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1 Introduction and Main Results

The study of differential equations and variational problems with double phase operator is a

new and interesting topic. Such problems go back to Zhikov [1–3] who introduced such classes

of operators to describe models of strongly anisotropic materials and also the monograph of

Zhikov-Kozlov-Oleinik [4]. The main idea was the introduction of the functional

u 7→

∫

Ω

(|∇u|p + a(x)|∇u|q)dx, (1.1)

where the integrand switches two different elliptic behaviors. More precisely, energies of the form

(1.1) are used in the context of homogenization and elasticity and the modulating coefficient a(·)

dictates the geometry of a composite of two different materials with distinct power hardening

exponents p and q (see [4]). Significant progresses were recently achieved in the framework of

regularity results for quasi-minimizer or minimizers of such functionals, see e.g., [5–12].

The purpose of this paper is to investigate the existence and multiplicity of solutions for the

following double phase problem

{
−div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(P )
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where Ω ⊂ R
N is a bounded domain with a C2-boundary ∂Ω, N ≥ 2, 1 < p < q < N ,

q

p
< 1 +

1

N
, a : Ω 7→ [0,+∞) is Lipschitz continuous, (1.2)

and f : Ω× R 7→ R is a Carathéodory function satisfying the following conditions:

(f1) f(x, t) = o(|t|q−2t) as t → 0 uniformly in x ∈ Ω.

(f2) There exist q < r < p∗ and some positive constant C such that

|f(x, t)| ≤ C(1 + |t|r−1),

where p∗ = Np
N−p

is the critical exponent.

(f3) lim
|t|→+∞

F (x,t)
|t|q = +∞ uniformly in x ∈ Ω, where F (x, t) =

∫ t

0
f(x, s)ds.

(f4) If F(x, t) = f(x, t)t− qF (x, t), then there exists g ∈ L1(Ω) satisfying

F(x, t) ≤ F(x, s) + g(x) for a.a. x ∈ Ω, all 0 < t < s or s < t < 0.

The solution of (P ) is understood in the weak sense, that is, u ∈ W
1,H
0 (Ω) is a solution of

problem (P ) if it satisfies

∫

Ω

(|∇u|p−2∇u · ∇v + a(x)|∇u|q−2∇u · ∇v)dx =

∫

Ω

f(x, u)vdx, ∀v ∈ W
1,H
0 (Ω),

where W
1,H
0 (Ω) will be defined in Section 2.

Note that energy functional associated to (P ) is denoted by

ϕ(u) =

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−

∫

Ω

F (x, u)dx.

It is a well-known consequence of (f1) and (f2) that ϕ ∈ C1(W 1,H
0 (Ω),R) and the critical points

of ϕ are weak solutions of (P ).

Existence and multiplicity results for problems of type (P ) have been discussed precisely

by several authors. Especially Perera et al. [13] considered a double-phase problem with the

q-superlinear reaction term, that is,

{
−div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) = λ|u|p−2u+ |u|r−2u+ h(x, u) in Ω,

u = 0 on ∂Ω,
(P1)

where λ ∈ R is a parameter, q < r < p∗ and h is a Carathéodory function on Ω× R satisfying

|h(x, t)| ≤ C(|t|ρ−1 + |t|σ−1)

for some p < σ < ρ < r and C > 0. In particular, applying the Morse theory, they proved

the existence of a solution of problem (P1). Following this, Liu-Dai [14] considered the same

problems for more general reaction term, and proved existence and multiplicity results, also sign-

changing solutions. Furthermore, we refer to a recent work [15] which shows the existence of at

least three solutions of problem (P ) by using strong maximum principle. A similar treatment has

been recently done by Hou-Ge-Zhang-Wang [16] via the Nehari manifold method. Eigenvalue

problems for double phase operators with Dirichlet boundary condition are also investigated in



Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory 51

[17], where the authors proved the existence and properties of related variational eigenvalues.

For other existence results on elliptic equations with double phase operators we refer to the

papers of Ge-Lv-Lu [18], Ge-Chen [19], Ge-Wang-Lu [20], Papageorgiou-Radulescu-Repovs [21–

22], Radulescu [23], Cencelj-Radulescu-Repovs [24], Gasinski-Winkert [25–26], Zeng-Gasinski-

Winkert-Bai [27] and the references therein.

Motivated by the aforementioned works, in the present paper we focus our attention on the

existence and multiplicity of solutions to (P ). Our approach uses minimax techniques coming

from critical point theory and Morse theory combined with truncation arguments. Precisely,

we obtain the following result.

Theorem 1.1 Assume that (f1)–(f4) hold. Then problem (P ) has at least one nontrivial

weak solution u0 ∈ C1
0 (Ω).

Furthermore, we establish the existence of at least three nontrivial weak solutions, by using

an additional assumption on the reaction term f(x, t). Precisely, we have the following result.

Theorem 1.2 Assume that (f1)–(f4) hold. In addition we will assume the following con-

dition:

(f5) f(x, t)t ≥ 0 for a.a. x ∈ Ω, all t ∈ R and the set {x ∈ Ω : f(x, t) = 0 for some t 6= 0}

has empty interior.

Then problem (P ) has at least three nontrivial weak solutions u0 ∈ N+(N+ is defined in

Section 2), v0 ∈ −N+ and w0 ∈ C1
0 (Ω).

The outline of this paper is as follows. In Section 2, we introduce the required preliminary

knowledge on space W
1,H
0 (Ω) and recall some necessary concepts and results in Morse theory.

In Section 3, we obtain several preliminary lemmas which are needed for the proofs of our main

results. The proofs of Theorem 1.1 and Theorem 1.2 will also be presented in Section 4.

