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Abstract This paper deals with the exact boundary controllability and the exact bound-
ary synchronization for a 1-D system of wave equations coupled with velocities. These
problems can not be solved directly by the usual HUM method for wave equations, how-
ever, by transforming the system into a first order hyperbolic system, the HUM method
for 1-D first order hyperbolic systems, established by Li-Lu (2022) and Lu-Li (2022), can
be applied to get the corresponding results.
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1 Introduction

The synchronization is a widespread natural phenomenon (see [5, 23]) which has been in-

tensively studied in PDEs case in recent years (see [16] and the references therein, and [1–3]).

The study of synchronization for the coupled system of wave equations

Utt −∆U +AU = 0 (1.1)

in a bounded smooth domain with various boundary conditions, in which U = U(t, x) =

(u(1), · · · , u(n))T is the state variable, ∆ is the Laplacian operator, and A is a coupling matrix

with constant elements, has been carried out in [4, 7–19, 22], etc.

However, for the system of wave equations coupled with velocities

Utt −∆U +AUt = 0, (1.2)

the situation is quite different: Its exact boundary controllability can not be obtained by usual

HUM method. In fact, since (1.2) does not possess the property of energy conservation, one can

not establish the corresponding observability inequalities for the adjoint system by the energy

estimate and the multiplier method directly from (1.2). On the other hand, if we regard AUt

as a perturbation term, unlike AU , which is not a compact one, the compact perturbation
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method given in [16] does not work. Thus, the exact boundary controllability and then the

exact boundary synchronization for system (1.2) is still an open problem up to now.

In this paper, we will specially consider the corresponding problem in the 1-D case, namely,

we will consider the following 1-D system of wave equations coupled with velocities

Utt − Uxx +AUt = 0, t ∈ (0,+∞), x ∈ (0, L), (1.3)

where U = U(t, x) = (u(1), · · · , u(n))T is the state variable, and A is a coupling matrix of order

n.

We give the following Dirichlet boundary condition on x = 0:

x = 0 : U = 0, t ∈ (0,+∞). (1.4)

While, on x = L we take any one of boundary conditions of Dirichlet type, Neumann type and

coupled dissipative type:

x = L : U = DH(t), t ∈ (0,+∞), (1.5a)

x = L : Ux = DH(t), t ∈ (0,+∞), (1.5b)

x = L : Ux +BUt = DH(t), t ∈ (0,+∞), (1.5c)

where the boundary control matrix D is an n × M(M ≤ n) full column-rank matrix, and B

is a boundary coupling matrix of order n. All A, B and D have real constant elements, and

H = (h(1), · · · , h(M))T denotes the boundary control.

The initial data is given by

t = 0 : U = Û0, Ut = Û1, x ∈ (0, L). (1.6)

The basic idea is to transform system (1.3)–(1.5) into a first order hyperbolic system, then

the characteristic method can be applied to establish the corresponding observability inequal-

ities for the corresponding adjoint system, so that the HUM method still works (see [21]), in

other words, by means of the general result given in [6], we can get the desired exact boundary

synchronization by groups for system (1.3)–(1.5).

For this purpose, we first transform system (1.3)–(1.5) into a first order hyperbolic system

without zero eigenvalues. Let

V = (V −, V +)T with V − =
1

2
(Ut + Ux), V + =

1

2
(Ut − Ux). (1.7)

It is easy to see that V satisfies

Vt + ΛVx + AV = 0, t ∈ (0,+∞), x ∈ (0, L), (1.8)

where

Λ =

(
−In

In

)
and A =

1

2

(
A A

A A

)
, (1.9)

in which In is the identity matrix of order n.

By (1.4)–(1.5), on x = 0 we have

x = 0 : V +(t, 0) = −V −(t, 0), t ∈ (0,+∞), (1.10)
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and, assuming that −1 is not an eigenvalue of B in case (1.5c), on x = L we have any one of

the following boundary conditions:

x = L : V −(t, L) = −V +(t, L) +DH ′(t), t ∈ (0,+∞), (1.11a)

x = L : V −(t, L) = V +(t, L) +DH(t), t ∈ (0,+∞), (1.11b)

x = L : V −(t, L) = G1V
+(t, L) + (In +B)−1DH(t), t ∈ (0,+∞), (1.11c)

where

G1 = (In +B)−1(In −B). (1.12)

Moreover, by (1.6)–(1.7), the initial data is given by

t = 0 : V = V0 =
1

2
(Û1 + Û ′

0, Û1 − Û ′
0). (1.13)

In 1-D case, instead of discussing separately system (1.3)–(1.4) with different boundary

conditions (1.5a), (1.5b) and (1.5c), respectively, by transforming system (1.3)–(1.5) into a

first order hyperbolic system (1.8) and (1.10)–(1.11) with different parameters on the boundary

conditions on x = L, we can use the theory of controllability and synchronization for first

order hyperbolic systems obtained in [6] to uniformly get the boundary controllability and the

boundary synchronization for system (1.3)–(1.5).

We first present the well-posedness of system (1.3)–(1.5) in Section 2, then the exact bound-

ary synchronization by groups, corresponding exactly synchronizable states by groups and some

necessary conditions will be studied in Sections 3–6, respectively. In Section 7 we give remarks

for a more general coupled system.

2 Well-Posedness

Let

H =

{
(H1(0, T ))M for (1.5a) and (1.11a),

(L2(0, T ))M for (1.5b), (1.5c) and (1.11b), (1.11c).
(2.1)

In what follows, we always assume that the following conditions of C0 compatibility at the

points (t, x) = (0, 0) and (0, L) are satisfied, respectively:

{
Û0(0) = 0 and Û0(L) = DH(0) in case (1.5a),

Û0(0) = 0 in cases (1.5b) and (1.5c).
(2.2)

Applying [20, Theorem 3.1] to the first order hyperbolic system (1.8) and (1.10)–(1.11), for any

given (Û0, Û1) ∈ (H1(0, L)× L2(0, L))n we have the following lemma.

