remark 3.4 If X is a nonsingular irreducible hypersurface of CP3 of degree d. According

to [11, (6.49)], we have the fact that dimHn−1,2(X,K−1

X ) = 1

2
(d − 2)(d − 3)(d − 5). When

d = 5, by the adjunction formula, we see that KX
∼= OX(1), which is ample. In this case, the

cohomology group containing the obstruction H(∇′ ◦ iϕ ◦ iϕΩ0) vanishes. So we see that the

quintic surface in CP
3 has unobstructed deformations.

3.2 When KX is a torsion line bundle

In this subsection, we show that our method also works when the compact Kähler manifold

X has a torsion canonical bundle KX , i.e., there is an integer m such that K⊗m
X

∼= OX , the

trivial line bundle over X .

Corollary 3.1 If c1(X) = 0, i.e., KX is a torsion line bundle, then X has unobstructed

deformations.

Proof According to Yau’s celebrated work [27], there exists a Kähler metric ω on X such

that Ric(ω) = 0. Similar to the ample case, we start with an arbitrary harmonic initial value

ϕ1 ∈ H0,1(X,T 1,0X) and try to construct a power series

ϕ(t) = ϕ1t+ ϕ2t
2 + · · · ∈ A0,1(X,T 1,0X),

which satisfies the Maurer-Cartan equation

∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)].

By the arguments in Section 2, it suffices for us to solve the following equations




(
∂ +

1

2
∇′ ◦ iϕ

)
iϕΩ0 = 0,

∇′(iϕΩ0) = 0,

where Ω0 = dz ⊗ ∂
∂z

∈ An,0(X,K−1

X ). By Lemma 3.1 we have

∆′′(ϕ1yω) = 0, ∂
∗
(ϕ1yω) =

√
−1div(ϕ1)

since ∂ϕ1 = ∂
∗
ϕ1 = 0 and Ric(ω) = 0. Then we have div(ϕ1) = 0 and it follows by (2.7) that

∇′(iϕ1
Ω0) = 0. Thus we have the solution at the second step

iϕ2
Ω0 = ∂

∗
G

(
− 1

2
∇′ ◦ iϕ1

◦ iϕ1
Ω0

)
.

Under the Ricci-flat setting, the Bochner-Kodaira identity states that

∆′′ = ∆′ + [
√
−1RK−1

X ,Λ] = ∆′
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for any K−1

X - valued differential forms. Since the two Laplacian operators coincide, it follows

that G∇′ = ∇′G, which, together with the fact that ∇′∂
∗
= −∂∗∇′, implies that

iϕ2
Ω0 = −∇′∂

∗
G

(1
2
iϕ1

◦ iϕ1
Ω0

)
∈ Im(∇′).

Thus ∇′(iϕ2
Ω0) = 0. By running induction, we assume that the solutions ϕk satisfying

∇′(iϕk
Ω0) = 0 have already been constructed for k ≤ N − 1. By the same operation in

the last subsection, we obtain the solution ϕN given by

iϕN
Ω0 = ∂

∗
G

(
− 1

2

∑

i+j=N

∇′ ◦ iϕi
◦ iϕj

Ω0

)
(3.19)

such that iϕN
Ω0 ∈ Im(∇′). Hence the proof is completed.

Remark 3.5 For the convergence and the regularity of the solution ϕ(t) in both the KX

ample case and the KX torsion case, there are many works concerning this, for example, [11, 16]

and more recently, [14, Theorem 4.3, Theorem 4.4] or [13, Proposition 4.10], etc. By repeating

the calculations therein, one can obtain the convergence and the regularity of ϕ(t) by standard

analytic theory.
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