2 Preliminaries

In this section, we first recall some necessary properties on Musielak-Orlicz-Sobolev space

W
1,H
0 (Ω) which will be used later, see [17, 28–31] for more details.

Denote by N(Ω) the set of all generalized N -function (see [29, p.82]). For 1 < p < q and

0 ≤ a(·) ∈ L1(Ω), we define

H(x, t) = tp + a(x)tq , ∀(x, t) ∈ Ω× [0,+∞).

It is clear that H ∈ N(Ω) is locally integrable and

H(x, 2t) ≤ 2qH(x, t), ∀(x, t) ∈ Ω× [0,+∞),

which is known as the (△2) (see [29, p.52]).

The Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) =
{
u : Ω → R measurable :

∫

Ω

H(x, |u|)dx < +∞
}

equipped with the Luxemburg norm

|u|H = inf
{
λ > 0 :

∫

Ω

H
(
x,

∣∣∣u
λ

∣∣∣
)
dx ≤ 1

}
.
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It is clear that the space LH(Ω) is a uniformly convex, and hence reflexive Banach space. The

related Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) = {u ∈ LH(Ω) : |∇u| ∈ LH(Ω)}

with the norm

‖u‖ = |u|H + |∇u|H . (2.1)

We denote by W
1,H
0 (Ω) the completion of C∞

0 (Ω) in W 1,H(Ω). With these norms, the spaces

W
1,H
0 (Ω) and W 1,H(Ω) are uniformly convex and so, reflexive Banach spaces; see [17] for the

details.

Proposition 2.1 (see [14, Proposition 2.1]) Set ρH(u) =
∫
Ω
(|u|p + a(x)|u|q)dx. For u ∈

LH(Ω), we have

(i) For u 6= 0, |u|H = λ ⇔ ρH(u
λ
) = 1.

(ii) |u|H < 1(= 1;> 1) ⇔ ρH(u) < 1(= 1;> 1).

(iii) If |u|H ≥ 1, then |u|pH ≤ ρH(u) ≤ |u|qH .

(iv) If |u|H ≤ 1, then |u|qH ≤ ρH(u) ≤ |u|pH .

Proposition 2.2 (see [17, Proposition 2.15, Proposition 2.18]) (1) If 1 ≤ ϑ ≤ p∗, then

the embedding from W
1,H
0 (Ω) to Lϑ(Ω) is continuous. In particular, if ϑ ∈ [1, p∗), then the

embedding W
1,H
0 (Ω) →֒ Lϑ(Ω) is compact.

(2) Assume that (1.2) holds. Then the Poincare’s inequality holds, that is, there exists a

positive constant C0 such that

|u|H ≤ C0|∇u|H , ∀u ∈ W
1,H
0 (Ω).

(3) The embedding LH(Ω) →֒ Lϑ(Ω) and W
1,H
0 (Ω) →֒ W

1,ϑ
0 (Ω) are continuous for all

ϑ ∈ [1, p].

By the above Proposition 2.2(1), we know that there exists cϑ > 0 such that

|u|ϑ ≤ cϑ‖u‖, ∀u ∈ W
1,H
0 (Ω),

where |u|ϑ denotes the usual norm in Lϑ(Ω) for all 1 ≤ ϑ < p∗. Thanks to Proposition 2.2(2),

we have an equivalent norm on W
1,H
0 (Ω) given by |∇u|H . We will use the equivalent norm in

the following discussion and write ‖u‖ = |∇u|H for simplicity.

Remark 2.1 The Poincare’s inequality has been proved also in [32] under the more general

assumption

Ω is quasiconvex and a ∈ C0,α(Ω) with
q

p
≤ 1 +

α

N
for some α ∈ (0, 1]. (2.2)

Furthermore, we observe that, since p∗ > p
(
1 + 1

n

)
, both (1.2) and (2.2) imply q < p∗.

In order to discuss the problem (P ), we need to define a functional in W
1,H
0 (Ω):

J(u) =

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx.
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We know that, J ∈ C1(W 1,H
0 (Ω),R) and double phase operator−div(|∇u|p−2∇u+a(x)|∇u|q−2∇u)

is the derivative operator of J in the weak sense (see [33]). We denote L = J ′ : W 1,H
0 (Ω) →

(W 1,H
0 (Ω))∗, then

〈L(u), v〉 =

∫

Ω

(|∇u|p−2∇u · ∇v + a(x)|∇u|q−2∇u · ∇v)dx

for all u, v ∈ W
1,H
0 (Ω). Here (W 1,H

0 (Ω))∗ denotes the dual space of W 1,H
0 (Ω) and 〈·, ·〉 denotes

the pairing between W
1,H
0 (Ω) and (W 1,H

0 (Ω))∗. Then, we have the following result.

Proposition 2.3 (see [14, Proposition 3.1]) Set E = W
1,H
0 (Ω), L is as above, then

(1) L is a continuous, bounded and strictly monotone operator.

(2) L is a mapping of type (S)+, i.e., if un ⇀ u in E and lim sup
n→+∞

〈L(un)−L(u), un−u〉 ≤ 0,

implies un → u in E.

(3) L is a homeomorphism.

The Banach space C1
0 (Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1
0 (Ω) : u(x) ≥ 0 for all x ∈ Ω}.

It has nonempty interior given by

N+ = intC+ =
{
u ∈ C1

0 (Ω) : u(x) > 0 for all x ∈ Ω,
∂u

∂n

∣∣∣
∂Ω

< 0
}
.

Now, we introduce some elements of critical point and Morse theories needed in the sequel.