Lemma 2.1 For any given T > 0, for any given initial data V0 ∈ (L2(0, L))2n and any

given boundary function H ∈ H, satisfying the conditions of C0 compatibility (2.2) at the points

(t, x) = (0, 0) and (0, L), respectively, the mixed problem (1.8), (1.10)–(1.11) and (1.13) admits

a unique weak solution V = V (t, x) ∈ (L2(0, T ;L2(0, L)))2n, satisfying

‖V (T, ·)‖(L2(0,L))2n ≤ c(‖V0‖(L2(0,L))2n + ‖H‖H) (2.3)
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and

‖V (·, L)‖(L2(0,T ))2n ≤ c(‖V0‖(L2(0,L))2n + ‖H‖H), (2.4)

here and hereafter, c denotes a positive constant.

By Lemma 2.1, noting (1.13), we have the following theorem.

Theorem 2.1 Assume that −1 is not an eigenvalue of B in case (1.5c). For any given

T > 0, for any given initial data (Û0, Û1) ∈ (H1(0, L) × L2(0, L))n and any given boundary

function H ∈ H, satisfying the conditions of C0 compatibility (2.2) at the points (t, x) =

(0, 0) and (0, L), respectively, problem (1.3)–(1.6) admits a unique weak solution (U,Ut) ∈

(L2(0, T ;H1(0, L)× L2(0, L)))n, satisfying

‖(U,Ut)‖(L2(0,T ;H1(0,L)×L2(0,L)))n ≤ c(‖(Û0, Û1)‖(H1(0,L)×L2(0,L))n + ‖H‖H), (2.5)

‖(Ux, Ut)(t, L)‖(L2(0,T )×L2(0,T ))n ≤ c(‖(Û0, Û1)‖(H1(0,L)×L2(0,L))n + ‖H‖H). (2.6)

3 Exact Boundary Synchronization by p-Groups

We now take a look to the exact boundary synchronization by p-groups for system (1.3)–

(1.5). Let p ≥ 1 be an integer, ni(≥ 2, i = 1, · · · , p) be any given positive integers, and let

n =
p∑

i=1

ni. Let the state variable U = U(t, x) in system (1.3)–(1.5) be divided into p groups,

and for i = 1, · · · , p, the ith group consists of ni components, Ui = (u
(1)
i , u

(2)
i , · · · , u

(ni)
i )T.

Assume that for any given initial data (Û0, Û1) ∈ (H1(0, L)× L2(0, L))n, there exists a T > 0

such that by boundary control H ∈ H given by (2.1), the exact synchronization is realized in

each group at the time t = T (> 0):

t ≥ T : u
(1)
i (t, x) ≡ u

(2)
i (t, x) ≡ · · · ≡ u

(ni)
i (t, x)

def.
= ũi(t, x), i = 1, · · · , p, (3.1)

where (ũ1(t, x), · · · , ũp(t, x))
T is a priori unknown, then we say that system (1.3)–(1.5) pos-

sesses the exact boundary synchronization by p-groups, and (ũ1(t, x), · · · , ũp(t, x))
T is called

the exactly synchronizable state by p-groups. In the special case p = 1, system (1.3)–(1.5) is

exactly synchronizable.

Correspondingly, let Cp be the following (n−p)×n full row-rank matrix of synchronization

Cp =




C̃1

C̃2

. . .

C̃p


 with C̃i =




1 −1
1 −1

. . .

1 −1


 (3.2)

an (ni − 1)× ni full row-rank matrix for i = 1, · · · , p. We have

Ker(C̃i) = Span{ẽi} with ẽi = (1, · · · , 1︸ ︷︷ ︸
ni

)T, i = 1, · · · , p (3.3)

and

Ker(Cp) = Span{ǫ1, ǫ2, · · · , ǫp} with ǫi = (0, · · · , 0︸ ︷︷ ︸
i−1∑

j=1

nj

, ẽTi , 0, · · · , 0︸ ︷︷ ︸
p∑

j=i+1

nj

)T, i = 1, · · · , p. (3.4)



Exact Synchronization by Groups Wave Equations 21

If system (1.3)–(1.5) is exactly synchronizable by p-groups at the time t = T , then

t ≥ T : CpU = 0 or U =

p∑

i=1

ũiǫi, (3.5)

where ǫi(i = 1, · · · , p) are given by (3.4), or, equivalently,

t ≥ T : C̃iUi = 0 or Ui = ũiẽi, i = 1, · · · , p, (3.6)

where ẽi(i = 1, · · · , p) are given by (3.3).

Let

D =

{
D in cases (1.11a) and (1.11b),
(In +B)−1D in case (1.11c)

(3.7)

and let H be given by (2.1). Applying [6, Lemma 2.7] to system (1.8) and (1.10)–(1.11), for

any given (Û0, Û1) ∈ (H1(0, L)× L2(0, L))n we have the following lemma.

Lemma 3.1 Assume that −1 is not an eigenvalue of B in case (1.11c). Let T ≥ 2L. If

M = rank(D) = n, then for any given initial data V0(x) ∈ (L2(0, L))2n given by (1.13), there

exists a boundary control H(t) ∈ H, satisfying

‖H‖H ≤ c‖(Û0, Û1)‖(H1(0,L)×L2(0,L))n , (3.8)

such that system (1.8) and (1.10)–(1.11) is exactly null controllable.

Remark 3.1 In case (1.11a), applying [6, Lemma 2.7] to system (1.8)–(1.10) and (1.11a),

we can find H ′ ∈ (L2(0, T ))M , satisfying

‖H ′‖(L2(0,T ))M ≤ c‖V0‖(L2(0,L))2n ≤ c‖(Û0, Û1)‖(H1(0,L)×L2(0,L))n ,

such that the system is exactly null controllable. Then, noting the condition of C0 compatibility

at the point (0, L) in (2.2), (3.8) still holds.