Let X be a Banach space and X∗ be its topological dual. Let ϕ ∈ C1(X,R). We set Kϕ =

{u ∈ X : ϕ′(u) = 0}, Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} and, for every c ∈ R, denote ϕc = {u ∈ X :

ϕ(u) ≤ c}. Let (X1, X2) be a topological pair with X2 ⊂ X1 ⊂ X , then for every integer k ≥ 0,

we denote by Hk(X1, X2) the kth-relative singular homology group with integer coefficients.

Let u0 ∈ Kc
ϕ be isolated. Then the critical groups of ϕ at u0 with ϕ(u0) = c are defined by

Ck(ϕ, u0) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u0}), ∀k ≥ 0,

where U is a neighborhood of u0 such that Kϕ∩ϕc∩U = {u0} (see [34]). The excision property

of singular homology implies that above definition is independent of the particular neighborhood

U . Assume that the ϕ ∈ C1(X,R) satisfies the (Cc)-condition and inf ϕ(Kϕ) > −∞. Choosing

c < inf ϕ(Kϕ), the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc), ∀k ≥ 0

see [35] for details.

Let us recall the definition of Cerami condition [36].

Definition 2.1 Let X be a Banach space. ϕ ∈ C1(X,R) is said to satisfy condition (C)c

at the level c ∈ R, if the following fact is true: For any sequence {uk} ⊂ X such that

ϕ(uk) → c and (1 + ‖uk‖)‖ϕ
′(uk)‖X∗ , as k → ∞,

{uk} possesses a convergent subsequence.
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The following mountain pass theorem obtained by Motreanu-Motreanu-Papageorgiou [37]

will be used to seek the existence of solutions.

Theorem 2.1 Let X be a Banach space, ϕ ∈ C1(X,R), and assume that ϕ satisfies the

(C)c-condition. Let u0, u1 ∈ X, u0 6= u1, satisfy ‖u1 − u0‖ > ρ > 0, and assume that

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u− u0‖ = ρ} = mρ, c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ≥ mρ and c is a critical value of ϕ, that is, there exists û ∈ X such that ϕ′(û) = 0

and ϕ(û) = c.

3 Some Preliminary Lemmas

In this section, we give some preliminary lemmas which are crucial for proving our results.

Firstly, we show that Cerami condition holds.

Lemma 3.1 If assumption (f2)−(f4) hold, then the functional ϕ satisfies the (C)c-condition

for each c > 0.

Proof Let {un} ⊂ W
1,H
0 (Ω) be a (C)c sequence, that is,

c = ϕ(un) + cn, 〈ϕ′(un), un〉 → 0 as n → +∞, (3.1)

where cn → 0 as n → +∞.

First of all, we claim that the sequence {un} is bounded in W
1,H
0 (Ω). Indeed, arguing by

contradiction, we suppose that ‖un‖ → +∞ as n → +∞. Define vn = un

‖un‖
, for any n ∈ N . It

is clear that {vn} ⊂ E and ‖vn‖ = 1 for any n ∈ N . Thus, going if necessary to a subsequence,

we may assume that

vn ⇀ v in W
1,H
0 (Ω),

vn → v in Ls(Ω), 1 ≤ s < p∗,

vn(x) → v(x) a.e. on Ω. (3.2)

Set Ω 6= := {x ∈ Ω : v(x) 6= 0}. If x ∈ Ω 6=, then it follows from (3.2) that

lim
n→∞

vn(x) = lim
n→∞

un(x)

‖un‖
= v(x) 6= 0,

which yields

|un(x)| = |vn(x)|‖un‖ → +∞ a.e. in Ω 6= as n → +∞.

By the hypothesis (f3), it follows that for each x ∈ Ω 6= we have

lim
n→∞

F (x, un(x))

|un(x)|q
|un(x)|

q

‖un‖q
= lim

n→∞

F (x, un(x))

|un(x)|q
|vn(x)|

q = +∞. (3.3)

Also by virtue of hypothesis (f3), we can find t0 > 0 such that

F (x, t)

|t|q
> 1, ∀x ∈ Ω and |t| > t0. (3.4)
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Moreover from hypothesis (f2), we have that there exists a positive constant C1 such that

|F (x, t)| ≤ C1, ∀(x, t) ∈ Ω× [−t0, t0]. (3.5)

Then, by (3.4)–(3.5), there is a constant C2 ∈ R such that

F (x, t) ≥ C2, ∀(x, t) ∈ Ω× R, (3.6)

which implies that
F (x, un)− C2

‖un‖q
≥ 0, ∀x ∈ Ω, ∀n ∈ N,

that is,

F (x, un)

|un(x)|q
|vn(x)|

q −
C2

‖un‖q
≥ 0, ∀x ∈ Ω, ∀n ∈ N. (3.7)

Recalling ‖un‖ > 1 for n large, using (3.1) we have

c = ϕ(un) + cn

=

∫

Ω

(1
p
|∇un|

p +
a(x)

q
|∇un|

q
)
dx−

∫

Ω

F (x, un)dx+ cn

≥
1

q
‖un‖

p −

∫

Ω

F (x, un)dx + cn,

which shows that
∫

Ω

F (x, un)dx ≥
1

q
‖un‖

p − c+ cn → +∞ as n → +∞. (3.8)

Similarly, from (3.1), we deduce that that

c = ϕ(un) + cn

=

∫

Ω

(1
p
|∇un|

p +
a(x)

q
|∇un|

q
)
dx−

∫

Ω

F (x, un)dx+ cn

≤
1

p
‖un‖

q −

∫

Ω

F (x, un)dx+ cn.

This combined with (3.8) yields

‖un‖
q ≥ p

∫

Ω

F (x, un)dx+ pc− cn > 0 (3.9)

for n large enough.

Next, we claim that |Ω 6=| = 0. In fact, if |Ω 6=| 6= 0, then from (3.3), (3.7), (3.9) and the

Fatou’s lemma, we obtain that

+∞ =

∫

Ω6=

lim
n→∞

F (x, un(x))

|un(x)|q
|vn(x)|

qdx−

∫

Ω6=

lim
n→∞

C2

‖un‖q
dx

=

∫

Ω6=

lim
n→∞

(F (x, un(x))

|un(x)|q
|vn(x)|

q −
C2

‖un‖q

)
dx

≤ lim inf
n→∞

∫

Ω6=

(F (x, un(x))

|un(x)|q
|vn(x)|

q −
C2

‖un‖q

)
dx
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≤ lim inf
n→∞

∫

Ω

(F (x, un(x))

|un(x)|q
|vn(x)|

q −
C2

‖un‖q

)
dx

= lim inf
n→∞

∫

Ω

F (x, un(x))

|un(x)|q
|vn(x)|

qdx− lim sup
n→∞

∫

Ω

C2

‖un‖q
dx

= lim inf
n→∞

∫

Ω

F (x, un(x))

‖un‖q
dx

≤ lim inf
n→∞

∫

Ω

F (x, un(x))

p
∫
Ω F (x, un)dx+ pc− cn

dx. (3.10)

Therefore, by (3.8) and (3.10), we conclude

+∞ ≤
1

p
,

which is a contradiction. Therefore, |Ω 6=| = 0 and v(x) = 0 a.e. in Ω.

Since ϕ(tun) is continuous in t ∈ [0, 1], for each n there exists tn ∈ [0, 1], n = 1, 2, · · · , such

that

ϕ(tnun) := max
t∈[0,1]

ϕ(tun). (3.11)

It is clear that tn > 0 and ϕ(tnun) ≥ c > 0 = ϕ(0) = ϕ(0 · un). If tn < 1, then by using
d
dtϕ(tun)|t=tn = 0, we deduce that

〈ϕ′(tnun), tnun〉 = 0. (3.12)

If tn = 1, then it follows from (3.1) that

〈ϕ′(un), un〉 = cn. (3.13)

Hence, from (3.12)–(3.13), we obtain

〈ϕ′(tnun), tnun〉 = cn. (3.14)

On one hand, by (f4), (3.1) and (3.11), for any t ∈ [0, 1], we achieve that

qϕ(tun) ≤ qϕ(tnun)

= 〈qϕ(tnun)− ϕ′(tnun), tnun〉+ cn

=

∫

Ω

(q
p
− 1

)
|∇tnun|

pdx−

∫

Ω

qF (x, tnun)dx+

∫

Ω

f(x, tnun)tnundx+ cn

=

∫

Ω

(q
p
− 1

)
|∇tnun|

pdx+

∫

Ω

F(x, tnun)dx+ cn

≤

∫

Ω

(q
p
− 1

)
|∇un|

pdx+

∫

Ω

(F(x, un) + g(x))dx + cn

= qϕ(un)− 〈ϕ′(un), un〉+ |g|1 + cn

→ qc+ |g|1 as n → +∞. (3.15)

Let {Rk}k∈N be a positive sequence of real numbers such that Rk > 1 for any k and

Rk → +∞ as k → +∞. Then

‖Rkvn‖ = Rk > 1, ∀k, n ∈ N.
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Moreover, due to the fact that vn → 0 in Lr(Ω) and vn(x) → 0 a.e. x ∈ Ω as n → +∞, by (f1)

and the Lebesgue dominated convergence theorem, we have that for fixed k ∈ N that
∫

Ω

F (x,Rkvn)dx → 0 as n → +∞. (3.16)

Recall that ‖un‖ → +∞ as n → +∞. So, we have either ‖un‖ > Rk or Rk

‖un‖
∈ (0, 1) for n large

enough. Consequently, by (3.11) and (3.16), we deduce for fix k ∈ N that

ϕ(tnun) ≥ ϕ
( Rk

‖un‖
un

)
= ϕ(Rkvn) ≥

1

q
R

p
k −

∫

Ω

F (x,Rkvn)dx ≥
1

2q
R

p
k, (3.17)

for any n large enough. From (3.17), letting n, k → +∞ we have

ϕ(tnun) → +∞ as n → +∞. (3.18)

From (3.15) and (3.18) we obtain a contradiction. Therefore we infer that the sequence {un}

is bounded in W
1,H
0 (Ω).

Finally, we turn to proving that any (C)c sequence has a convergent subsequence. Indeed,

by the boundedness of {un}, passing to a subsequence if necessary, still denoted by {un}, we

may assume that

un ⇀ u0 in W
1,H
0 (Ω).

Using Proposition 2.2(1), we have

un → u0 in Ls(Ω), s ∈ [1, p∗).

It is easy to compute directly that
∫

Ω

|f(x, un)− f(x, u0)||un − u0|dx

≤

∫

Ω

(|f(x, un)|+ |f(x, u0)|)|un − u0|dx

≤

∫

Ω

[C(1 + |un|
r−1) + C(1 + |u0|

r−1)]|un − u0|dx

≤ 2C

∫

Ω

|un − u0|dx+ C

∫

Ω

|un|
r−1|un − u0|dx+

∫

Ω

|u0|
r−1|un − u0|dx

≤ 2C

∫

Ω

|un − u0|dx+ C
(∫

Ω

|un|
(r−1)r′dx

) 1

r′
( ∫

Ω

|un − u0|
rdx

) 1
r

+ C
( ∫

Ω

|u0|
(r−1)r′dx

) 1

r′
(∫

Ω

|un − u0|
rdx

) 1
r

= 2C

∫

Ω

|un − u0|dx+ C
(∫

Ω

|un|
rdx

) r−1

r
( ∫

Ω

|un − u0|
rdx

) 1
r

+ C
( ∫

Ω

|u0|
rdx

) r−1

r
(∫

Ω

|un − u0|
rdx

) 1
r

= 2C|un − u0|1 + C|un|
r−1
r |un − u0|r + C|u0|

r−1
r |un − u0|r

→ 0 as n → ∞, (3.19)

where 1
r
+ 1

r′
= 1.