Noting (1.4) and (1.7), it is easy to get the following lemma.

Lemma 3.2 The exact boundary (null) controllability for system (1.8) and (1.10)–(1.11) is

equivalent to that for system (1.3)–(1.5).

By Lemmas 3.1–3.2, we immediately get the following theorem.

Theorem 3.1 Assume that −1 is not an eigenvalue of B in case (1.5c). Let T ≥ 2L. If

M = rank(D) = n, then system (1.3)–(1.5) is exactly null controllable for any given initial data

(Û0, Û1) ∈ (H1(0, L)× L2(0, L))n, and the boundary control H(t) ∈ H satisfies (3.8).

Remark 3.2 By [6, Lemma 2.7], system (1.8) and (1.10)–(1.11) is in fact exactly control-

lable at the time t = T if M = rank(D) = n for T ≥ 2L. Thus, by Lemma 3.2, system

(1.3)–(1.5) is also exactly controllable under the conditions of Theorem 3.1.

However, the exact boundary null controllability and the exact boundary controllability for

system (1.3)–(1.5) is not always equivalent. By applying [20, Remark 3.4] to system (1.8) and

(1.10)–(1.11), we have that system (1.3)–(1.4) with boundary condition of Dirichlet type (1.5a)

or Neumann type (1.5b) are time reversible; moreover, assuming that 1 is not an eigenvalue

of B, then G1 given by (1.12) is invertible, and system (1.3)–(1.4) with dissipative boundary

condition (1.5c) is also time reversible. Thus by [20, Theorem 4.1], we have the following

corollary.
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Corollary 3.1 For system (1.3)–(1.4) with (1.5a) or (1.5b), the exact boundary null con-

trollability and the exact boundary controllability are equivalent. Moreover, if 1 is not an eigen-

value of B, then we also have the same result for system (1.3)–(1.4) and (1.5c).

Remark 3.3 The exact boundary (null) controllability is important for getting the exact

boundary synchronization by groups for system (1.3)–(1.5). It is usually complicated to estab-

lish the exact boundary (null) controllability especially in higher-dimensional space. In this

paper we do it in the one-dimensional space with the aid of the controllability results on first

order hyperbolic systems given in [6]. It is challenging to deal with higher-dimensional case,

system with (1.5c) will be more difficult because of the coupling on the boundary.

Once the exact boundary (null) controllability is established, the exact boundary synchro-

nization by p-groups and corresponding exactly synchronizable states by p-groups can be dis-

cussed under the following conditions of Cp-compatibility for the coupling matrices.

Definition 3.1 Let ǫi(i = 1, · · · , p) be given by (3.4). Matrix A satisfies the condition of

Cp-compatibility if

AKer(Cp) ⊆ Ker(Cp), namely, CpA = ApCp

or Aǫi =

p∑

j=1

αijǫj for i = 1, · · · , p, (3.9)

in which Ap is a matrix of order (n− p), and αij(i, j = 1, · · · , p) are constants.

Matrix B satisfies the condition of Cp-compatibility if

BKer(Cp) ⊆ Ker(Cp), namely, CpB = BpCp

or Bǫi =

p∑

j=1

βijǫj for i = 1, · · · , p, (3.10)

in which Bp is matrix of order (n− p), and βij(i, j = 1, · · · , p) are constants.

Theorem 3.2 Assume that A satisfies the condition of Cp-compatibility (3.9). Assume

furthermore that −1 is not an eigenvalue of B, and B satisfies the condition of Cp-compatibility

(3.10) in case (1.5c). If rank(CpD) = n − p, then there exists a boundary control H(t) ∈ H,

satisfying

‖H‖H ≤ c‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p ≤ c‖(Û0, Û1)‖(H1(0,L)×L2(0,L))n , (3.11)

such that system (1.3)–(1.5) is exactly synchronizable by p-groups, where H is given by (2.1).

Proof Under the condition of Cp-compatibility (3.9) for A and (3.10) for B in case (1.5c),

let W = CpU , where U satisfies system (1.3)–(1.5) with (1.6). We have the following reduced

system of W :

Wtt −Wxx +ApWt = 0, t ∈ (0,+∞), x ∈ (0, L), (3.12)

x = 0 : W = 0, t ∈ (0,+∞) (3.13)

and any one of

x = L : W = CpDH(t), t ∈ (0,+∞), (3.14a)



Exact Synchronization by Groups Wave Equations 23

x = L : Wx = CpDH(t), t ∈ (0,+∞), (3.14b)

x = L : Wx +BpWt = CpDH(t), t ∈ (0,+∞), (3.14c)

where Ap and Bp are given by (3.9) and (3.10), respectively. By Theorem 3.1, the reduced

system (3.12)–(3.14) is exactly null controllability when rank(CpD) = n − p. Noting that the

exact boundary null controllability of the reduced system (3.12)–(3.14) is equivalent to the

exact boundary synchronization by p-groups of the original system (1.3)–(1.5), we immediately

get Theorem 3.2.

Remark 3.4 Under the conditions of Cp-compatibility for the coupling matrices, Theorem

3.2 and the following results on exactly synchronizable states by p-groups are discussed directly

from the viewpoint of wave equations as in [16].

On the other hand, these results can be also built as an application of the results for first

order hyperbolic systems obtained in [6] by transforming the exact boundary synchronization

by p-groups for system (1.3)–(1.5) into the exact boundary synchronization for system (1.8) and

(1.10)–(1.11) with respect to the matrix of synchronization C1 =
(

Cp

Cp

)
. The perspective

of first order hyperbolic system is practical since no matter what p is for the exact boundary

synchronization by p-groups for system (1.3)–(1.5), it is always exact boundary synchronization

for system (1.8) and (1.10)–(1.11) but with different size of C1.