58 B. Ge, B. L. Zhang and W. S. Yuan

Note that

〈L(un)− L(u0), un − u0〉

= 〈ϕ′(un)− ϕ′(u0), un − u0〉+

∫

Ω

(f(x, un)− f(x, u0))(un − u0)dx. (3.20)

Moreover, by (3.1), it is easy to see that

lim
n→∞

〈ϕ′(un)− ϕ′(u0), un − u0〉 = 0. (3.21)

Therefore, the combination of (3.19)–(3.21) implies

lim
n→∞

〈L(un)− L(u0), un − u0〉 = 0. (3.22)

Therefore, it follows that un → u0 in W
1,H
0 (Ω) because L is a mapping of type (S)+ (see

Proposition 2.3). This ends the proof of lemma.

Our second result is the following lemma.

Lemma 3.2 Assume that (f1)–(f3) hold. Then the following assertions hold:

(a) there exist ρ > 0 and δ > 0 such that ϕ(u) ≥ δ for each u ∈ W
1,H
0 (Ω) with ‖u‖ = ρ;

(b) there exists v ∈ W
1,H
0 (Ω) such that ϕ(v) < 0 and ‖v‖ > ρ.

Proof Verification of (a). Since 1 < p < q < r < p∗, by Proposition 2.2, we conclude that

the embeddings W 1,H
0 (Ω) →֒ Lq(Ω) and W

1,H
0 (Ω) →֒ Lr(Ω) are continuous and so there exists

a constant C1 > 0 such that

|u|q ≤ C1‖u‖ and |u|r ≤ C1‖u‖. (3.23)

Using assumptions (f1) and (f2), we deduce that for any ε > 0, there is a Cε > 0 such that

|f(x, t)| ≤ ε|t|q−1 + Cε|t|
r−1, |F (x, t)| ≤ ε|t|q + Cε|t|

r (3.24)

for all (x, t) ∈ Ω× R, where r ∈ [1, p∗) was given in (f2).

Thus, for u ∈ W
1,H
0 (Ω) with ‖u‖ < 1 sufficiently small. By (3.24) and Proposition 2.2(2),

ϕ(u) =

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−

∫

Ω

F (x, u)dx

≥
1

q

∫

Ω

(|∇u|p + a(x)|∇u|q)dx−

∫

Ω

(ε|u|q + Cε|u|
r)dx

≥
1

q
‖u‖q − εC

q
1‖u‖

q − CεC
r
1‖u‖

r, (3.25)

and so there exist ρ > 0 and δ > 0 such that ϕ(u) ≥ δ for any u ∈ W
1,H
0 (Ω) with ‖u‖ = ρ.

Verification of (b). By the assumption (f3), for any M > 0, there exists a constant δM > 0

such that

F (x, t) ≥ M |t|q

for |t| > δM and for almost all x ∈ Ω. Also, by (f2), for all x ∈ Ω and |t| ≤ δM , we have

|F (x, t)| ≤ C(1 + |δM |r−1).
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The above two inequalities imply that there exists a constant CM > 0 such that

F (x, t) ≥ M |t|q − CM , ∀x ∈ Ω, ∀t ∈ R. (3.26)

Take φ ∈ W
1,H
0 (Ω) with φ > 0 on Ω and t > 1. Then, the relation (3.26) implies that

ϕ(tφ) =

∫

Ω

(1
p
|t∇φ|p +

a(x)

q
|t∇φ|q

)
dx−

∫

Ω

F (x, tφ)dx

≤
tq

p

∫

Ω

(|∇φ|p + a(x)|∇φ|q)dx − tqM

∫

Ω

|φ|qdx+ CMmeas(Ω). (3.27)

If M is large enough that

1

p

∫

Ω

(|∇φ|p + a(x)|∇φ|q)dx −M

∫

Ω

|φ|qdx < 0.

This means that

lim
t→+∞

ϕ(tφ) = −∞.

Hence, there exists v = t0φ ∈ W
1,H
0 (Ω) such that ϕ(v) < 0 and ‖u‖ > ρ.

Next we compute the critical groups of the energy functional ϕ at infinity.

Lemma 3.3 Assume that (f1)− (f4) hold. Then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof Let ∂B1 = {u ∈ W
1,H
0 (Ω) : ‖u‖ = 1}. From (f1) and (f2), for any M > 0, there

exists CM > 0, such that

F (x, t)) ≥ M |t|q − CM |Ω|, ∀(x, t) ∈ Ω× R.

Thus, for any u ∈ ∂B1 and t > 1, we get

ϕ(tu) ≤ tq
[ ∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−M

∫

Ω

|u|qdx
]
+ CM |Ω|.

By the arbitrariness of M , we have

ϕ(tu) → −∞, as t → +∞.

Moreover, for u ∈ ∂B1 and t > 1, by (f4), one yields

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉 =

1

t
〈ϕ′(tu), tu〉

=
1

t

[ ∫

Ω

(|∇tu|p + a(x)|∇tu|q)dx −

∫

Ω

f(x, tu)tudx
]

≤
1

t

[
q

∫

Ω

(1
p
|∇tu|p +

a(x)

q
|∇tu|q

)
dx− q

∫

Ω

F (x, tu)dx −

∫

Ω

F(x, u)dx+ |g|1

]

=
1

t

[
qϕ(tu)−

∫

Ω

F(x, u)dx+ |g|1

]

→ −∞, as t → +∞.

This shows that d
dtϕ(tu) < 0 for all t > 1 big. Using the implicit function theorem, there exists

a t ∈ C(∂B1) such that t > 0 and ϕ(t(u)u) = ρ0, where

qρ0 −

∫

Ω

F(x, u)dx + |g|1 < 0.
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We extend t(·) on W
1,H
0 (Ω)\{0} by

t0(u) =
1

‖u‖
t
( u

‖u‖

)

for all u ∈ W
1,H
0 (Ω)\{0}. It is clear that t0 ∈ W

1,H
0 (Ω)\{0} and ϕ(t0(u)u) = ρ0. Therefore, we

have

ϕ(u) = ρ0 ⇒ t0(u) = 1. (3.28)

Denoting by

t̂0(u) =

{
1, if ϕ(u) ≤ ρ0,

t0(u), if ϕ(u) > ρ0,

then we have t̂0 ∈ C(W 1,H
0 (Ω)\{0}). Now, we introduce the deformation h : [0, 1]×W

1,H
0 (Ω)\{0}

→ W
1,H
0 (Ω)\{0} defined by

h(λ, u) = (1− λ)u + λt̂0(u)u

for all λ ∈ [0, 1] and all u ∈ W
1,H
0 (Ω).

Due to the definition of t̂0 and to (3.28), we necessarily have

(1) h(0, u) = u, ∀u ∈ W
1,H
0 (Ω)\{0},

(2) h(1, u) = t̂0(u)u+ ϕρ0 ,

(3) h(t, ·)|ϕρ0 = id|ϕρ0 .

The above facts imply that

ϕρ0 is a strong deformation retractor of W 1,H
0 (Ω)\{0}. (3.29)

Next, we consider the radial retraction r : W 1,H
0 (Ω)\{0} → ∂B1 defined by

r(u) =
u

‖u‖
, ∀u ∈ W

1,H
0 (Ω)\{0}

and the deformation ĥ : [0, 1]×W
1,H
0 (Ω)\{0} → W

1,H
0 (Ω)\{0} defined by

ĥ(λ, u) = (1 − λ)u+ λr(u), ∀u ∈ W
1,H
0 (Ω)\{0}.

On one hand, using this deformation we deduce that

W
1,H
0 (Ω)\{0} is deformable into ∂B1. (3.30)

On the other hand, using radial retraction r(·), we see that

∂B1 is a retractor of W 1,H
0 (Ω)\{0}. (3.31)

Hence, by (3.30)–(3.31) and [38, Theorem 6.5], we conclude that

∂B1 is a deformation retractor of W 1,H
0 (Ω)\{0}. (3.32)
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Again from (3.29) and (3.32), we conclude that ϕρ0 and ∂B1 are homotopy equivalent. In view

of [37, Proposition 6.11]

Hk(W
1,H
0 (Ω), ϕρ0 ) = Hk(W

1,H
0 (Ω), ∂B1), ∀k ≥ 0. (3.33)

Invoking Problems (4.154), (4.159) of Gasinski-Papageorgiou [39], we infer that ∂B1 is

contractible. Again from [37, P.147], we have Hk(W
1,H
0 (Ω), ∂B1) = 0 for all k ≥ 0. This,

together with (3.33), shows Hk(W
1,H
0 (Ω), ϕρ0 ) = 0 for all k ≥ 0. As usual we assume that Kϕ

is finite (or otherwise we already have an infinity of nontrivial solutions). Hence, if we choose

ρ0 such that qρ0 −
∫
Ω
F(x, u)dx + |g|1 < 0, then we have Ck(ϕ,∞) = Hk(W

1,H
0 (Ω), ϕρ0 ) = 0

for all k ≥ 0.

4 The Proof of Main Theorems

Proof of Theorem 1.1 Let X = W
1,H
0 (Ω) and u0 = 0. We know that ϕ satisfies the

(C)c-condition from Lemma 3.1 and ϕ(0) = 0. In view of Lemma 3.2(b), we get trivially that

u = 0 is a local minimizer of ϕ. Thus, it follows from Lemmas 3.1–3.2 that all conditions of

Theorem 2.1 are satisfied. Hence, problem (P ) has at least one nontrivial weak solution u0.

Again using [40, Lemma 4.1], the solution u0 is in C1
0 (Ω). Then the proof is completed.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Firstly, we consider the functions F± : Ω× R → R given as

F+(x, t) =

∫ t

0

f(x, s+)ds, F−(x, t) =

∫ t

0

f(x,−s−)ds, ∀(x, t) ∈ Ω× R

and the functionals ϕ± : W 1,H
0 (Ω) → R given as

ϕ±(u) =

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−

∫

Ω

F±(x, u)dx.

Due to hypotheses (f1)− (f4), we deduce that ϕ± ∈ C1(W 1,H
0 (Ω),R) and

〈ϕ′
+(u), v〉 =

∫

Ω

(|∇u|p−2∇u∇v + a(x)|∇u|q−2∇u∇v)dx−

∫

Ω

f(x, u+)vdx,

〈ϕ′
−(u), v〉 =

∫

Ω

(|∇u|p−2∇u∇v + a(x)|∇u|q−2∇u∇v)dx−

∫

Ω

f(x,−u−)vdx

for all v ∈ W
1,H
0 (Ω).