However, for a system of wave equations coupled with velocities, since there is a lack of com-

pactness, the conditions of Cp-compatibility can not be directly derived from both viewpoints.

4 Exactly Synchronizable States by p-Groups

Under the conditions of Cp-compatibility for A and B, by inserting (3.5) into (1.3)–(1.5), it

is easy to get the system satisfied by the exactly synchronizable state by p-groups, and similarly

to [6, Theorem 4.2, Lemma 4.3], if the system of exactly synchronizable states by p-groups is

time reversible, then the attainable set of exactly synchronizable states (ũi, ũit)(i = 1, · · · , p)

at the time t = T is the whole space (H1(0, L)× L2(0, L))p.

Theorem 4.1 Assume that A satisfies the condition of Cp-compatibility (3.9). Assume

furthermore that −1 is not an eigenvalue of B, and B satisfies the condition of Cp-compatibility

(3.10) in case (1.5c). If system (1.3)–(1.5) is exactly synchronizable by p-groups at the time

t = T , then, as t ≥ T , the exactly synchronizable state by p-groups (ũ1, · · · , ũp)
T satisfies

ũitt − ũixx +

p∑

j=1

αjiũjt = 0, t ∈ (T,+∞), x ∈ (0, L), (4.1)

x = 0 : ũi = 0, t ∈ (T,+∞) (4.2)

and any one of

x = L : ũi = 0, t ∈ (T,+∞), (4.3a)

x = L : ũix = 0, t ∈ (T,+∞), (4.3b)

x = L : ũix +

p∑

j=1

βjiũjt = 0, t ∈ (T,+∞) (4.3c)

for i = 1, · · · , p, where αij and βij(i, j = 1, · · · , p) are given by (3.9) and (3.10), respectively.
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Moreover, the attainable set of exactly synchronizable states (ũi, ũit)(i = 1, · · · , p) at the

time t = T is the whole space (H1(0, L) × L2(0, L))p for cases (1.5a) and (1.5b). Assume

furthermore that Ker(G1) ∩ Ker(Cp) = {0}, then this result is also true for case (1.5c), where

G1 is given by (1.12).

Remark 4.1 By [16, Proposition 2.21], in order to have Ker(G1) ∩Ker(Cp) = {0}, we can

assume that 1 is not an eigenvalue of B.

In order to further determine corresponding exactly synchronizable states, let

εi ∈ R
n(i = 1, · · · , p) (4.4)

satisfy that Span{ε1, · · · , εp} and Ker(Cp) = Span{ǫ1, · · · , ǫp} are bi-orthonormal, where ǫi(i =

1, · · · , p) are given by (3.4).

Theorem 4.2 Assume that A satisfies the condition of Cp-compatibility (3.9). Assume

furthermore that −1 is not an eigenvalue of B, and B satisfies the condition of Cp-compatibility

(3.10) in case (1.5c). Define D by Ker(DT) = Span{ε1, · · · , εp}. Then we have

rank(CpD) = rank(D) = n− p (4.5)

and system (1.3)–(1.5) is exactly synchronizable by p-groups.

Moreover, if Span{ε1, · · · , εp} is an invariant subspace of AT, then the exactly synchroniz-

able state by p-groups (ũ1, · · · , ũp)
T of system (1.3)–(1.4) with (1.5a) (resp. (1.5b)) is indepen-

dent of applied boundary controls. If Span{ε1, · · · , εp} is a common invariant subspace of AT

and BT, then the exactly synchronizable state by p-groups (ũ1, · · · , ũp)
T of system (1.3)–(1.4)

with (1.5c) is also independent of applied boundary controls.

Proof Since Ker(DT) = Span{ε1, · · · , εp}, noting Span{ε1, · · · , εp} and Ker(Cp) are bi-

orthonormal, by [16, Propositions 2.5, 2.11], we immediately get (4.5), then, by Theorem 3.2,

system (1.3)–(1.5) is exactly synchronizable by p-groups.

Assume that Span{ε1, · · · , εp} is an invariant subspace of AT and BT, respectively, noting

(3.9)–(3.10) and that Span{ε1, · · · , εp} and Ker(Cp) = Span{ǫ1, · · · , ǫp} are bi-orthonormal,

it is easy to check that ATεi =
p∑

j=1

αjiεj and BTεi =
p∑

j=1

βjiεj(i = 1, · · · , p), where αij and

βij(i, j = 1, · · · , p) are given by (3.9) and (3.10), respectively. Let φi = (U, εi)(i = 1, · · · , p),

where U = U(t, x) is the solution to system (1.3)–(1.5), which realizes the exact boundary

synchronization by p-groups at the time t = T . Then, multiplying εi(i = 1, · · · , p) on system

(1.3)–(1.5), for i = 1, · · · , p we have

φitt − φixx +

p∑

j=1

αjiφjt = 0, t ∈ (0,+∞), x ∈ (0, L), (4.6)

x = 0 : φi = 0, t ∈ (0,+∞) (4.7)

and any one of

x = L : φi = 0, t ∈ (0,+∞), (4.8a)

x = L : φix = 0, t ∈ (0,+∞), (4.8b)
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x = L : φix +

p∑

j=1

βjiφjt = 0, t ∈ (0,+∞) (4.8c)

with the initial data

t = 0 : φi = (Û0, εi), φit = (Û1, εi), x ∈ (0, L). (4.9)

Noting (3.5), since Span{ε1, · · · , εp} and Ker(Cp) = Span{ǫ1, · · · , ǫp} are bi-orthonormal, we

have

t ≥ T : φi = (U, εi) =
( p∑

j=1

ũjǫj , εi

)
= ũi, x ∈ (0, L). (4.10)

Thus the exactly synchronizable state by p-groups (ũ1, · · · , ũp)
T of system (1.3)–(1.5) is entirely

determined by the solution to problem (4.6)–(4.9), which is independent of applied boundary

controls.

Inversely to Theorem 4.2, we have the following theorem.