Claim 1 The functional ϕ+ satisfies the (Cc)-condition if and only if it satisfies the (Cc)-

condition with respect to all the sequences {un} ⊂ W
1,H
0 (Ω) such that un(x) ≥ 0 for all x ∈ Ω

and all n ∈ N .

In fact, if {un} ⊂ W
1,H
0 (Ω) and (1 + ‖un‖)ϕ+(un) → 0 as n → +∞. Then, there exists a

sequence {εn} of nonnegative real numbers such that εn → 0 as n → +∞ and

|〈ϕ′
+(un), v〉| ≤

εn‖v‖

1 + ‖un‖
, ∀n ∈ N, ∀u ∈ W

1,H
0 (Ω).
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Moreover, by (f5), one yields

f(x, u+
n (x))vn(x) = 0 for a.a. x ∈ Ω. (4.1)

Take vn = min{0, un}. Then, the relation (4.1) and Proposition 2.1 imply that

min{‖vn‖
p, ‖vn‖

q} ≤

∫

Ω

(|∇vn|
p + a(x)|∇vn|

q)dx ≤
εn‖vn‖

1 + ‖un‖
, ∀n ∈ N. (4.2)

This shows ‖vn‖ → 0 as n → +∞. The proof of Claim is complete.

Now, for all u ∈ W
1,H
0 (Ω) such that u(x) ≥ 0 for all x ∈ Ω, one easily deduces

ϕ+(u) =

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−

∫

Ω

F+(x, u(x))dx

=

∫

Ω

(1
p
|∇u|p +

a(x)

q
|∇u|q

)
dx−

∫

Ω

F (x, u(x))dx = ϕ(u),

because F+(x, u(x)) =
∫ u(x)

0 f(x, t+)dt =
∫ u(x)

0 f(x, t)dt = F (x, u(x)) for all x ∈ Ω.

Therefore, by Lemma 3.1, we deduce that the functional ϕ+ satisfies the (Cc)-condition for

all the sequences {un} ⊂ W
1,H
0 (Ω) such that un(x) ≥ 0 for all x ∈ Ω, all n ∈ N . Clearly,

Lemma 3.2 also holds for the functional ϕ+. The above facts (by Theorem 2.1) imply that

there exists a function u0 ∈ W
1,H
0 (Ω) such that

∫

Ω

(|∇u0|
p−2∇u0∇v + a(x)|∇u0|

q−2∇u0∇v)dx =

∫

Ω

f(x, u+
0 (x))v(x)dx

for all v ∈ W
1,H
0 (Ω).

Choosing v = min{0, u0}, we get that v = 0, because f(x, u+
0 (x))v(x) = 0 for a.a. x ∈ Ω. It

is obviously that u0(x) ≥ 0 for all x ∈ Ω. Thus, f(x, u+
0 (x)) = f(x, u0(x)) for all x ∈ Ω. Hence,

∫

Ω

(|∇u0|
p−2∇u0∇v + a(x)|∇u0|

q−2∇u0∇v)dx =

∫

Ω

f(x, u0(x))v(x)dx

for all v ∈ W
1,H
0 (Ω). This shows that u0 is a nonnegative nontrivial weak solution of problem

(P ). By again using [40, Lemma 3.5], we deduce that u0 ∈ N+.

Claim 2 Ck(ϕ+, u0) = δk,1Z for all k ≥ 0, where δk,m = 1 if k = m and δk,m = 0 if k 6= m.

Without loss of generality, we may assume that Kϕ+
= {0, u0}. Recall that u = 0 is a local

minimizer of ϕ+ and u0 is a critical point of ϕ+ of mountain pass type. So, by the similar proof

of Lemma 3.2(1), we can show that there exists δ > 0 such that

0 = ϕ+(0) < δ ≤ ϕ+(u0).

Let ν− < 0 < ν+ < δ and consider the inclusions ϕ
ν−
+ ⊂ ϕ

ν+
+ ⊂ W

1,H
0 (Ω). Consider the

following corresponding long exact sequence of singular homology groups (see [38, p.143]):

· · · → Hk(W
1,H
0 (Ω), ϕ

ν−
+ )

i♯
→ Hk(W

1,H
0 (Ω), ϕ

ν+
+ )

j♯
→ Hk−1(ϕ

ν−
+ , ϕ

ν+
+ ) → · · · , (4.3)

where i♯, j♯ are induced by inclusions. It follows that i♯ and i♯ are isomorphisms. Thus, due to

the fact that Kϕ+
= {0, u0} and ν− < 0 = ϕ+(0), by using Lemma 3.3, we deduce that

Hk(W
1,H
0 (Ω), ϕ

ν−
+ ) = Ck(ϕ+,∞) = 0, ∀k ≥ 0. (4.4)



Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory 63

Moreover, it follows from 0 = ϕ+(0) < ν+ that

Hk(W
1,H
0 (Ω), ϕ

ν+
+ ) = Ck(ϕ+, u0), ∀k ≥ 0. (4.5)

Similarly, we also deduce that

Hk−1(ϕ
ν+
+ , ϕ

ν−
+ ) = Ck−1(ϕ+, 0) = δk−1,0Z = δk,1Z, ∀k ≥ 0. (4.6)

As a consequence of (4.4)–(4.6) and taking into account (4.3), we infer that only the tail of

that chain (i.e., k = 1) is nontrivial. Consequently, by using the rank theorem, (4.3)–(4.4) and

(4.6), we obtain that

RankH1(W
1,H
0 (Ω), ϕ

ν+
+ ) = Rank kerj♯ +Rank imj♯ = Rank imi♯ +Rank imj♯ ≤ 1. (4.7)

Using the fact that u0 is a critical point of ϕ+ of mountain pass type, we get that

C1(ϕ+, u0) 6= 0. (4.8)

Finally, due to the fact that only for k = 1 the chain (4.3) is nontrivial and using again (4.5)–

(4.8), we observe that

Ck(ϕ+, u0) = δk,1Z, ∀k ≥ 0.

Claim 3 Ck(ϕ, u0) = Ck(ϕ+, u0) for all k ≥ 0.

First of all, we introduce the homotopy function h : [0, 1]×W
1,H
0 (Ω) → R defined as

h(λ, u) = (1− λ)ϕ(u) + λϕ+(u).

Assume that there exist {λn} ⊂ [0, 1] and {un} ⊂ W
1,H
0 (Ω) such that

λn → λ0, un → u0 in W
1,H
0 (Ω) and h′

u(λn, un) = 0, ∀n ∈ N, (4.9)

which yields that

∫

Ω

(|∇un|
p−2∇un∇v + a(x)|∇un|

q−2∇un∇v)dx

= (1− λn)

∫

Ω

f(x, un)vdx+ λn

∫

Ω

f(x, u+
n )vdx

=

∫

Ω

f(x, u+
n )vdx+ (1− λn)

∫

Ω

f(x,−u−
n )vdx

for all v ∈ W
1,H
0 (Ω). Then un is a weak solution to

{
−div(|∇un|

p−2∇un + a(x)|∇un|
q−2∇un) = fn(x, un) in Ω,

un = 0 on ∂Ω,

where we have set fn(x, t) = f(x, t+) + (1 − λn)f(x,−t−).

By the assumption (f1), for any ε > 0, there exists a constant δε ∈ (0, 1) such that

|f(x, t)| ≤ ε|t|q−1 ≤ ε|t|p−1
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for |t| ≤ δε and for almost all x ∈ Ω. Also, by (f2), for all x ∈ Ω and |t| ≥ δε, we have

|f(x, t)| ≤ C(1 + |t|r−1) ≤ C
(∣∣∣ t

δε

∣∣∣+ |t|r−1
)

≤ C
(∣∣∣ t

δε

∣∣∣
r−1

+ |t|r−1
)
= C

( 1

δr−1
ε

+ 1
)
|t|r−1.

The above two inequalities imply that there exists a constant Cε > 0 such that

|fn(x, t)| ≤ 2ε|t|p−1 + 2Cε|t|
r−1, ∀x ∈ Ω, ∀t ∈ R. (4.10)

Then un ∈ L∞(Ω) (see [17, Sec. 3.2]) with L∞-bounded independent of n. This implies that

there exists a constant d > 0, such that

|un|∞ ≤ d, ∀n ∈ N. (4.11)

Let hn(x) := f(x, u+
n (x)) + (1 − λn)f(x,−u−

n (x)), n ∈ N, x ∈ Ω. Then from (4.10)–(4.11), we

get

|hn|∞ ≤ 2ε|un|
p−1
∞ + 2Cε|un|

r−1
∞ ≤ 2εdp−1 + 2Cεd

r−1 < +∞, ∀n ∈ N.

Again from Lemma 3.3 of Fukagai-Narukawa [40, p.545], we conclude that there exist α ∈ (0, 1)

and M > 0 such that

un ∈ C1,α(Ω) and |un|C1,α(Ω) ≤ M, ∀n ∈ N.

Using the compactness of the embedding C1,α(Ω) →֒ C1(Ω) together with (4.9), it follows that

un → u0 in C1(Ω).

Recall that u0 ∈ N+ (see Claim 1). Therefore, un ∈ N+ for n ≥ 1 large, which implies that

there exists a n0 ∈ N such that un ∈ N+ for all n ≥ n0. Then {un : n ≥ n0} are distinct

positive solutions of (P ), which leads to contradiction as Kϕ+
must be finite. Consequently,

(4.9) can not happen and hence we obtain that Ck(ϕ, u0) = Ck(ϕ+, u0) for all k ≥ 0 (it is a

direct consequence of the homotopy invariance of critical groups, see [41, Theorem 5.2]). This

proves Claim 3.

By reasoning in a similar way as above, Lemma 3.2 also holds for the functional ϕ−. Thus,

there is another function v0 ∈ W
1,H
0 (Ω) that is a nonpositive nontrivial weak solution of problem

(P ). Similar to the proof of Claims 1–3, we can obtain that

v0 ∈ −N+ and Ck(ϕ, v0) = Ck(ϕ−, v0) for all k ≥ 0.

Hence, we retrieve the two constant sign solutions u0 ∈ N+ and v0 ∈ −N+. If we assume

Kϕ = {0, u0, v0} which means that u0 and v0 are the only nontrivial solutions of (P ), then by

Claim 2 we have

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z, ∀k ≥ 0. (4.12)

Moreover, we recall that u = 0 is local minimizer of ϕ. So that

Ck(ϕ, 0) = δk,0Z, ∀k ≥ 0. (4.13)
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Then from (4.12)–(4.13), Lemma 3.3 and the Morse relation, we may write

∑

u∈Kϕ

∑

k≥0

rankCk(ϕ, u)t
k =

∑

k≥0

rankCk(ϕ,∞)tk + (1 + t)
∑

k≥0

βkt
k, ∀t ∈ R,

where βk ∈ N . Assume that 0, u0 and v0 are the only critical points of ϕ. Then the Morse

inequality becomes 2(−1)1 + (−1)0 + (−1)k = (−1)k. This is impossible. Thus ϕ must have at

least one more critical point w0. So (P ) has at least third nontrivial solution. This completes

the proof of Theorem 1.1.
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