Theorem 4.3 Assume that A satisfies the condition of Cp-compatibility (3.9). Assume fur-

thermore that −1 is not an eigenvalue of B, and B satisfies the condition of Cp-compatibility

(3.10) in case (1.5c). Assume finally that system (1.3)–(1.5) is exactly synchronizable by p-

groups under the condition rank(CpD) = n − p. Let U be the solution to problem (1.3)–

(1.6), which realizes the exact boundary synchronization by p-groups at the time t = T . If

(U, εi) with εi(i = 1, · · · , p) given by (4.4) are independent of applied boundary controls, then

Span{ε1, · · · , εp} is an invariant subspace of AT for system (1.3)–(1.4) with (1.5a) (resp.

(1.5b)), while Span{ε1, · · · , εp} is a common invariant subspace of AT and BT for system

(1.3)–(1.4) with (1.5c). Moreover, we have εi ∈ Ker(DT)(i = 1, · · · , p). In particular, if D

satisfies (4.5), then we have Ker(DT ) = Span{ε1, · · · , εp}.

Proof We only give a sketch of the proof, which is similar to that of [6, Theorem 4.8].

Let U = U(t, x) be the solution to system (1.3)–(1.5), which realizes the exact boundary

synchronization by p-groups at the time t = T . Taking (Û0, Û1) = (0, 0), by Theorem 2.1, the

linear mapping F : H → (U,Ut) is continuous from H to (L2
loc(0,+∞;H1(0, L)× L2(0, L)))n,

where H is given by (2.1). By linearity, the Fréchet derivative

Û
△
= F ′(0)H (4.11)

satisfies also system (1.3)–(1.5) with t = 0 : Û = Ût = 0. Since (U, εi)(i = 1, · · · , p) are

independent of applied boundary controls, we have

(Û , εi) ≡ 0, i = 1, · · · , p (4.12)

for any given H ∈ H.

Since (ε1, · · · , εp, C
T
p ) constitutes a basis in R

n, we have

ATεi =

p∑

j=1

aijεj + CT
p Pi, i = 1, · · · , p, (4.13)

BTεi =

p∑

j=1

bijεj + CT
p Qi, i = 1, · · · , p, (4.14)
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where aij and bij(i, j = 1, · · · , p) are constants, Pi and Qi ∈ R
n−p(i = 1, · · · , p). Then,

multiplying εi(i = 1, · · · , p) on system (1.3) of Û , it follows from (4.12)–(4.13) that

0 = (AÛt, εi) =
(
Ût,

p∑

j=1

aijεj

)
+ (Ût, C

T
p Pi) = (CpÛt, Pi), i = 1, · · · , p. (4.15)

Let W
def.
= CpÛ . W satisfies the reduced system (3.12)–(3.14). By [16, Proposition 2.21], when

−1 is not an eigenvalue of B, −1 is not an eigenvalue of Bp. Then, when rank(CpD) = n− p,

by Remark 3.2, system (3.12)–(3.14) is in fact exactly controllable. Thus the value of CpÛt

at the time t = T can be arbitrarily chosen. Then we have Pi = 0(i = 1, · · · , p). Similarly,

noting H ≡ 0 as t ≥ T , we can prove that Qi = 0(i = 1, · · · , p). Moreover, noting [6, Lemma

4.7], the value of H on (0, t0) can be chosen arbitrarily for t0 > 0 small enough, we can prove

DT εi = 0(i = 1, · · · , p), thus εi ∈ Ker(DT)(i = 1, · · · , p). The proof is complete.

Theorem 4.4 Assume that A satisfies the condition of Cp-compatibility (3.9). Assume

furthermore that −1 is not an eigenvalue of B, and B satisfies the condition of Cp-compatibility

(3.10) in case (1.5c). Assume finally that system (1.3)–(1.5) is exactly synchronizable by p-

groups under condition rank(CpD) = n − p with H(t) satisfying (3.11). Then the exactly

synchronizable state by p-groups (ũ1, · · · , ũp)
T satisfies the following estimate:

‖(ũi − φi, ũit − φit)(T )‖H1(0,L)×L2(0,L) ≤ c‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p (4.16)

for i = 1, · · · , p, where φi(i = 1, · · · , p) satisfy problem (4.6)–(4.9).

Proof The proof is similar to that of [9, Theorem 8.4], we only give a sketch here. Let

U be the solution to problem (1.3)–(1.6), which realizes the exact boundary synchronization

by p-groups at the time t = T , and let zi = (εi, U)(i = 1, · · · , p) with εi(i = 1, · · · , p) given

by (4.4). It is easy to prove that ATεi −
p∑

j=1

αjiεj ∈ Im(CT
p ) and BTεi −

p∑
j=1

βjiεj ∈ Im(CT
p )

for i = 1, · · · , p, where αij and βij(i, j = 1, · · · , p) are given by (3.9) and (3.10), respectively.

Then there exist Pi and Qi ∈ R
n−p(i = 1, · · · , p), such that ATεi −

p∑
j=1

αjiεj = CT
p Pi and

BTεi −
p∑

j=1

βjiεj = CT
p Qi for i = 1, · · · , p. Thus we have

(εi, AUt) =

p∑

j=1

αjizjt + (Pi, CpUt), i = 1, · · · , p (4.17)

and

(εi, BUt(t, L)) =

p∑

j=1

βjizjt(t, L) + (Qi, CpUt(t, L)), i = 1, · · · , p. (4.18)

Multiplying εi(i = 1, · · · , p) on both sides of problem (1.3)–(1.6), noting (4.17)–(4.18), for

i = 1, · · · , p, we have

zitt − zixx +

p∑

j=1

αjizjt = −(Pi, CpUt), t ∈ (0,+∞), x ∈ (0, L), (4.19)

x = 0 : zi = 0, t ∈ (0,+∞) (4.20)
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and any one of

x = L : zi = (H,DTεi), t ∈ (0,+∞), (4.21a)

x = L : zix = (H,DTεi), t ∈ (0,+∞), (4.21b)

x = L : zix +

p∑

j=1

βjizjt = (H,DTεi)− (Qi, CpUt(t, L)), t ∈ (0,+∞) (4.21c)

with

t = 0 : zi = (Û0, εi), zit = (Û1, εi), x ∈ (0, L). (4.22)

Let yi = zi − φi(i = 1, · · · , p), where φi(t, x)(i = 1, · · · , p) is the solution to problem

(4.6)–(4.9). For i = 1, · · · , p, we have

yitt − yixx +

p∑

j=1

αjiyjt = −(Pi, CpUt), t ∈ (0,+∞), x ∈ (0, L), (4.23)

x = 0 : yi = 0, t ∈ (0,+∞) (4.24)

and any one of

x = L : yi = (H,DTεi), t ∈ (0,+∞), (4.25a)

x = L : yix = (H,DTεi), t ∈ (0,+∞), (4.25b)

x = L : yix +

p∑

j=1

βjiyjt = (H,DTεi)− (Qi, CpUt(t, L)), t ∈ (0,+∞) (4.25c)

with

t = 0 : yi = yit = 0, x ∈ (0, L). (4.26)

According to the theory of first order hyperbolic systems, by [20, Theorem 3.3], with H given

by (2.1) we have the following estimate for i = 1, · · · , p :

‖(yi, yit)(T )‖H1(0,L)×L2(0,L) ≤ c(‖CpUt‖(L2(0,T ;L2(0,L)))n−p + ‖H‖H) (4.27)

in cases (4.25a) and (4.25b); while

‖(yi, yit)(T )‖H1(0,L)×L2(0,L)

≤ c(‖CpUt‖(L2(0,T ;L2(0,L)))n−p + ‖H‖H + ‖CpUt(t, L)‖(L2(0,T ))n−p) (4.28)

in case (4.25c), where W
def.
= CpU satisfies the reduced system (3.12)–(3.14) with

t = 0 : W = CpÛ0, Wt = CpÛ1, x ∈ (0, L). (4.29)

By Theorem 2.1, noting (3.11), we have

‖CpUt‖(L2(0,T ;L2(0,L)))n−p = ‖Wt‖(L2(0,T ;L2(0,L)))n−p

≤ c(‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p + ‖H‖H) ≤ c‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p (4.30)
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and

‖CpUt(t, L)‖(L2(0,T ))n−p = ‖Wt(t, L)‖(L2(0,T ))n−p

≤ c(‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p + ‖H‖H) ≤ c‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p . (4.31)

Therefore, it follows from (3.11), (4.27)–(4.28) and (4.30)–(4.31) that

‖(zi − φi, zit − φit)(T )‖H1(0,L)×L2(0,L) = ‖(yi, yit)(T )‖H1(0,L)×L2(0,L)

≤ c‖Cp(Û0, Û1)‖(H1(0,L)×L2(0,L))n−p , i = 1, · · · , p. (4.32)

On the other hand, noting (3.5) and that Span{ε1, · · · , εp} and Ker(Cp) = Span{ǫ1, · · · , ǫp}

are bi-orthonormal, we have

t ≥ T : zi = (εi, U) =
(
εi,

p∑

j=1

ũjǫj

)
= ũi, i = 1, · · · , p. (4.33)

Substituting (4.33) into (4.32), we get (4.16).

Remark 4.2 [4] and [18] discussed the exact boundary synchronization by groups for the

coupled system of 1-D wave equations (1.1) with various types of boundary conditions but in the

framework of classical solutions. It was proved that when D in (1.5) is the identity matrix, we

can find (n−p) boundary controls so that system (1.1) and (1.4)–(1.5) is exactly synchronization

by p-groups. In this paper we extend the corresponding result to system (1.3)–(1.5) in the

framework of weak solutions, for which not only corresponding exactly synchronizable states

by p-groups are further determined and estimated, but also the necessary rank conditions of

Kalman type can be obtained in Section 6.

5 Necessity of the Conditions of Cp-Compatibility

Assume that system (1.3)–(1.5) is exactly synchronizable by p-groups, namely, we have (3.5),

then, multiplying Cp on (1.3), we have

t ≥ T : CpAUt = CpA

p∑

i=1

ũitǫi =

p∑

i=1

CpAǫiũit = 0, (5.1)

where ǫi(i = 1, · · · , p) are given by (3.4). If CpAǫi = 0(i = 1, · · · , p), then, noting (3.4), we have

the condition of Cp-compatibility (3.9) for A. Otherwise, ũ1t, · · · , ũpt are linearly dependent,

without loss of generality, we may assume that

t ≥ T : ũpt =

p−1∑

i=1

δiũit, (5.2)

where δi(i = 1, · · · , p− 1) are constants.

Let

Θ =




In1
0

In2
0

. . .
...

Inp−1
0

δ1
n1
ẽT1

δ2
n2

ẽT2 · · ·
δp−1

np−1
ẽTp−1

...
...

... −Inp

δ1
n1
ẽT1

δ2
n2

ẽT2 · · ·
δp−1

np−1
ẽTp−1
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be an invertible matrix, and let

U =




U1

...
Up−1

Up


 = ΘU =




U1

...
Up−1( p−1∑

i=1

δi
ni
ẽTi Ui

)
ẽp − Up




, (5.3)

where ẽi(i = 1, · · · , p) are given by (3.3). Noting (3.6) and (5.2), as t ≥ T we have

U i = Ui = ũiẽi, i = 1, · · · , p− 1, (5.4)

Up =
( p−1∑

i=1

δi

ni

ẽTi Ui

)
ẽp − Up =

( p−1∑

i=1

δiũi

)
ẽp − ũpẽp =

( p−1∑

i=1

δiũi − ũp

)
ẽp (5.5)

and

Upt =
( p−1∑

i=1

δiũit − ũpt

)
ẽp = 0. (5.6)

On the other hand, noting (1.7) and (5.3), let

V = (V
−
, V

+
)T =

(
Θ 0

0 Θ

)
V =

(
ΘV −

ΘV +

)
=

1

2

(
Θ(Ut + Ux)
Θ(Ut − Ux)

)

=
1

2

(
U t + Ux

U t − Ux

)
(5.7)

and let V
−
= (V

−

1 , · · · , V
−

p )
T and V

+
= (V

+

1 , · · · , V
+

p )
T with

V
−

i =
1

2
(U it + U ix) and V

+

i =
1

2
(U it − U ix), i = 1, · · · , p. (5.8)

Noting (5.4)–(5.6) and (5.8), as t ≥ T we have

V
−

i =
1

2
(ũit + ũix)ẽi, V

+

i =
1

2
(ũit − ũix)ẽi, i = 1, · · · , p− 1 (5.9)

and

V
−

p = −V
+

p =
1

2
Upx =

1

2

( p−1∑

i=1

δiũix − ũpx

)
ẽp. (5.10)

Let

Θ̃ =




In1
0

. . .
...

Inp
0

In1
0

. . .
...

Inp−1
0

0 · · · Inp
0 · · · 0 Inp
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and let Θ = Θ̃

(
Θ 0

0 Θ

)
. Noting (5.9)–(5.10), we have

t ≥ T : V
def.
= ΘV = Θ̃V =




V
−

1
...

V
−

p−1

V
−

p

V
+

1
...

V
+

p−1

V
−

p + V
+

p




=
1

2




(ũ1t + ũ1x)ẽ1
...

((ũp−1)t + (ũp−1)x)ẽp−1

(
p−1∑
i=1

δiũix − ũpx)ẽp

(ũ1t − ũ1x)ẽ1
...

((ũp−1)t − (ũp−1)x)ẽp−1

0ẽp




,

namely, by an invertible linear transformation, one group of the components of system (1.8)

and (1.10)–(1.11) is in fact exactly null controllable, while any one of the other groups is exactly

synchronizable. From the perspective of first order hyperbolic systems, we should exclude this

situation (see [6, Theorem 6.1]). Hence, we have the following theorem.

Theorem 5.1 If system (1.3)–(1.5) is exactly synchronizable by p-groups, but the derivatives

of the exactly synchronizable states with respect to t, ũ1t, · · · , ũpt are not linearly dependent,

then A satisfies the condition of Cp-compatibility (3.9).

In particular, when p = 1, by [6, Theorems 6.1–6.2] we have the following corollary.

Corollary 5.1 If system (1.3)–(1.5) is exactly synchronizable but not exactly null control-

lable, then A must satisfy the condition of C1-compatibility (3.9) with p = 1, moreover, B must

satisfy the condition of C1-compatibility (3.10) with p = 1 in case (1.5c), where C1 is given by

(3.2).

Remark 5.1 The discussions on the exact boundary synchronization by p-groups and cor-

responding exactly synchronizable states by p-groups for system (1.1) and for system (1.3) are

quite similar. In the study of the necessity of the conditions of Cp-compatibility for the coupling

matrix A in Theorem 5.1, noting the form of coupling AUt in system (1.3), we need to check

the linear independence of ũ1t, · · · , ũpt. In comparison, for system (1.1) with coupling AU , we

need to check the linear independence of ũ1, · · · , ũp, instead. Similarly for that of B on the

boundary.

Specifically, for system (1.1), the coupling of displacements AU can be regarded as a compact

perturbation. Because of this compactness, we can prove that ũ1, · · · , ũp is linearly independent

in the domain or on the boundary, then we get the necessity of the conditions of Cp-compatibility

for the coupling matrices (see more details in [22]). However, the coupling of velocities AUt in

system (1.3) is not compact, we can not prove the linear independence of ũ1t, · · · , ũpt in the

same way, the necessity of the conditions of Cp-compatibility for both A and B for the exact

boundary synchronization by p-groups for system (1.3)–(1.5) is still an open problem.

6 Kalman’s Criterion

In this section, we give some necessary conditions for the coupling matrices.
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Theorem 6.1 If system (1.3)–(1.4) with (1.5a) (resp. (1.5b)) is exactly null controllable,

then we necessarily have

rank(D,AD, · · · , An−1D) = n. (6.1)

Proof The result can be proved by applying [6, Theorem 7.1] to system (1.8), (1.10) and

(1.11a) (resp. (1.11b)). We only need to point out that the rank condition (6.1) holds if and only

if AT doesn’t have any invariant subspace that is contained in Ker(DT) (see [16, Proposition

2.12]).

Corollary 6.1 Assume that A satisfies the condition of Cp-compatibility (3.9). If system

(1.3)–(1.4) with (1.5a) (resp. (1.5b)) is exactly synchronizable by p-groups, then we necessarily

have

rank(CpD,CpAD, · · · , CpA
n−1D) = n− p. (6.2)

Proof Under the condition of Cp-compatibility (3.9) for A, the exact boundary synchro-

nization by p-groups for system (1.3)–(1.4) with (1.5a) (resp. (1.5b)) can be equivalently trans-

formed into the exact boundary null controllability for the reduced system (3.12)–(3.13) with

(3.14a) (resp. (3.14b)). Then, applying Theorem 6.1 to system (3.12)–(3.13) with (3.14a) (resp.

(3.14b)), we have

rank(CpD,ApCpD, · · · , A
n−p−1

p CpD) = n− p. (6.3)

Noting (3.9), (6.2) follows from (6.3).

For system (1.3)–(1.4) with (1.5c), the Kalman’s criterion, which is similar to that in [17],

is different because there is another coupling matrix B on the boundary. Let

R(p,q,··· ,r,s) = ApBq · · ·ArBsD

be an n×M matrix for any given non-negative integers p, q, · · · , r, s ≥ 0, and let

R = (R(p,q,··· ,r,s),R(p′,q′,··· ,r′,s′), · · · ) (6.4)

be an enlarged matrix by the matrices R(p,q,··· ,r,s) for all possible (p, q, · · · , r, s).

Lemma 6.1 (see [17, Lemma 2.1]) Ker(RT) is the largest subspace of all the subspaces

which are contained in Ker(DT) and invariant for AT and BT.

Lemma 6.2 Assume that −1 is not an eigenvalue of the coupling matrix B. For any given

k × n matrix C, there exists a matrix B of order k, such that

CB = BC (6.5)

if and only if there exists a matrix G1 of order k, such that

CG1 = G1C, (6.6)

where G1 is given by (1.12).
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Proof Assume first that (6.5) holds, then we have

C(In + B) = C + CB = C +BC = (Ik +B)C. (6.7)

Since −1 is not an eigenvalue of B, by [16, Proposition 2.21], −1 is not an eigenvalue of B, then

it follows from (6.7) that

(Ik +B)−1C = C(In +B)−1. (6.8)

Let G1 = (Ik +B)−1(Ik −B). Noting (1.12), (6.5) and (6.8), we have

G1C = (Ik +B)−1(Ik −B)C = (Ik +B)−1C(In −B) = C(In +B)−1(In −B) = CG1. (6.9)

Inversely, assume that (6.6) holds. We claim that −1 is not an eigenvalue of G1. Otherwise,

noting (1.12), there exists a non-trivial ξ ∈ R
n, such that

G1ξ = (In +B)−1(In −B)ξ = −ξ,

then we have (In − B)ξ = −(In + B)ξ, which leads to ξ = −ξ, a contradiction. Thus, by [16,

Proposition 2.21], −1 is not an eigenvalue of G1. Then, similarly to (6.8), we have

(Ik +G1)
−1C = C(In +G1)

−1. (6.10)

Noting (1.12), we have

B = (In −G1)(In +G1)
−1. (6.11)

Let B = (Ik −G1)(Ik +G1)
−1. Noting (6.6) and (6.10)–(6.11), we have

BC = (Ik −G1)(Ik +G1)
−1C

= (Ik −G1)C(In +G1)
−1 = C(In −G1)(In +G1)

−1 = CB. (6.12)

Theorem 6.2 Assume that both −1 and 1 are not eigenvalues of B. If system (1.3)–(1.4)

with (1.5c) is exactly null controllable, then we necessarily have rank(R) = n.

Proof Assume by contradiction that rank(R) = n− d with d > 0, then dim Ker(RT) = d.

By Lemma 6.1, Ker(RT) is contained in Ker(DT) and invariant for AT and BT. Since Ker(RT)

is invariant for BT, by Lemma 6.2, Ker(RT) is also invariant for GT
1 . Noting that 1 is not an

eigenvalue of B, G1 is invertible. Moreover, since Ker(RT) is contained in Ker(DT), it is easy

to see that Ker(RT) is contained in Ker(DT (In+B)−T). Thus the desired result can be proved

by applying [6, Theorem 7.1] to system (1.8), (1.10) and (1.11c).

Corollary 6.2 Assume that A and B satisfy the conditions of Cp-compatibility (3.9) and

(3.10), respectively. Assume furthermore that −1 is not an eigenvalue of B, and 1 is not an

eigenvalue of Bp given by (3.10). If system (1.3)–(1.4) with (1.5c) is exactly synchronizable by

p-groups, then we necessarily have

rank(CpR) = n− p. (6.13)

Proof Under the conditions of Cp-compatibility for A and B, the exact boundary synchro-

nization by p-groups for system (1.3)–(1.4) with (1.5c) can be equivalently transformed into the

exact boundary null controllability for the reduced system (3.12)–(3.13) with (3.14c). Then,

applying Theorem 6.2 to this reduced system (3.12)–(3.13) with (3.14c) and noting (3.9)–(3.10),

we have (6.13).
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Remark 6.1 By [16, Proposition 2.21], if 1 is not an eigenvalue of B, then 1 is not an

eigenvalue of Bp.

7 Remark

The preceding method can be used to consider the corresponding problems for the following

1-D coupled system of wave equations

Utt − Uxx +AUt +AUx = 0, t ∈ (0,+∞), x ∈ (0, L) (7.1)

with the same boundary conditions (1.4) and (1.5) and the same initial data (1.6), where both

A and A are matrices of order n with real constant elements.

Let V be defined by (1.7). We have still system (1.8) and (1.10)–(1.11) with

A =
1

2

(
A+A A−A

A+A A−A

)
. (7.2)

Suppose furthermore that the matrix A also satisfies the condition of Cp-compatibility

AKer(Cp) ⊆ Ker(Cp), namely, CpA = ApCp,

or Aǫi =

p∑

j=1

αijǫj for i = 1, · · · , p, (7.3)

in which Ap is a matrix of order (n−p), and αij(i, j = 1, · · · , p) are constants, we can similarly

get all the results mentioned above, in which the exactly synchronizable state by p-groups

(ũ1, · · · , ũp)
T satisfies

ũitt − ũixx +

p∑

j=1

αjiũjt +

p∑

j=1

αjiũjx = 0, t ∈ (T,+∞), x ∈ (0, L) (7.4)

with (4.2)–(4.3) for i = 1, · · · , p, and the exactly synchronizable state by p-groups (ũ1, · · · , ũp)
T

satisfies the estimate (4.16), where φi(i = 1, · · · , p) satisfy the system

φitt − φixx +

p∑

j=1

αjiφjt +

p∑

j=1

αjiφjx = 0, t ∈ (0,+∞), x ∈ (0, L) (7.5)

with (4.7)–(4.9), where αij , βij and αij(i, j = 1, · · · , p) are given by (3.9), (3.10) and (7.3),

respectively.
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